1 Elliptic Curves

By Proposition **??**, the cotangent bundle of an abelian variety over *K* is trivial. Thus an abelian variety of dimension 1 has genus 1, i.e. is an elliptic curve. In this section, we prove the converse, i.e. elliptic curve has a group structure and is an abelian variety.

Definition 1.1

An *elliptic curve* over *K* is a geometrically irreducible smooth projective curve *E* of genus *g*(*E*) = 1, equipped with a rational point $P_0 \in E(K)$.

Note geometrically irreducible is the same as irreducible for us, since we have at least one *K*-rational point. Let *E* be elliptic curve over *K* and *D* be a divisor on $E_{\overline{K}}$ of \deg deg(*D*) $>$ 0. The space of global sections $\Gamma(E_{\overline{K}},\mathscr{O}(D))$ may be realized as the subspace

$$
\overline{\mathscr{L}}(D) := \{ f \in \overline{K}(E_{\overline{K}})^{\times} : \text{div}(f) \ge -D \} \cup \{ 0 \}
$$

in $\overline{K}(E_{\overline{K}})$, using the homomorphism $s \mapsto s/s_D.$ By Riemann-Roch, we see

$$
\dim_{\overline{K}} \overline{\mathscr{L}}(D) = \deg(D) \tag{Eq. 1.1}
$$

hence the corresponding linear system $|D_{\overline{K}}|$ has dimension $\deg(D)-1$. It follows that two distinct points (viewed as Weil divisors) on *E* are rationally equivalent over *K*.

Let us fix a base point $P_0 \in E(K)$. For two point $P_1, P_2 \in E(\overline{K})$, let $D := [P_1] +$ $[P_2] - [P_0]$. Thus deg $(D) = 1$ and $\overline{\mathscr{L}}(D)$ is one-dimensional, generated by a function *f*, unique up to multiplication by a scalar. By construction, if $P_0 \notin \{P_1, P_2\}$, then *f* has pole divisor $[P_1] + [P_2]$ and vanishes at P_0 and at exactly one other point P_3 (this one extra point is because dim($\mathcal{L}(D)$) = 1), which is the unique point rationally equivalent to $[P_1] + [P_2] - [P_0]$. This make sense even if P_1 or P_2 equals P_0 . Thus we get a well-defined composition law on *E* by $(P_1, P_2) \rightarrow P_1 + P_2 := P_3$.

We should distinguish carefully between addition of points P_1, P_2 on E and of the corresponding divisors $[P_1]$, $[P_2]$. Remembering that Pic ${}^0(E_{\overline{K}})$ is the group of rational equivalence classes of divisors of degree 0, we get an additive map

$$
E \to \text{Pic}^0(E_{\overline{K}}), \quad P \mapsto [P] - [P_0]
$$

By [Eq. 1.1](#page-0-0) this map is bijective. We will later give more geometric interpretation of the addition rule.

Proposition 1.2

*If the group structure on an elliptic curve E over K with base point P*⁰ *is given by bijective map*

 $E \to \text{Pic}^0(E_{\overline{K}})$, $P \mapsto [P] - [P_0]$

then E is an abelian variety defined over K.

We will prove this result throughout the section, as we gain more understanding of elliptic curves.

Now let us first give a classical argument showing *E* has a model given by a smooth cubic curve. Let us realize *Γ*(*E*, *©*(*D*)) via

$$
\mathcal{L}(D) = \{ f \in K(E)^{\times} : \text{div}(f) \ge -D \} \cup \{ 0 \}
$$

for any divisor *D* on *E*. If deg(*D*) > 0 , then by Riemann-Rock, $\mathcal{L}(D)$ has dimension deg(*D*). We have an ascending chain of *K*-vector spaces

$$
\mathcal{L}([P_0]) \subseteq \mathcal{L}(2[P_0]) \subseteq \ldots \subseteq \mathcal{L}(6[P_0])
$$

and the *j*th member has dimension *j*.

Clearly 1 is a basis of $\mathcal{L}([P_0])$. Since P_0 is defined over *K*, there are $x, y \in K(E)$ such that $1,x$ is a basis of $\mathscr{L}(2[P_0])$ and $1,x,y$ is a basis of $\mathscr{L}(3[P_0])$. By looking at the order of pole at P_0 , its clear $1, x, y, x^2$ is a basis of $\mathscr{L}(4[P_0])$ and $1, x, y, x^2, xy$ is a basis of $\mathscr{L}(5[P_0])$. Moreover, $x^3, y^2 \in \mathscr{L}(6[P_0])$. This gives 7 elements 1, *x*, *y*, x^2 , *xy*, x^3, y^2 spanning $\mathcal{L}(6[P_0])$, where dim $\mathcal{L}(6[P_0]) = 6$. Thus there must be $c_i \in K$ so

$$
c_0 + c_1 x + c_2 y + c_3 x^2 + c_4 x y + c_5 x^3 + c_6 y^2 = 0
$$

By the above, c_5 and c_6 are different from 0, so that we may normalize $c_5 = -1$. If we divide by *c* 3 $\frac{3}{6}$ and replace *x* by *x*/*c*₆ and *y* by *y*/*c*₆² $\frac{2}{6}$, we get a relation of the form

$$
y^{2} + a_{1}xy + a_{3}y = x^{3} + a_{2}x^{2} + a_{4}x + a_{6}
$$
 (Eq. 1.2)

with $a_i \in K$. Since $deg(3[P_0]) = 3 = 2g(E) + 1$, the divisor $3[P_0]$ is very ample. Hence the basis of $\mathscr{L}(3[P_0])$ corresponding to $1,x,y$ induces a closed embedding of E into \mathbb{P}^2 K_K . We know by [Eq. 1.2](#page-1-0) that the image of *E* is contained in the projective curve with *Weierstrass equation*

$$
x_0x_2^2 + a_1x_0x_1x_2 + a_3x_0^2x_3 = x_1^3 + a_2x_0x_1^2 + a_4x_0^2x_1 + a_6x_0^3
$$

in the homogeneous coordinates $(x_0 : x_1 : x_2)$ of \mathbb{P}^2_k *K* .

It is easy to prove the curve defined above is geometrically irreducible, hence it gives a projective model of *E* as a smooth plane cubic curve. Note also that the ratinoal functions $x = x_1/x_0$ and $y = x_2/x_0$ are nothing else than the two functions x, y defined before, hence the affine form $Eq. 1.2$ of the Weierstrass equation describes the affine curve $E \cap \{x_0 \neq 0\}$. The only point of *E* outside this part is the point (0 : 0 : $1) \in \mathbb{P}^2$ K^2 , corresponding to $P_0 \in E$. It is easily seen that, in this model, P_0 is an inflexion point of *E*.

Remark 1.3

If char(*K*) \neq 2, then replacing *y* by $\frac{1}{2}(y - a_1x - a_3)$ leads to a Weierstrass equation with $a_1 = a_3 = 0$. Then the Jacobi criterion shows a Weierstrass equation describes a smooth curve *C* in \mathbb{P}^2 $K_K²$ if and only if the discriminant of the cubic polynomial $x^3 + a_2x^2 + a_4x + a_6$ is not zero. By the genus formula

$$
g(C) = \frac{1}{2}(\deg(C) - 1)(\deg(C) - 2)
$$

this is an elliptic curve. If char($K \neq 3$, then a further linear transformation leads

to the Weierstrass normal/short form

$$
y^2 = 4x^3 - g_2x - g_3
$$

Now let us go back to any characteristic. We will describe a more explicit group structure on the abelian group *E*, beginning by proving the inverse operation is a morphism.

Consider the rational equivalence relation

$$
[P_1] + [P_2] + [P_3] \sim 3[P_0]
$$
 (Eq. 1.3)

on $E_{\overline{K}}.$ This relation is equivalent to the geometric statement that the points P_1, P_2, P_3 are the three intersection points, counted with multiplicity, of a straight line with *E*. We verify this as follows. The lines in $\mathbb{P}^2_{\overline{\nu}}$ $\frac{2}{K}$ are just the divisors of the global sections of $\mathscr{O}_{\mathbb{P}^2_{\overline{K}}}(1)$ and, by construction, the restriction of this line bundle to E is isomorphic to $\mathscr{O}(3[P_0])$. First, we assume $[P_1]+[P_2]+[P_3]\sim 3[P_0]$, then there is $s' \in \Gamma(E_{\overline{K}}, \mathscr{O}(3[P_0]))$ with $div(s') = [P_1] + [P_2] + [P_3]$. By construction of the embedding $E \hookrightarrow \mathbb{P}^2_{\overline{k}}$ $\frac{2}{K}$, there is $s ∈ Γ(ℝ²_{*k*})$ $\frac{2}{K}$, $\mathscr{O}_{\mathbb{P}^2_{\overline{K}}(1)}$) with $s' = s|_E$. Then the line $\ell = \text{div}(s)$ is the line through the three points $\overrightarrow{P_i}$. Indeed, by definition of proper intersection product, we have

$$
\ell \cdot E = \text{div}(s|_E) = \text{div}(s') = [P_1] + [P_2] + [P_3]
$$

The converse is proved the same way by reversing the previous argument.

The zero element of *E* is $P_0 = (0:0:1)$. The inverse $P_2 := -P_1$ of a point $P_1 \in E$ is characterized by the rational equivalence $[P_1] + [P_2] \sim 2[P_0]$, which can be rewritten as the special case

$$
[P_0] + [P_1] + [P_2] \sim 3[P_0]
$$

of [Eq. 1.3.](#page-2-0) It follows P_0, P_1, P_2 are on a straight line and in fact, noting $P_0 = (0:0:1)$, we see that, if $P_1 \neq P_0$, then P_2 is the residual finite intersection of *E* with the vertical line in (x, y) -plane going through P_1 . If (x_1, y_1) are the affine coordinates of P_1 , then, using [Eq. 1.2,](#page-1-0) the affine coordinates (x_2, y_2) of P_2 are given by

$$
x_2 = x_1, \quad y_2 = -a_1 x_1 - a_3 - y_1
$$

Thus the inverse map is an automorphism of the affine part of *E* defined over *K*. On the other hand, a rational map of a smooth projective curve is always a morphism. We conclude the above restriction extends to an automorphism of *E*. This requires 0 map to 0, hence the inverse map is a morphism on *E* defined over *K*.

Now we study the addition on the elliptic curve a bit closer. By the above, it is enough to construct

$$
P_3 = -(P_1 + P_2)
$$

The point P_3 is characterized by the rational equivalence Eq. 1.3 . As we have seen above, P_3 is the third intersection point of the line ℓ through P_1 and P_2 with E , taking this line to be the tangent line to *E* at P_1 if $P_1 = P_2$.

If $P_1 \neq P_0$ and $P_2 \notin \{P_0, -P_1\}$, then the third intersection point of the line through P_1, P_2 with *E* is contained in the (x, y) -plane. Let $y = ax + b$ be the equation for this line. We eliminate *y* in [Eq. 1.2](#page-1-0) obtaining a cubic equation for *x*, with two known solutions x_1, x_2 . This equation has the form

$$
x^3 - (a^2 + a_1a - a_2)x^2
$$
 + lower degree terms = 0

The third solution x_3 is determined by the trace $x_1 + x_2 + x_3 = a^2 + a_1a - a_2$. Since $P_1 + P_2 = -P_3$, applying the inverse as above, we conclude the following result.

Proposition 1.4: Addition Law

Let E be the elliptic curve in normal form

$$
y^2 = a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6
$$

Then the origin O of the group E is the unique point at infinity and the group law + *is defined as follows. Let* $P_1 = (x_1, y_1)$ *,* $P_2 = (x_2, y_2)$ *be two finite points on E and set*

$$
a = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{if } x_1 \neq x_2\\ \frac{3x_1^2 + 2a_2x_1 + a_4 - a_1y_1}{2y_1 + a_1x_1 + a_3} & \text{otherwise} \end{cases}
$$

$$
b = y_1 - ax_1
$$

Then:

- *1. The inverse of* P_1 *is given by* $-P_1 = (x_1, -a_1x_1 a_3 y_1)$
- 2. *If* $x_2 = x_1$ *and* $y_2 = -a_1x_1 a_3 y_1$ *, then* $P_1 + P_2 = 0$
- *3. Otherwise, we have*

$$
P_1 + P_2 = (a^2 + a_1a - a_2 - x_1 - x_2, -(a + a_1)(a^2 + a_1a - a_2 - x_1 - x_2) - a_3 - b)
$$

The addition law can be seen visually as the following:

The addition law shows that addition is a rational map. In order to finish proof of Proposition [1.2,](#page-0-1) it remains to show $+$ is a morphism. To show rational map extends to a morphism, it suffices to prove that over \overline{K} . In a first step, we show translation τ _O by $Q \in E$ is a morphism. We may assume $Q \neq O$. By the formulae in Proposition [1.4,](#page-3-0) τ_{Q} is a rational map which restricts to a morphism $E \setminus \{O, Q, -Q\} \rightarrow E \setminus \{Q, O, Q + Q\}$. Since every rational map between projective smooth curves extends to a morphism (valuative criterion), we get a morphism *τ* ′ Q : *E* → *E* which agrees with τ_Q on *E*\{*O*,*Q*,−*Q*}. It remains to prove $\tau_Q = \tau_Q'$ Q ^{*C*} For *R* \in *E*, we see τ' σ'_R = *τ'*_{*G*} *Q*+*R* . In particular, every *τ* ′ is an isomorphism with inverse τ'_{Q} . Thus τ'_{Q} maps $\{O, Q, -Q\}$ onto $\{Q, Q+Q, O\}$. For $\frac{1}{2}$. Thus τ_Q' maps $\{O, Q, -Q\}$ onto $\{Q, Q + Q, O\}$. For any *R* ∉ {*O*, *Q*, −*Q*, *Q* + *Q*, −*Q* − *Q*} we have

$$
\tau'_R(\tau'_Q(Q)) = \tau'_{Q+R}(Q) = \tau'_Q(\tau'_R(Q)) = \tau'_Q(Q+R) = Q + Q + R
$$

This excludes *τ* ′ $\chi_{Q}'(Q) = Q$ immediately. On the other hand, we know τ_{B}' P_R ^{*(O)* ∈ {*O,R,R+*} *R*}, hence *τ* ′ $Q_Q'(Q)$ = *O* is only possible if Q + Q = *O*. This proves

$$
\tau'_Q(Q) = Q + Q = \tau_Q(Q)
$$

The equation

$$
\tau'_Q(-Q) = O = \tau_Q(-Q)
$$

is proved in a similar fashion. Thus, using that *τ* ′ $\frac{1}{Q}$ is a bijection, we conclude τ'_{Q} $Q'_Q(0) =$ $Q = \tau_Q(O)$. We have handled all exceptions, thereby proving $\tau_Q = \tau_Q'$ *Q* .

Next we show addition is a morphism. The formulae in Proposition [1.4](#page-3-0) show that addition is a rational map *m*, which is a morphism outside

$$
Z := \{(P, P) : P \in E\} \cup \{(P, -P) : P \in E\} \cup (E \times \{O\}) \cup (\{O\} \times E)
$$

For $(P,Q) \in Z$, there are $R, S \in E$ such that $(P+R, Q+S) \notin Z$. Since translations are morphisms, we see

$$
\tau_{-P-Q}\circ m\circ (\tau_R\times \tau_S)
$$

is a morphism in a neighbourhood of (P,Q) and agrees with $+$ everywhere. This proves + is a morphism.

Remark 1.5

Complex analytically, an elliptic curve is biholomorphic to C*/Λ* where *Λ* is a lattice in C. In dimension 1 the converse is true, i.e. every one-dimensional complex torus is biholomorphic to an abelian variety. The description of the elliptic curve determined by C*/Λ* is done quite explicitly by means of Weierstrass *℘*-function associated to the lattice *Λ*, namely

$$
\wp(z) = \frac{1}{z^2} + \sum_{\omega \in \Lambda \setminus \{0\}} \left(\frac{1}{(z - \omega)^2} - \frac{1}{\omega^2} \right)
$$

It is *Λ*-periodic meromorphic function on C with double periods at lattice points. In particular it satisfies the first-order differential equation

$$
\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3
$$

where

$$
g_2 = 60 \sum_{\omega \in \Lambda \setminus \{0\}} \frac{1}{\omega^4}, \quad g_3 = 140 \sum_{\omega \in \Lambda \setminus \{0\}} \frac{1}{\omega^6}
$$

The map $z \mapsto (\wp(z), \wp'(z))$ is biholomorphic from \mathbb{C}/Λ onto the elliptic curve with affine Weierstrass equation $y^2 = 4x^3 - g_2x - g_3$.