1 Elliptic Curves

By Proposition **??**, the cotangent bundle of an abelian variety over *K* is trivial. Thus an abelian variety of dimension 1 has genus 1, i.e. is an elliptic curve. In this section, we prove the converse, i.e. elliptic curve has a group structure and is an abelian variety.

An *elliptic curve* over *K* is a geometrically irreducible smooth projective curve *E* of genus g(E) = 1, equipped with a rational point $P_0 \in E(K)$.

Note geometrically irreducible is the same as irreducible for us, since we have at least one *K*-rational point. Let *E* be elliptic curve over *K* and *D* be a divisor on $E_{\overline{K}}$ of degree deg(*D*) > 0. The space of global sections $\Gamma(E_{\overline{K}}, \mathcal{O}(D))$ may be realized as the subspace

$$\overline{\mathscr{L}}(D) := \{ f \in \overline{K}(E_{\overline{K}})^{\times} : \operatorname{div}(f) \ge -D \} \cup \{ 0 \}$$

in $\overline{K}(E_{\overline{K}})$, using the homomorphism $s \mapsto s/s_D$. By Riemann-Roch, we see

$$\dim_{\overline{K}} \overline{\mathscr{L}}(D) = \deg(D)$$
 (Eq. 1.1)

hence the corresponding linear system $|D_{\overline{K}}|$ has dimension deg(D) - 1. It follows that two distinct points (viewed as Weil divisors) on *E* are rationally equivalent over \overline{K} .

Let us fix a base point $P_0 \in E(K)$. For two point $P_1, P_2 \in E(\overline{K})$, let $D := [P_1] + [P_2] - [P_0]$. Thus deg(D) = 1 and $\overline{\mathscr{L}}(D)$ is one-dimensional, generated by a function f, unique up to multiplication by a scalar. By construction, if $P_0 \notin \{P_1, P_2\}$, then f has pole divisor $[P_1] + [P_2]$ and vanishes at P_0 and at exactly one other point P_3 (this one extra point is because dim $(\overline{\mathscr{L}}(D)) = 1$), which is the unique point rationally equivalent to $[P_1] + [P_2] - [P_0]$. This make sense even if P_1 or P_2 equals P_0 . Thus we get a well-defined composition law on E by $(P_1, P_2) \mapsto P_1 + P_2 := P_3$.

We should distinguish carefully between addition of points P_1 , P_2 on E and of the corresponding divisors $[P_1]$, $[P_2]$. Remembering that $\text{Pic}^0(E_{\overline{K}})$ is the group of rational equivalence classes of divisors of degree 0, we get an additive map

$$E \to \operatorname{Pic}^{0}(E_{\overline{K}}), \quad P \mapsto [P] - [P_0]$$

By Eq. 1.1 this map is bijective. We will later give more geometric interpretation of the addition rule.

Proposition 1.2

If the group structure on an elliptic curve E over K with base point P_0 is given by bijective map

$$E \to \operatorname{Pic}^{0}(E_{\overline{K}}), \quad P \mapsto [P] - [P_0]$$

then E is an abelian variety defined over K.

We will prove this result throughout the section, as we gain more understanding of elliptic curves.

Now let us first give a classical argument showing *E* has a model given by a smooth cubic curve. Let us realize $\Gamma(E, \mathcal{O}(D))$ via

$$\mathscr{L}(D) = \{ f \in K(E)^{\times} : \operatorname{div}(f) \ge -D \} \cup \{ 0 \}$$

for any divisor *D* on *E*. If deg(*D*) > 0, then by Riemann-Rock, $\mathcal{L}(D)$ has dimension deg(*D*). We have an ascending chain of *K*-vector spaces

$$\mathscr{L}([P_0]) \subseteq \mathscr{L}(2[P_0]) \subseteq ... \subseteq \mathscr{L}(6[P_0])$$

and the *j*th member has dimension *j*.

Clearly 1 is a basis of $\mathscr{L}([P_0])$. Since P_0 is defined over K, there are $x, y \in K(E)$ such that 1, x is a basis of $\mathscr{L}(2[P_0])$ and 1, x, y is a basis of $\mathscr{L}(3[P_0])$. By looking at the order of pole at P_0 , its clear 1, x, y, x^2 is a basis of $\mathscr{L}(4[P_0])$ and 1, x, y, x^2, xy is a basis of $\mathscr{L}(5[P_0])$. Moreover, $x^3, y^2 \in \mathscr{L}(6[P_0])$. This gives 7 elements 1, x, y, x^2, xy, x^3, y^2 spanning $\mathscr{L}(6[P_0])$, where dim $\mathscr{L}(6[P_0]) = 6$. Thus there must be $c_i \in K$ so

$$c_0 + c_1 x + c_2 y + c_3 x^2 + c_4 x y + c_5 x^3 + c_6 y^2 = 0$$

By the above, c_5 and c_6 are different from 0, so that we may normalize $c_5 = -1$. If we divide by c_6^3 and replace *x* by x/c_6 and *y* by y/c_6^2 , we get a relation of the form

$$y^{2} + a_{1}xy + a_{3}y = x^{3} + a_{2}x^{2} + a_{4}x + a_{6}$$
 (Eq. 1.2)

with $a_i \in K$. Since deg $(3[P_0]) = 3 = 2g(E) + 1$, the divisor $3[P_0]$ is very ample. Hence the basis of $\mathscr{L}(3[P_0])$ corresponding to 1, x, y induces a closed embedding of E into \mathbb{P}^2_K . We know by Eq. 1.2 that the image of E is contained in the projective curve with *Weierstrass equation*

$$x_0x_2^2 + a_1x_0x_1x_2 + a_3x_0^2x_3 = x_1^3 + a_2x_0x_1^2 + a_4x_0^2x_1 + a_6x_0^3$$

in the homogeneous coordinates $(x_0 : x_1 : x_2)$ of \mathbb{P}^2_{κ} .

It is easy to prove the curve defined above is geometrically irreducible, hence it gives a projective model of *E* as a smooth plane cubic curve. Note also that the ratinoal functions $x = x_1/x_0$ and $y = x_2/x_0$ are nothing else than the two functions x, y defined before, hence the affine form Eq. 1.2 of the Weierstrass equation describes the affine curve $E \cap \{x_0 \neq 0\}$. The only point of *E* outside this part is the point $(0:0:1) \in \mathbb{P}^2_K$, corresponding to $P_0 \in E$. It is easily seen that, in this model, P_0 is an inflexion point of *E*.

Remark 1.3

If char(K) $\neq 2$, then replacing y by $\frac{1}{2}(y - a_1x - a_3)$ leads to a Weierstrass equation with $a_1 = a_3 = 0$. Then the Jacobi criterion shows a Weierstrass equation describes a smooth curve C in \mathbb{P}^2_K if and only if the discriminant of the cubic polynomial $x^3 + a_2x^2 + a_4x + a_6$ is not zero. By the genus formula

$$g(C) = \frac{1}{2}(\deg(C) - 1)(\deg(C) - 2)$$

this is an elliptic curve. If $char(K) \neq 3$, then a further linear transformation leads

to the Weierstrass normal/short form

$$y^2 = 4x^3 - g_2 x - g_3$$

Now let us go back to any characteristic. We will describe a more explicit group structure on the abelian group E, beginning by proving the inverse operation is a morphism.

Consider the rational equivalence relation

$$[P_1] + [P_2] + [P_3] \sim 3[P_0]$$
 (Eq. 1.3)

on $E_{\overline{K}}$. This relation is equivalent to the geometric statement that the points P_1, P_2, P_3 are the three intersection points, counted with multiplicity, of a straight line with E. We verify this as follows. The lines in $\mathbb{P}^2_{\overline{K}}$ are just the divisors of the global sections of $\mathscr{O}_{\mathbb{P}^2_{\overline{K}}}(1)$ and, by construction, the restriction of this line bundle to E is isomorphic to $\mathscr{O}(3[P_0])$. First, we assume $[P_1]+[P_2]+[P_3] \sim 3[P_0]$, then there is $s' \in \Gamma(E_{\overline{K}}, \mathscr{O}(3[P_0]))$ with div $(s') = [P_1] + [P_2] + [P_3]$. By construction of the embedding $E \hookrightarrow \mathbb{P}^2_{\overline{K}}$, there is $s \in \Gamma(\mathbb{P}^2_{\overline{K}}, \mathscr{O}_{\mathbb{P}^2_{\overline{K}}(1)})$ with $s' = s|_E$. Then the line $\ell = \operatorname{div}(s)$ is the line through the three points P_i . Indeed, by definition of proper intersection product, we have

$$\ell \cdot E = \operatorname{div}(s|_E) = \operatorname{div}(s') = [P_1] + [P_2] + [P_3]$$

The converse is proved the same way by reversing the previous argument.

The zero element of *E* is $P_0 = (0:0:1)$. The inverse $P_2 := -P_1$ of a point $P_1 \in E$ is characterized by the rational equivalence $[P_1] + [P_2] \sim 2[P_0]$, which can be rewritten as the special case

$$[P_0] + [P_1] + [P_2] \sim 3[P_0]$$

of Eq. 1.3. It follows P_0, P_1, P_2 are on a straight line and in fact, noting $P_0 = (0:0:1)$, we see that, if $P_1 \neq P_0$, then P_2 is the residual finite intersection of *E* with the vertical line in (x, y)-plane going through P_1 . If (x_1, y_1) are the affine coordinates of P_1 , then, using Eq. 1.2, the affine coordinates (x_2, y_2) of P_2 are given by

$$x_2 = x_1, \quad y_2 = -a_1 x_1 - a_3 - y_1$$

Thus the inverse map is an automorphism of the affine part of E defined over K. On the other hand, a rational map of a smooth projective curve is always a morphism. We conclude the above restriction extends to an automorphism of E. This requires 0 map to 0, hence the inverse map is a morphism on E defined over K.

Now we study the addition on the elliptic curve a bit closer. By the above, it is enough to construct

$$P_3 = -(P_1 + P_2)$$

The point P_3 is characterized by the rational equivalence Eq. 1.3. As we have seen above, P_3 is the third intersection point of the line ℓ through P_1 and P_2 with E, taking this line to be the tangent line to E at P_1 if $P_1 = P_2$.

If $P_1 \neq P_0$ and $P_2 \notin \{P_0, -P_1\}$, then the third intersection point of the line through P_1, P_2 with *E* is contained in the (x, y)-plane. Let y = ax + b be the equation for this

line. We eliminate *y* in Eq. 1.2 obtaining a cubic equation for *x*, with two known solutions x_1, x_2 . This equation has the form

$$x^3 - (a^2 + a_1a - a_2)x^2 +$$
lower degree terms = 0

The third solution x_3 is determined by the trace $x_1 + x_2 + x_3 = a^2 + a_1a - a_2$. Since $P_1 + P_2 = -P_3$, applying the inverse as above, we conclude the following result.

Proposition 1.4: Addition Law

Let E be the elliptic curve in normal form

$$y^2 = a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

Then the origin O of the group E is the unique point at infinity and the group law + is defined as follows. Let $P_1 = (x_1, y_1)$, $P_2 = (x_2, y_2)$ be two finite points on E and set

$$a = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{if } x_1 \neq x_2\\ \frac{3x_1^2 + 2a_2x_1 + a_4 - a_1y_1}{2y_1 + a_1x_1 + a_3} & \text{otherwise} \end{cases}$$
$$b = y_1 - ax_1$$

Then:

- 1. The inverse of P_1 is given by $-P_1 = (x_1, -a_1x_1 a_3 y_1)$
- 2. If $x_2 = x_1$ and $y_2 = -a_1x_1 a_3 y_1$, then $P_1 + P_2 = O$
- 3. Otherwise, we have

$$P_1 + P_2 = (a^2 + a_1a - a_2 - x_1 - x_2, -(a + a_1)(a^2 + a_1a - a_2 - x_1 - x_2) - a_3 - b)$$

The addition law can be seen visually as the following:

The addition law shows that addition is a rational map. In order to finish proof of Proposition 1.2, it remains to show + is a morphism. To show rational map extends to a morphism, it suffices to prove that over \overline{K} . In a first step, we show translation τ_Q by $Q \in E$ is a morphism. We may assume $Q \neq O$. By the formulae in Proposition 1.4, τ_Q is a rational map which restricts to a morphism $E \setminus \{O, Q, -Q\} \rightarrow E \setminus \{Q, O, Q+Q\}$. Since every rational map between projective smooth curves extends to a morphism (valuative criterion), we get a morphism $\tau'_Q : E \rightarrow E$ which agrees with τ_Q on $E \setminus \{O, Q, -Q\}$. It remains to prove $\tau_Q = \tau'_Q$. For $R \in E$, we see $\tau'_Q \circ \tau'_R = \tau'_{Q+R}$. In particular, every τ'_Q is an isomorphism with inverse τ'_{-Q} . Thus τ'_Q maps $\{O, Q, -Q\}$ onto $\{Q, Q+Q, O\}$. For any $R \notin \{O, Q, -Q, Q+Q, -Q-Q\}$ we have

$$\tau'_{R}(\tau'_{Q}(Q)) = \tau'_{Q+R}(Q) = \tau'_{Q}(\tau'_{R}(Q)) = \tau'_{Q}(Q+R) = Q+Q+R$$

This excludes $\tau'_Q(Q) = Q$ immediately. On the other hand, we know $\tau'_R(O) \in \{O, R, R + R\}$, hence $\tau'_Q(Q) = O$ is only possible if Q + Q = O. This proves

$$\tau_Q'(Q) = Q + Q = \tau_Q(Q)$$

The equation

$$\tau_Q'(-Q) = O = \tau_Q(-Q)$$

is proved in a similar fashion. Thus, using that τ'_Q is a bijection, we conclude $\tau'_Q(O) = Q = \tau_Q(O)$. We have handled all exceptions, thereby proving $\tau_Q = \tau'_Q$.

Next we show addition is a morphism. The formulae in Proposition 1.4 show that addition is a rational map m, which is a morphism outside

$$Z := \{(P, P) : P \in E\} \cup \{(P, -P) : P \in E\} \cup (E \times \{O\}) \cup (\{O\} \times E)$$

For $(P,Q) \in Z$, there are $R, S \in E$ such that $(P + R, Q + S) \notin Z$. Since translations are morphisms, we see

$$\tau_{-P-Q} \circ m \circ (\tau_R \times \tau_S)$$

is a morphism in a neighbourhood of (P,Q) and agrees with + everywhere. This proves + is a morphism.

Remark 1.5

Complex analytically, an elliptic curve is biholomorphic to \mathbb{C}/Λ where Λ is a lattice in \mathbb{C} . In dimension 1 the converse is true, i.e. every one-dimensional complex torus is biholomorphic to an abelian variety. The description of the elliptic curve determined by \mathbb{C}/Λ is done quite explicitly by means of Weierstrass \wp -function associated to the lattice Λ , namely

$$\wp(z) = \frac{1}{z^2} + \sum_{\omega \in \Lambda \setminus \{0\}} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right)$$

It is Λ -periodic meromorphic function on \mathbb{C} with double periods at lattice points. In particular it satisfies the first-order differential equation

$$\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3$$

where

$$g_2 = 60 \sum_{\omega \in \Lambda \setminus \{0\}} \frac{1}{\omega^4}, \quad g_3 = 140 \sum_{\omega \in \Lambda \setminus \{0\}} \frac{1}{\omega^6}$$

The map $z \mapsto (\wp(z), \wp'(z))$ is biholomorphic from \mathbb{C}/Λ onto the elliptic curve with affine Weierstrass equation $y^2 = 4x^3 - g_2x - g_3$.