By Proposition ??, the cotangent bundle of an abelian variety over K is trivial. Thus an
abelian variety of dimension 1 has genus 1, i.e. is an elliptic curve. In this section, we
prove the converse, i.e. elliptic curve has a group structure and is an abelian variety.

An elliptic curve over K is a geometrically irreducible smooth projective curve E
of genus g(E) = 1, equipped with a rational point P, € E(K).

Note geometrically irreducible is the same as irreducible for us, since we have at
least one K-rational point. Let E be elliptic curve over K and D be a divisor on Ex of
degree deg(D) > 0. The space of global sections I'(Ez, ¢(D)) may be realized as the
subspace o

Z(D):={f € K(Eg)* :div(f) = —D} U {0}

in K(Eg), using the homomorphism s — s/s,. By Riemann-Roch, we see
dimz.Z(D) = deg(D) (Eq. 1.1)

hence the corresponding linear system |D| has dimension deg(D) — 1. It follows that
two distinct points (viewed as Weil divisors) on E are rationally equivalent over K.

Let us fix a base point P, € E(K). For two point P;,P, € E(K), let D := [P,]+
[P,]—[P,]. Thus deg(D) =1 and .Z(D) is one-dimensional, generated by a function
f, unique up to multiplication by a scalar. By construction, if P, ¢ {P;,P,}, then
f has pole divisor [P;] + [P,] and vanishes at P, and at exactly one other point P,
(this one extra point is because dim(.Z(D)) = 1), which is the unique point rationally
equivalent to [P, ] + [P,] — [P,]. This make sense even if P, or P, equals P,. Thus we
get a well-defined composition law on E by (P,,P,) — P, + P, := P,.

We should distinguish carefully between addition of points P;, P, on E and of the
corresponding divisors [P, ], [P,]. Remembering that Pic’(Ez) is the group of rational
equivalence classes of divisors of degree 0, we get an additive map

E — Pic°(Egz), P — [P]—[P,]

By this map is bijective. We will later give more geometric interpretation of
the addition rule.

If the group structure on an elliptic curve E over K with base point P, is given by
bijective map
E — Pic°(Ez), P — [P]—[P,]

then E is an abelian variety defined over K.



We will prove this result throughout the section, as we gain more understanding of
elliptic curves.

Now let us first give a classical argument showing E has a model given by a smooth
cubic curve. Let us realize I'(E, &(D)) via

(D) = {f €eK(E)* : div(f) = —D} U {0}

for any divisor D on E. If deg(D) > 0, then by Riemann-Rock, .Z (D) has dimension
deg(D). We have an ascending chain of K-vector spaces

Z([P]) € Z2[P]) € ... € Z(6[P])

and the jth member has dimension j.

Clearly 1 is a basis of .Z([P,]). Since P, is defined over K, there are x,y € K(E)
such that 1, x is a basis of .Z(2[P,]) and 1, x, y is a basis of .Z(3[P,]). By looking at the
order of pole at P,, its clear 1, x, y, x? is a basis of #(4[P,]) and 1, x, ¥, x?, x y is a basis
of Z(5[P,]). Moreover, x3, y? € £(6[P,]). This gives 7 elements 1, x, y, x?, xy, x>, y>
spanning .Z(6[ P, ]), where dim .Z(6[P,]) = 6. Thus there must be ¢; €K so

Co+C1X +Coy +C3x® +cyxy +csx® +cy? =0

By the above, ¢ and ¢4 are different from 0O, so that we may normalize c; = —1. If we
divide by cg’ and replace x by x/c; and y by y/ cé, we get a relation of the form

Y 4+ axy +azy = X3+ a,x* + a,x +ag (Eq. 1.2)

with a; € K. Since deg(3[P,]) = 3 = 2g(E) + 1, the divisor 3[P,] is very ample. Hence
the basis of .Z(3[P,]) corresponding to 1, x, y induces a closed embedding of E into
P2. We know by that the image of E is contained in the projective curve with
Weierstrass equation

XoX3 + @) XX Xy + A3X5 X3 = X5 + AyX0XT + AgX5X; + dgXg
in the homogeneous coordinates (x, : x; : x,) of P%.

It is easy to prove the curve defined above is geometrically irreducible, hence it
gives a projective model of E as a smooth plane cubic curve. Note also that the ratinoal
functions x = x;/x, and y = x,/x, are nothing else than the two functions x, y
defined before, hence the affine form of the Weierstrass equation describes
the affine curve E N {x, # 0}. The only point of E outside this part is the point (0: 0 :
1) € P2, corresponding to P, € E. It is easily seen that, in this model, P, is an inflexion
point of E.

If char(K) # 2, then replacing y by %( y —a;x — as) leads to a Weierstrass equa-
tion with a; = a3 = 0. Then the Jacobi criterion shows a Weierstrass equation
describes a smooth curve C in P2 if and only if the discriminant of the cubic
polynomial x* + a,x? + a,x + ag is not zero. By the genus formula

8(C) = {deg(C)— 1)(deg(C)—2)

this is an elliptic curve. If char(K) # 3, then a further linear transformation leads



to the Weierstrass normal/short form

Y2 =4x"—g,x — g5

Now let us go back to any characteristic. We will describe a more explicit group
structure on the abelian group E, beginning by proving the inverse operation is a
morphism.

Consider the rational equivalence relation
[P ]+[Py]+[P3]~ 3[P] (Eq. 1.3)

on Ez. This relation is equivalent to the geometric statement that the points P;, P,, Ps
are the three intersection points, counted with multiplicity, of a straight line with E.
We verify this as follows. The lines in ]P’Iz? are just the divisors of the global sections of
OUp2(1) and, by construction, the restriction of this line bundle to E is isomorphic to
K

O'(3[P,]). First, we assume [P, ]+[P,]+[P;] ~ 3[P,], then there is s’ € T'(Eg, 0'(3[P,]))
with div(s’) = [P, ]+ [P,] + [P;]. By construction of the embedding E — IP’ZE, there is
s € F(IE”IZ?, ﬁpz?(l)) with s’ = s|;. Then the line £ = div(s) is the line through the three
points P;. Indeed, by definition of proper intersection product, we have

The converse is proved the same way by reversing the previous argument.

The zero element of E is P, = (0 : 0 : 1). The inverse P, := —P, of a point P, € E is
characterized by the rational equivalence [P; ]+ [P, ] ~ 2[P,], which can be rewritten
as the special case

[Po]+[P1]+[P2] N3[Po]

of . It follows P,, P, P, are on a straight line and in fact, noting P, =(0:0: 1),
we see that, if P; # P,, then P, is the residual finite intersection of E with the vertical
line in (x, y)-plane going through P;. If (x;, y;) are the affine coordinates of P,, then,
using , the affine coordinates (x,, y,) of P, are given by

Xo=X1, Yo=—1X1—0A3— )1

Thus the inverse map is an automorphism of the affine part of E defined over K. On
the other hand, a rational map of a smooth projective curve is always a morphism. We
conclude the above restriction extends to an automorphism of E. This requires 0 map
to 0, hence the inverse map is a morphism on E defined over K.

Now we study the addition on the elliptic curve a bit closer. By the above, it is
enough to construct
Py=—(P,+P,)

The point P, is characterized by the rational equivalence . As we have seen
above, P; is the third intersection point of the line £ through P; and P, with E, taking
this line to be the tangent line to E at P, if P, = P,.

If P, # P, and P, ¢ {P,,—P,}, then the third intersection point of the line through
P,, P, with E is contained in the (x, y)-plane. Let y = ax + b be the equation for this



line. We eliminate y in obtaining a cubic equation for x, with two known
solutions x;, x,. This equation has the form

x®—(a*+a,a—a,)x?* + lower degree terms = 0

The third solution x, is determined by the trace x; + x, + x; = a®> + a;a — a,. Since
P,+P, = —P;, applying the inverse as above, we conclude the following result.

Let E be the elliptic curve in normal form
2 __ — 3 2
Yi=axy+asy =x"+ax*+a,x+ag

Then the origin O of the group E is the unique point at infinity and the group law +
is defined as follows. Let P; = (x1,Y;), P, = (x5, y,) be two finite points on E and

set ey
Yoon i
a= { g 7 x
5 R otherwise
b=y, —ax
Then:

1. The inverse of P, is given by —P; = (x,,—a;x; —as —Y;)
2. If xo=x;and y,=—a;x; —as—Yy;, then P, + P, =0
3. Otherwise, we have

P, +P,=(a*+a;a—ay,—x;—x,,—(a+a;)(a*+a,a—a,—x;—x,)—as;—b)

The addition law can be seen visually as the following:

P+Q

{PMQ+R)

Q+R




The addition law shows that addition is a rational map. In order to finish proof of
Proposition .2, it remains to show + is a morphism. To show rational map extends to
a morphism, it suffices to prove that over K. In a first step, we show translation Tq by
Q € E is a morphism. We may assume Q # O. By the formulae in Proposition 1.4, 7, is
a rational map which restricts to a morphism E\{O,Q,—Q} — E\{Q,0,Q + Q}. Since
every rational map between projective smooth curves extends to a morphism (valua-
tive criterion), we get a morph1sm T : E — E which agrees with 7, on E\{0,Q,—Q}.
It remains to prove T, = ’L'Q. ForR € E we see ’L'Q ) ’L' = TQ . In particular, every TQ
is an isomorphism with inverse T/_Q. Thus 7:22 maps {O, Q, —Q} onto {Q,Q+Q,0}. For
any R ¢ {0,Q,—Q,Q + Q,—Q —Q} we have

T(TH(Q)) = T, (Q) = TH(TH(Q) = THQ+R) = Q+Q+R

This excludes T’Q(Q) = Q immediately. On the other hand, we know 73,(0) € {O,R,R+
R}, hence ’L'/Q(Q) = O is only possible if Q + Q = O. This proves

T&(Q) =Q+Q= TQ(Q)

The equation
To(—Q) =0 =14(—Q)

is proved in a similar fashion. Thus, using that Té is a bijection, we conclude T&(O) =

Q = 74(0). We have handled all exceptions, thereby proving 7, = Té.
Next we show addition is a morphism. The formulae in Proposition show that
addition is a rational map m, which is a morphism outside

Z:={(PP):P€E}U{(B—P):P€E}U(Ex{0})U({O} xE)

For (P.Q) € Z, there are R,S € E such that (P +R,Q + S) ¢ Z. Since translations are
morphisms, we see
T_pqomo(Tg X Tg)

is a morphism in a neighbourhood of (P,Q) and agrees with + everywhere. This proves
+ is a morphism.

Complex analytically, an elliptic curve is biholomorphic to C/A where A is a lattice
in C. In dimension 1 the converse is true, i.e. every one-dimensional complex
torus is biholomorphic to an abelian variety. The description of the elliptic curve
determined by C/A is done quite explicitly by means of Weierstrass p-function
associated to the lattice A, namely

1
p(z)=—= +w;\{o}((2_w)2 &)

It is A-periodic meromorphic function on C with double periods at lattice points.
In particular it satisfies the first-order differential equation

0'(2) =4p(2)° — g20(2) — &3



where " .
g =60 » —» & =140 > —

weA\{0} weA\{0}

The map z — (p(2), p’(2)) is biholomorphic from C/A onto the elliptic curve with
affine Weierstrass equation y? = 4x> — g,x — g5.
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