1 Local Heights: Wrap up

Last time we defined local heights by

$$
\lambda_{\mathcal{D}}(P)=\max _{k} \min _{l} \log \left|\frac{s_{k}}{t_{l} s_{D}}(P)\right|
$$

where $\mathcal{D}=\left(s_{D}, \mathscr{L}, \mathbf{s}, \mathscr{M}, \mathbf{t}\right)$ is a presentation of Cartier divisor D.
Our goal is to study how the presentation affects the height, and it turns out it is bounded by a constant.

As usual we will fix an absolute value $|\cdot|$ on \bar{K}.

Definition 1.1

Let $U \subseteq \mathbb{A}^{n}$ be closed. A set $E \subseteq U(\bar{K})$ is bounded in U if for any

$$
f \in K[U]=K\left[x_{1}, \ldots, x_{n}\right] / \sqrt{\mathscr{I}(U)}
$$

, the function $|f|$ is bounded on E, i.e. $\{|f(u)|: u \in E\}$ is a bounded set in \mathbb{R}.

Lemma 1.2

Let $\left\{f_{1}, \ldots, f_{N}\right\}$ be generators of $K[U]$. If

$$
\sup _{P \in E} \max _{j=1, \ldots, N}\left|f_{j}(P)\right|<\infty
$$

then E is bounded.

Proof. Take $f=p\left(f_{1}, \ldots, f_{N}\right)$ where p is a polynomial in $K[U]$. Let C be the number of monomials in p and d the degree of p. Define $\delta=1$ if the place is archimedean and 0 otherwise. Then let $|p|:=\max _{j}\left|a_{j}\right|$ where a_{j} range over all coefficients of p. Then we see

$$
\sup _{P \in E}|f(P)| \leq C^{\delta}|p| \cdot \max \left(1, \sup _{P \in E} \max _{j=1, \ldots, N}\left|f_{j}(P)\right|\right)^{d}<\infty
$$

Lemma 1.3

If $\left\{U_{i}\right\}$ is finite affine open cover of affine K-variety U and E is bounded in U. Then there are bounded subsets E_{i} of U_{i} such that $E=\bigcup E_{i}$.

Proof. WLOG we may assume $U_{i}=\left\{x \in U: h_{i} \neq 0\right\}$ for some $h_{i} \in K[U]$. Define $E_{i}:=$ $\left\{P \in E:\left|h_{i}(P)\right|=\max _{k}\left|h_{k}(P)\right|\right\}$. Say f_{1}, \ldots, f_{N} generates $K[U]$, then $f_{1}, \ldots, f_{N}, 1 / h_{i}$
generates U_{i}, and thus it suffices to prove $1 / h_{i}$ is bounded on E_{i}. Now use the fact there exists regular functions g_{i} so $\sum g_{i} h_{i}=1$ to show

$$
\sup _{P \in E_{i}}\left|1 / h_{i}(P)\right| \leq C^{\delta} \sup _{P \in E} \max _{k}\left|g_{k}(P)\right|<\infty
$$

Theorem 1.4

Let X be projective variety over $K, \mathcal{D}, \mathcal{D}^{\prime}$ be two presentations of Cartier divisor D.
Then there exists γ so

$$
\left|\lambda_{\mathcal{D}}(P)-\lambda_{\mathcal{D}^{\prime}}(P)\right|<\gamma
$$

for all $P \notin \operatorname{supp}(D)$.

Proof. Note λ is functorial, thus $\lambda_{\mathcal{D}}-\lambda_{\mathcal{D}^{\prime}}=\lambda_{\mathcal{D}-\mathcal{D}^{\prime}}$. That is, $\lambda_{\mathcal{D}}-\lambda_{\mathcal{D}^{\prime}}$ is a local height with respect to $D-D$, i.e. it suffices to prove the claim for D being trivial and one of the presentation, say \mathcal{D}^{\prime}, is equal $(1, \mathscr{L}, 1, \mathscr{M}, 1)$. Thus $\mathcal{D}=(1, \mathscr{L}, \mathbf{s}, \mathscr{M}, \mathbf{t})$. We need to find γ so

$$
-\gamma \leq \max _{k} \min _{l} \log \left|s_{k} / t_{l}(P)\right| \leq \gamma
$$

To that end, it suffices to prove

$$
\max _{k} \min _{l} \log \left|s_{k} / t_{l}(P)\right| \leq \gamma
$$

as we can exchange the role of \boldsymbol{s} and \mathbf{t}.
Choose embedding $X \hookrightarrow \mathbb{P}^{N}$ with coordinates $\left(x_{0}: \ldots: x_{N}\right)$, and $U_{i}=\left\{x \in X: x_{i} \neq\right.$ $0\}$. Now define $U_{i l}=\left\{x \in U_{i}: t_{l}(x) \neq 0\right\}$. Then $g_{k l}:=s_{k} / t_{l}$ restricts to $U_{i l}$ are regular functions. The functions $f_{i j}=x_{j} / x_{i}$ generates $K\left[U_{i}\right]$. Now define

$$
E_{i}=\left\{P \in X(\bar{K}):\left|x_{i}(P)\right|=\max _{j}\left|x_{j}(P)\right|\right\}
$$

and its clear for $P \in E_{i}$, we have $\max _{j}\left|f_{i j}(P)\right|=1$, hence E_{i} is bounded in U_{i} by lemma above. Thus we can apply another lemma to U_{i} and E_{i} to obtain bounded subset $E_{i l} \subseteq U_{i l}$ and

$$
\sup _{P \in E_{i l}} \max _{k}\left|g_{k l}(P)\right|<\infty
$$

Since $E_{i l}$ covers $X(\bar{K})$, we are done.

2 Global Heights

Now let us fix number field K, then for each place v and Cartier divisor D with presentation \mathcal{D}, we define

$$
\lambda_{\mathcal{D}}(P, v)=\max _{k} \min _{l} \log \left|\frac{s_{k}}{t_{l} s_{D}}(P)\right|_{v}
$$

Now let $p \in M_{\mathbb{Q}}$ be the place lying below v, and $u \in M_{\bar{K}}$ extend v, then

$$
\lambda_{\mathcal{D}}(P, v)=\frac{\left[F_{v}: \mathbb{Q}_{p}\right]}{[F: \mathbb{Q}]} \lambda_{\mathcal{D}}(P)
$$

where the $\lambda_{\mathcal{D}}(P)$ is the local height with respect to u defined in our last talk. Thus, we can apply all the results we developed for local heights to $\lambda_{\mathcal{D}}(P, v)$.

Example 2.1

Consider $D=\left\{x_{0}=0\right\}$ in \mathbb{P}^{n} with presentation

$$
\mathcal{D}=\left(x_{0}, \mathscr{O}(1),\left\{x_{0}, \ldots, x_{n}\right\}, \mathscr{O}, 1\right)
$$

For $P \in \mathbb{P}^{n}(F)$ with $x_{0}(P) \neq 0$ and $v \in M_{F}$, we have

$$
\lambda_{\mathcal{D}}(P, v)=\max _{k} \log \left|\frac{x_{k}}{x_{0}}(P)\right|_{v}
$$

and thus product formula implies

$$
h(P)=\sum_{v \in M_{F}} \lambda_{\mathcal{D}}(P, v)
$$

where $h(P)$ is the height on projective space.

Now let $\lambda_{\mathcal{D}}$ be a local height relative to the presentation $\mathcal{D}=\left(s_{D}, \mathscr{L}, \mathbf{s}, \mathscr{M}, \mathbf{t}\right)$ of Cartier divisor $D=\left(U_{i}, f_{i}\right)$. For $P \in X$, we want to define the global height with respect to D, which should be intuitively just sum $\lambda_{\mathcal{D}}(P, v)$ over all the places in M_{K}. Thus, we want to twist D so that P always not in the support of the divisor.

Specifically, for $P \in X$, since $(\mathscr{L}, \mathbf{s})$ an $(\mathscr{M}, \mathbf{t})$ both gives embedding of X into some projective space, there are s_{j} and t_{l} so $s_{i}(P) \neq 0$ and $t_{l}(P) \neq 0$. Thus, we can find nonzero meromorphic section $s: X \rightarrow \mathscr{O}(D)$ of $\mathscr{O}(D)$ so P is not contained in the support of the Cartier divisor $D(s):=\left(U_{i}, f_{i} \circ s\right)$ with presentation $\mathcal{D}(s)=(s, \mathscr{L}, \mathbf{s}, \mathscr{M}, \mathbf{t})$, and we have

$$
\lambda_{\mathcal{D}(s)}=\lambda_{\mathcal{D}}+\lambda_{s / s_{D}}
$$

Definition 2.2

In the situation above, the global height of $P \in X(F)$ relative to $\lambda=\lambda_{\mathcal{D}}$ is defined by

$$
h_{\lambda}(P)=\sum_{v \in M_{F}} \lambda_{\mathcal{D}(s)}(P, v)
$$

Proposition 2.3

The global height h_{λ} is independent of F and the section s.

Proof. It is clear this definition is independent of F. Now let t be another non-zero meromorphic section of $\mathscr{O}(D)$ with $P \notin \operatorname{supp}(D(t))$. Then we see

$$
\lambda_{\mathcal{D}(s)}(P, v)-\lambda_{\mathcal{D}(t)}(P, v)=\lambda_{s / t}(P, v)
$$

for any $v \in M_{F}$. But the product formula says

$$
\sum_{v \in M_{F}} \lambda_{s / t}(P, v)=0
$$

and so we are done.

Theorem 2.4

Let $\lambda, \lambda^{\prime}$ be local heights relative the Cartier divisors D, D^{\prime}, with $D-D^{\prime}$ a principal divisor. Then $h_{\lambda}-h_{\lambda^{\prime}}$ is a bounded function.

This roughly follows from the fact $\lambda_{\mathcal{D}}-\lambda_{\mathcal{D}^{\prime}}$ is bounded by a constant.

Theorem 2.5

The map $h: \operatorname{Pic}(X) \rightarrow \mathbb{R}^{X} / \mathcal{O}(1)$ from Picard group of X to the space of functions from X to \mathbb{R} quotient by bounded functions is a homomorphism of groups. If ϕ : $Y \rightarrow X$ is a morphism of irreducible projective varieties over K, then

$$
h_{\phi^{*} \mathscr{L}}=h_{\mathscr{L}} \circ \phi
$$

3 Weil Heights

Let X be projective over $\overline{\mathbb{Q}}$.

Definition 3.1

Let $\phi: X \rightarrow \mathbb{P}_{\overline{\mathbb{Q}}}^{n}$ be a morphism over $\overline{\mathbb{Q}}$. The Weil height of $P \in X(\overline{\mathbb{Q}})$ relative to ϕ is defined by $h_{\phi}(P):=h \circ \phi(P)$, where h is the usual height on $\mathbb{P}_{\bar{Q}}^{n}$.

Now let $\phi: X \rightarrow \mathbb{P}^{n}$ and $\psi: X \rightarrow \mathbb{P}^{m}$, then we define the join $\phi \# \psi$ as the morphism

$$
s_{n, m} \circ(\phi \times \mathrm{Id}) \circ \Gamma(\psi)
$$

where $s_{n, m}$ is the Segre embedding, $\phi \times$ Id a fiber product, $\Gamma(\psi)$ the graph of ψ. Explicitly,

$$
\phi \# \psi: X \rightarrow \mathbb{P}^{(n+1)(m+1)-1}, \quad x \mapsto\left(\phi_{i}(x) \psi_{j}(x)\right)
$$

Remark 3.2

If ϕ is a closed embedding, then $\phi \# \psi$ is closed embedding. Indeed, $\Gamma(\psi)$ is always closed embedding as X is assumed to be separated (separated=closed diagonal=closed graph=closed equalizer). The Segre embedding is always closed, and closed immersion is stable under base change and composition, hence we are done.

Proposition 3.3

If $\phi: X \rightarrow \mathbb{P}^{n}$ and $\psi: X \rightarrow \mathbb{P}^{m}$ are morphisms, then

$$
h_{\phi \# \psi}=h_{\phi}+h_{\psi}
$$

Now we will show global heights=difference of Weil heights.
Say we have $\phi: X \rightarrow \mathbb{P}^{n}$, then there is a linear form $\ell=\sum \ell_{i} x_{i}$ which does not vanish identically on irreducible components of X. Then we see h_{ϕ} is the global height associated with $\phi^{*}\left(\ell, \mathscr{O}_{\mathbb{P}^{n}},\left\{x_{0}, \ldots, x_{n}\right\}, \mathscr{O}_{\mathbb{P}^{n}}, 1\right)$. Conversely, say we have $\mathcal{D}=$ $(s, \mathscr{L}, \mathbf{s}, \mathscr{M}, \mathbf{t})$, then (\mathscr{L}, \mathbf{s}) and ($\mathscr{M}, \mathbf{t})$ both induces closed immersions ϕ, ψ of X into projective spaces, and its not hard to see $h_{\mathcal{D}}=h_{\phi}-h_{\psi}$.

Theorem 3.4: Northcott

Let X be projective variety defined over a number field $K, h_{\mathscr{L}}$ a height function associated with ample $\mathscr{L} \in \operatorname{Pic}(X)$. Then the set

$$
\left\{P \in X(\bar{K}): h_{\mathscr{L}}(P) \leq C,[\kappa(P): K] \leq d\right\}
$$

is finite for any constant $C, d \in \mathbb{R}$.

Proof. This follows from Northcott theorem for heights on projective space.

The last thing we will do is explicit bound on the difference of two Weil heights.
Let X be irreducible projective over $\overline{\mathbb{Q}}$ of dimension r. Then there is a $\overline{\mathbb{Q}}$-morphism $\pi: X \rightarrow \mathbb{P}^{r+1}$ such that X is mapped birationally onto a hypersurface.

Explanation

Note $K(X)$ is separable over K, thus $K(X)$ is finite dimensional $K\left(f_{1}, \ldots, f_{r}\right)$-vector space, where f_{i} are algebraically independent. Thus $K(X)$ is generated by a rational function f_{r+1} over $K\left(f_{1}, \ldots, f_{r}\right)$. Now let p be the minimal polynomial of f_{r+1} over $K\left(f_{1}, \ldots, f_{r}\right)$, and assume $p=q\left(f_{1}, \ldots, f_{r}\right)$ with $q \in K\left[x_{1}, \ldots, x_{r+1}\right]$. Then $V(q)$

Now let z_{0}, \ldots, z_{r+1} be the standard coordinates of \mathbb{P}^{r+1}, then we may assume the hypersurface is given by $V(f)$ where f is irreducible homogeneous of degree d, and it is given by

$$
f\left(z_{0}, \ldots, z_{r+1}\right)=f_{0}+f_{1} z_{r+1}+\ldots+f_{d-1} z_{r+1}^{d-1}+z_{r+1}^{d}
$$

with $f_{i} \in \overline{\mathbb{Q}}\left[z_{0}, \ldots, z_{r}\right]$ homogeneous of degree $d-i, f(0, \ldots, 0,1) \neq 0$ and d the degree of X with respect to $\pi^{*} \mathscr{O}_{\mathbb{P}^{r+1}}(1)$.

Now let S be the homogeneous coordinate ring of $\pi(X)$, say

$$
S=\overline{\mathbb{Q}}\left[z_{0}, \ldots, z_{r+1}\right] / J
$$

for some homogeneous ideal J (its generated by f).

Definition 3.5

Let $f \in K\left[t_{1}, \ldots, t_{n}\right]$ be a polynomial, then the height of f is defined by

$$
h(f)=\sum_{v \in M_{K}} \log |f|_{v}
$$

where $|f|_{v}=\max _{j}\left|a_{j}\right|_{v}$ where the max is taking over all coefficients of f.

Definition 3.6

Let $\phi: X \rightarrow \mathbb{P}_{\overline{\mathbb{Q}}}^{n}$ be a closed embedding and x_{0}, \ldots, x_{n} be the standard coordinates. Let \mathbf{p} be a vector with entries $p_{i} \in S$ where $i=0, \ldots, n$, homogeneous of degree d. Then we say \mathbf{p} is a presentation of ϕ if the following conditions are satisfied:

1. If $l \in\{0, \ldots, n\}$ and $\left.x_{l}\right|_{X} \neq 0$, then $p_{l} \neq 0$
2. If l is as in (1) and $i \in\{0, \ldots, n\}$, then

$$
\frac{p_{i}}{p_{l}}=\left.\frac{x_{i}}{x_{l}}\right|_{X}
$$

in $\overline{\mathbb{Q}}(X)$
the number d here is called the degree of \mathbf{p} and its denoted by $d(\mathbf{p})$. Note p_{i} are polynomials, and thus we can define the height $h(\mathbf{p}):=\max _{i=0, \ldots, n} h\left(p_{i}\right)$.

Theorem 3.7

Let $\phi: X \rightarrow \mathbb{P}^{n}, \psi: X \rightarrow \mathbb{P}^{m}$ be closed embeddings with corresponding presentations \mathbf{q}, \mathbf{p}. We assume $\phi^{*} \mathscr{O}_{\mathbb{P}^{n}}(1) \cong \psi^{*} \mathscr{O}_{\mathbb{P}^{m}}(1)$ and $d(\mathbf{q}) \geq 1$. Then for $P \in X$, we have

$$
h_{\phi}(P)-h_{\psi}(P) \leq C_{1}(n+1) d(\mathbf{q})^{r^{2}+r}\left(A+B+\log (n+1)+C_{2}\right)
$$

where

$$
\begin{gathered}
C_{1}=d \frac{(d+1)^{r}(r+1)^{r}}{r!}, C_{2}=(d-1) h(f)+d(d+r+1)+r+1 \\
A=h(\mathbf{p})+h(\mathbf{q}) \\
B=r \log \left(6+\frac{6 d(\mathbf{p})}{r}\right)+r \log \left(6+\frac{6 d(\mathbf{q})}{r}\right)
\end{gathered}
$$

