
The goal of this seminar is to study some classical results from diophantine geom-
etry. We will follow “Heights in Diophantine Geometry” as the main reference. The
rough structure of the seminar (which will definitely take more than one term) consists
two parts, first one being the tools we need:

1. we do naive heights in projective space, then Weil height for projective varieties
2. we study some results we need about abelian varieties
3. then we move to Neron-Tate heights, which can be thought as the “best model”

of Weil’s height we introduced above

once we have those tools, we move to the proof of Mordel-Weil, and Falting. I expect,
if we go fast enough, that we can finish Mordel-Weil by the end of this term. After we
get the two theorems, to motivative Vojta’s conjecture, we need to go into a little bit
about abc-conjecture, as well as Nevanlinna theory.

So, in this talk, we will study heights in projective space.

1 A Bit Number Theory

Moral: Height of a number=algebraic complication (I dont want to use the word
algebraic complexity as its already been taken by CS people).

Throughtout the seminar, it is safe to assume all the fields we encounter are number
fields, unless we specifically mention otherwise.

Definition 1.1

Let K be a field. A place v is an equivalence class of non-trivial absolute value on
K , where v ∼ v′ iff they induce the same topology on K .

For a place v, we define Kv its completion under the topology induced by v. Now
let L/K be field extension, w a place on L and v a place on K , then we write w | v to
mean w|K = v. Then, the completion Kv of K satisfies three basic properties:

1. Kv/K is a field extension
2. there is unique w on Kv so w | v
3. Kv is complete with respect to w
4. K is dense open in Kv

Example 1.2

Let K =Q, then we have two kind of absolute values.

1. archimedean one, which is just the usual absolute value
2. non-archimedean ones, defined for each prime p, so that |q|p = 1 if q ̸= p

and 1/p if p = q for all primes, then extend naturally

Here non-archimedean means |x + y| ≤max(|x |, |y|) for all x , y ∈ K .
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It is well-known the only complete archimedean fields are R and C, while for non-
archimedean places, p-adic numbers Qp are the complete fields.

Recall for L/K , we define NL/K(x) = det(mx) where mx : L → L is the K-linear
map defined by multplication by x . Then we have the following result:

Proposition 1.3

Let L/K be finite extension and v an absolute value on K that is complete. Then
there is unique extension w on L of v, such that

|x |w = |NL/K(x)|1/[L:K]
v

In particular L is complete with respect to | · |w.

Now, given non-archimedean place v on K , we can define its valuation ring

Rv = {x ∈ K : |x |v ≤ 1}

and the unique maximal ideal mv = {x ∈ K : |x |v = 1}. Its residue field is denoted by
κ(v).

Definition 1.4

Let L/K be finite extension, v non-archimedean place on K and w on L extends
v. Then we define:

1. the residue degree fw/v as the dimension of κ(w) as κ(v)-vector space
2. the ramification index ew/v as the index of the subgroup |K×|v in |L×|w

One of the main basic result about this is that

[L : K] =
∑

w|v

fw/vew/v

provided L/K are number field extensions. Geometrically, the ramification index keep
track of how the prime ideal assocaited with v ramifies in L, i.e. say w1, ..., wr are all
the prime ideals lying over the prime ideal p of v, then pOL = q

e1
1 ...qer

r where ei := ewi/v.

In particular, the above can also be phrased as the following result:

Lemma 1.5

If L is a finite separable extension of K, then
∑

w|v

[Lw : Kv] = [L : K]

The number [Lw : Kv] is called the local degree of L/K in w.

For place w on L that extends v on K , we will, by assumption, take the represen-
tative that is normalized with respect to v, which are defined as follows:

∥x∥w := |NLw/Kv
(x)|v
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|x |w = ∥x∥
1/[L:K]
w

Lemma 1.6

For 0 ̸= x ∈ K , 0 ̸= y ∈ L, we have
∑

w|v

log |x |w = log |x |v

∑

w|v

log∥y∥w = log |NL/K(y)|v

2 Product Formula

Let K be a field, MK a set of non-trivial places so {| · |v ∈ MK : |x |v ̸= 1} is finite for all
0 ̸= x ∈ K . Then we say MK satisfies product formula if

∏

v∈MK

∥x |v = 1

for all 0 ̸= x ∈ K .

Lemma 2.1

Suppose MK satisfies product formula and ML := {∥·∥1/[L:K]
w : v ∈ MK , w | v}. Then

ML satisfies product formula.

Now suppose K is a number field, then when we write MK , we always mean the
set of places extending MQ := {| · |p : p prime or∞} as defined above.

Lemma 2.2

Let K be a number field, then MK satisfies product formula.

The proof follows from the fact every integer admits prime factorization.

Now we describe more explicitly what MK is for a degree n number field K .

First assume v ∈ MK extends∞∈ MQ. In this case, Kv must be either R or C. By
number theory we know we only have n many embeddings K ,→ C. If Kv = R, then
this means it corresponds to a real embedding σ : K → C, i.e. im(σ) ⊆ R. On the
other hand, if Kv = C, then we see it gives a complex embedding. In this case, we see
σ and σ gives the same absolute value. Thus, we see v ∈ MK extending∞ consists
of r1 many real embeddings, and r2 many pairs of conjugate complex embeddings.

On the other hand, v ∈ MK that extends p are precisely given by the prime factor-
ization of pOK , i.e. it consists of all the primes in OK lying above p.
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3 Heights in Projective Space

Choose Q be an algebraic closure of Q, and we denote Pn := Pn
Q

.

Now let P ∈ Pn be represented by homogeneous coordinate (P0 : ... : Pn), and
assume Pi ∈ K for a number field K , then we define

h(P) =
∑

v∈MK

max
j

log |Pj|v

Lemma 3.1

h(P) is independent of the choice of K.

Proof. Let L be another field containing Pi, then WLOG assume K ⊆ L. In this case,
we know

∑

w∈ML

max
j

log |Pj|w =
∑

v∈MK

∑

w|v

max
j

log |Pj|w

But by a lemma, we know
∑

w|v log |x |w = log |x |v, and hence we are done.

Lemma 3.2

h(P) is independent of the choice of coordinates.

Proof. Suppose Q is another representative, i.e. there is K so Q, P ∈ Pn
K , and 0 ̸= λ ∈ K

so Q = λP. But then

h(Q) =
∑

v∈MK

log |λ|v +
∑

v∈MK

max
j

log |Pj|v

where
∑

v∈Mk
log |λ|v = 0 by product formula.

Definition 3.3

We call h(P) the absolute log height (briefly, height) of P. We also define the
multiplicative height H(P) by eh(P).

Throughout we will identify An as a subset of Pn via (x1, ..., xn) 7→ (1 : x1 : ... : xn).
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Example 3.4

Let α be an algebraic integer in a number field K of degree n. Then it can be
identified as the point (1 : α) ∈ P1. Thus

h(α) =
∑

v∈MK

log(max(|α|v, 1))

However, αOK factors into prime ideals of OK with all exponent non-negative.
Hence for all v | p we must have |α|v ≤ 1. This shows

h(α) =
∑

v|∞

log(max(|α|v, 1))

Now take α= i, then we see there are two embeddings C ,→ C, and thus

h(i) = log(max(|i|∞, 1)) + log(max(| − i|∞, 1)) = 0

On the other hand, take α= 1+
p

2, then we see

h(
p

2+ 1) =
1
2

log(1+
p

2)

because we have two embeddings a+ b
p

2 7→ a+ b
p

2 and a+ b
p

2 7→ a− b
p

2.

If we still have time, let us conclude with the following result:

Theorem 3.5: Kronecker

The height ξ ∈Q
×

is zero if and only if ξ is a root of unity.

Proof. First, if ξ is a root of unity, then its absolute values are all equal to 1, and hence
its height is 0. Thus it suffices to show the converse.

Suppose h(ξ) = 0, then we must have |ξ|v ≤ 1 for all v ∈ MK . This implies ξ
must be algebraic integer because |ξ|v ≤ 1 for all finite places indicates ξOK factors
as positive product of primes in OK , i.e. ξ ∈OK .

Now let d be the degree of ξ, and denote x := (ξ1, ...,ξd) be a vector consists of
all the conjugates of ξ. We write xm to denote (ξm

1 , ...,ξm
d ).

Now let si be the ith elementary symmetric polynomial with d variables. This gives

(x − ξm
1 )...(x − ξ

m
d ) =

d
∑

i=0

(−1)isi(x
m)x d

and in particular since ξ ∈OK we see si(xm) ∈ Z.

Now, |ξ j|v ≤ 1 for all j and v, and si consists of
�d

i

�

monomials, we see

d
∑

i=0

|si(x
m)| ≤

d
∑

i=0

�

d
i

�

= 2d
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The above bound says that {(s0(xm), ..., sn(xm)) : m≥ 1}must be a finite set, and hence
by pigeonhole principle, there exists m ̸= n, so si(xm) = si(xn) for i = 0, ..., d. By
defining property of elementary symmetric functions, we see this happens if and only
if xm = σ(xn) for some permutation σ on d letters. WLOG assume m> n. Repeat this
argument ord(σ) many times, we may assume σ = Id, and this gives ξmord(σ)

= ξnord(σ)
,

showing ξ is a root of unity.
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