
1 Elliptic Curves

By Proposition ??, the cotangent bundle of an abelian variety over K is trivial. Thus an
abelian variety of dimension 1 has genus 1, i.e. is an elliptic curve. In this section, we
prove the converse, i.e. elliptic curve has a group structure and is an abelian variety.

Definition 1.1

An elliptic curve over K is a geometrically irreducible smooth projective curve E
of genus g(E) = 1, equipped with a rational point P0 ∈ E(K).

Note geometrically irreducible is the same as irreducible for us, since we have at
least one K-rational point. Let E be elliptic curve over K and D be a divisor on EK of
degree deg(D) > 0. The space of global sections Γ (EK ,O(D)) may be realized as the
subspace

L (D) := { f ∈ K(EK)
× : div( f )≥ −D} ∪ {0}

in K(EK), using the homomorphism s 7→ s/sD. By Riemann-Roch, we see

dimK L (D) = deg(D) (Eq. 1.1)

hence the corresponding linear system |DK | has dimension deg(D)− 1. It follows that
two distinct points (viewed as Weil divisors) on E are rationally equivalent over K .

Let us fix a base point P0 ∈ E(K). For two point P1, P2 ∈ E(K), let D := [P1] +
[P2]− [P0]. Thus deg(D) = 1 and L (D) is one-dimensional, generated by a function
f , unique up to multiplication by a scalar. By construction, if P0 /∈ {P1, P2}, then
f has pole divisor [P1] + [P2] and vanishes at P0 and at exactly one other point P3

(this one extra point is because dim(L (D)) = 1), which is the unique point rationally
equivalent to [P1] + [P2]− [P0]. This make sense even if P1 or P2 equals P0. Thus we
get a well-defined composition law on E by (P1, P2) 7→ P1 + P2 := P3.

We should distinguish carefully between addition of points P1, P2 on E and of the
corresponding divisors [P1], [P2]. Remembering that Pic0(EK) is the group of rational
equivalence classes of divisors of degree 0, we get an additive map

E→ Pic0(EK), P 7→ [P]− [P0]

By Eq. 1.1 this map is bijective. We will later give more geometric interpretation of
the addition rule.

Proposition 1.2

If the group structure on an elliptic curve E over K with base point P0 is given by
bijective map

E→ Pic0(EK), P 7→ [P]− [P0]

then E is an abelian variety defined over K.
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We will prove this result throughout the section, as we gain more understanding of
elliptic curves.

Now let us first give a classical argument showing E has a model given by a smooth
cubic curve. Let us realize Γ (E,O(D)) via

L (D) = { f ∈ K(E)× : div( f )≥ −D} ∪ {0}

for any divisor D on E. If deg(D) > 0, then by Riemann-Rock, L (D) has dimension
deg(D). We have an ascending chain of K-vector spaces

L ([P0]) ⊆L (2[P0]) ⊆ ... ⊆L (6[P0])

and the jth member has dimension j.

Clearly 1 is a basis of L ([P0]). Since P0 is defined over K , there are x , y ∈ K(E)
such that 1, x is a basis of L (2[P0]) and 1, x , y is a basis of L (3[P0]). By looking at the
order of pole at P0, its clear 1, x , y, x2 is a basis of L (4[P0]) and 1, x , y, x2, x y is a basis
of L (5[P0]). Moreover, x3, y2 ∈L (6[P0]). This gives 7 elements 1, x , y, x2, x y, x3, y2

spanning L (6[P0]), where dimL (6[P0]) = 6. Thus there must be ci ∈ K so

c0 + c1 x + c2 y + c3 x2 + c4 x y + c5 x3 + c6 y2 = 0

By the above, c5 and c6 are different from 0, so that we may normalize c5 = −1. If we
divide by c3

6 and replace x by x/c6 and y by y/c2
6 , we get a relation of the form

y2 + a1 x y + a3 y = x3 + a2 x2 + a4 x + a6 (Eq. 1.2)

with ai ∈ K . Since deg(3[P0]) = 3= 2g(E)+1, the divisor 3[P0] is very ample. Hence
the basis of L (3[P0]) corresponding to 1, x , y induces a closed embedding of E into
P2

K . We know by Eq. 1.2 that the image of E is contained in the projective curve with
Weierstrass equation

x0 x2
2 + a1 x0 x1 x2 + a3 x2

0 x3 = x3
1 + a2 x0 x2

1 + a4 x2
0 x1 + a6 x3

0

in the homogeneous coordinates (x0 : x1 : x2) of P2
K .

It is easy to prove the curve defined above is geometrically irreducible, hence it
gives a projective model of E as a smooth plane cubic curve. Note also that the ratinoal
functions x = x1/x0 and y = x2/x0 are nothing else than the two functions x , y
defined before, hence the affine form Eq. 1.2 of the Weierstrass equation describes
the affine curve E ∩{x0 ̸= 0}. The only point of E outside this part is the point (0 : 0 :
1) ∈ P2

K , corresponding to P0 ∈ E. It is easily seen that, in this model, P0 is an inflexion
point of E.

Remark 1.3

If char(K) ̸= 2, then replacing y by 1
2(y − a1 x − a3) leads to a Weierstrass equa-

tion with a1 = a3 = 0. Then the Jacobi criterion shows a Weierstrass equation
describes a smooth curve C in P2

K if and only if the discriminant of the cubic
polynomial x3 + a2 x2 + a4 x + a6 is not zero. By the genus formula

g(C) =
1
2
(deg(C)− 1)(deg(C)− 2)

this is an elliptic curve. If char(K) ̸= 3, then a further linear transformation leads
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to the Weierstrass normal/short form

y2 = 4x3 − g2 x − g3

Now let us go back to any characteristic. We will describe a more explicit group
structure on the abelian group E, beginning by proving the inverse operation is a
morphism.

Consider the rational equivalence relation

[P1] + [P2] + [P3]∼ 3[P0] (Eq. 1.3)

on EK . This relation is equivalent to the geometric statement that the points P1, P2, P3

are the three intersection points, counted with multiplicity, of a straight line with E.
We verify this as follows. The lines in P2

K
are just the divisors of the global sections of

OP2
K
(1) and, by construction, the restriction of this line bundle to E is isomorphic to

O(3[P0]). First, we assume [P1]+[P2]+[P3]∼ 3[P0], then there is s′ ∈ Γ (EK ,O(3[P0]))
with div(s′) = [P1] + [P2] + [P3]. By construction of the embedding E ,→ P2

K
, there is

s ∈ Γ (P2
K
,OP2

K
(1)) with s′ = s|E. Then the line ℓ = div(s) is the line through the three

points Pi. Indeed, by definition of proper intersection product, we have

ℓ · E = div(s|E) = div(s′) = [P1] + [P2] + [P3]

The converse is proved the same way by reversing the previous argument.

The zero element of E is P0 = (0 : 0 : 1). The inverse P2 := −P1 of a point P1 ∈ E is
characterized by the rational equivalence [P1] + [P2]∼ 2[P0], which can be rewritten
as the special case

[P0] + [P1] + [P2]∼ 3[P0]

of Eq. 1.3. It follows P0, P1, P2 are on a straight line and in fact, noting P0 = (0 : 0 : 1),
we see that, if P1 ̸= P0, then P2 is the residual finite intersection of E with the vertical
line in (x , y)-plane going through P1. If (x1, y1) are the affine coordinates of P1, then,
using Eq. 1.2, the affine coordinates (x2, y2) of P2 are given by

x2 = x1, y2 = −a1 x1 − a3 − y1

Thus the inverse map is an automorphism of the affine part of E defined over K . On
the other hand, a rational map of a smooth projective curve is always a morphism. We
conclude the above restriction extends to an automorphism of E. This requires 0 map
to 0, hence the inverse map is a morphism on E defined over K .

Now we study the addition on the elliptic curve a bit closer. By the above, it is
enough to construct

P3 = −(P1 + P2)

The point P3 is characterized by the rational equivalence Eq. 1.3. As we have seen
above, P3 is the third intersection point of the line ℓ through P1 and P2 with E, taking
this line to be the tangent line to E at P1 if P1 = P2.

If P1 ̸= P0 and P2 /∈ {P0,−P1}, then the third intersection point of the line through
P1, P2 with E is contained in the (x , y)-plane. Let y = ax + b be the equation for this
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line. We eliminate y in Eq. 1.2 obtaining a cubic equation for x , with two known
solutions x1, x2. This equation has the form

x3 − (a2 + a1a− a2)x
2 + lower degree terms= 0

The third solution x3 is determined by the trace x1 + x2 + x3 = a2 + a1a − a2. Since
P1+P2 = −P3, applying the inverse as above, we conclude the following result.

Proposition 1.4: Addition Law

Let E be the elliptic curve in normal form

y2 = a1 x y + a3 y = x3 + a2 x2 + a4 x + a6

Then the origin O of the group E is the unique point at infinity and the group law +
is defined as follows. Let P1 = (x1, y1), P2 = (x2, y2) be two finite points on E and
set

a =

¨ y2−y1
x2−x1

if x1 ̸= x2
3x2

1+2a2 x1+a4−a1 y1

2y1+a1 x1+a3
otherwise

b = y1 − ax1

Then:

1. The inverse of P1 is given by −P1 = (x1,−a1 x1 − a3 − y1)
2. If x2 = x1 and y2 = −a1 x1 − a3 − y1, then P1 + P2 = O
3. Otherwise, we have

P1+ P2 = (a
2+a1a−a2− x1− x2,−(a+a1)(a

2+a1a−a2− x1− x2)−a3− b)

The addition law can be seen visually as the following:
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The addition law shows that addition is a rational map. In order to finish proof of
Proposition 1.2, it remains to show + is a morphism. To show rational map extends to
a morphism, it suffices to prove that over K . In a first step, we show translation τQ by
Q ∈ E is a morphism. We may assume Q ̸= O. By the formulae in Proposition 1.4, τQ is
a rational map which restricts to a morphism E\{O,Q,−Q} → E\{Q, O,Q+Q}. Since
every rational map between projective smooth curves extends to a morphism (valua-
tive criterion), we get a morphism τ′Q : E→ E which agrees with τQ on E\{O,Q,−Q}.
It remains to prove τQ = τ′Q. For R ∈ E, we see τ′Q ◦τ

′
R = τ

′
Q+R. In particular, every τ′Q

is an isomorphism with inverse τ′−Q. Thus τ′Q maps {O,Q,−Q} onto {Q,Q+Q, O}. For
any R /∈ {O,Q,−Q,Q+Q,−Q−Q} we have

τ′R(τ
′
Q(Q)) = τ

′
Q+R(Q) = τ

′
Q(τ
′
R(Q)) = τ

′
Q(Q+ R) =Q+Q+ R

This excludes τ′Q(Q) =Q immediately. On the other hand, we know τ′R(O) ∈ {O, R, R+
R}, hence τ′Q(Q) = O is only possible if Q+Q = O. This proves

τ′Q(Q) =Q+Q = τQ(Q)

The equation
τ′Q(−Q) = O = τQ(−Q)

is proved in a similar fashion. Thus, using that τ′Q is a bijection, we conclude τ′Q(O) =
Q = τQ(O). We have handled all exceptions, thereby proving τQ = τ′Q.

Next we show addition is a morphism. The formulae in Proposition 1.4 show that
addition is a rational map m, which is a morphism outside

Z := {(P, P) : P ∈ E} ∪ {(P,−P) : P ∈ E} ∪ (E × {O})∪ ({O} × E)

For (P,Q) ∈ Z , there are R, S ∈ E such that (P + R,Q + S) /∈ Z . Since translations are
morphisms, we see

τ−P−Q ◦m ◦ (τR ×τS)

is a morphism in a neighbourhood of (P,Q) and agrees with+ everywhere. This proves
+ is a morphism.

Remark 1.5

Complex analytically, an elliptic curve is biholomorphic toC/ΛwhereΛ is a lattice
in C. In dimension 1 the converse is true, i.e. every one-dimensional complex
torus is biholomorphic to an abelian variety. The description of the elliptic curve
determined by C/Λ is done quite explicitly by means of Weierstrass ℘-function
associated to the lattice Λ, namely

℘(z) =
1
z2
+
∑

ω∈Λ\{0}

�

1
(z −ω)2

−
1
ω2

�

It is Λ-periodic meromorphic function on C with double periods at lattice points.
In particular it satisfies the first-order differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3
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where
g2 = 60
∑

ω∈Λ\{0}

1
ω4

, g3 = 140
∑

ω∈Λ\{0}

1
ω6

The map z 7→ (℘(z),℘′(z)) is biholomorphic fromC/Λ onto the elliptic curve with
affine Weierstrass equation y2 = 4x3 − g2 x − g3.
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