1 Recap

Last time we talked about heights on projective spaces.
In particular, for an equivalence class of non-trivial absolute values v on field K, and extension L / K with place $w \mid v$, we defined its normalization by

$$
|x|_{w}^{\unlhd}:=\left|N_{L_{w} / K_{v}}(x)\right|_{v}^{1 /[L: K]}
$$

Next, for a set of places M_{K}, we defined $M_{L}:=\left\{|x|_{w}^{\unlhd}: v \in M_{K}, w \mid v\right\}$. In particular, for a number field K, we define M_{K} to be $\left\{|x|_{v}^{\natural}: v \in M_{\mathbb{Q}}, w \mid v\right\}$ where $M_{\mathbb{Q}}$ is the usual set of places on \mathbb{Q}. For a number field K, M_{K} satisfies $\prod_{v \in M_{K}}|x|_{v}=1$ for all $x \in K \backslash\{0\}$.

Then, for a point $P \in \mathbb{P}_{\overline{\mathbb{Q}}}^{n}$, we defined

$$
h(P):=\sum_{v \in M_{K}} \max _{j} \log \left|P_{j}\right|_{v}
$$

where K is a number field contains all the coordinates of P. This definition is independent of K and action of $\overline{\mathbb{Q}}^{\times}$. In particular, this defines a map $h: \mathbb{P}_{\overline{\mathbb{Q}}}^{n} \rightarrow \mathbb{R}$, and we proved

$$
\operatorname{ker}(\overline{\mathbb{Q}} \xrightarrow{h} \mathbb{R})=\bigcup_{r \geq 1} \mu_{r}
$$

That is, $\xi \in \overline{\mathbb{Q}}$ has height 0 if and only if ξ is a root of unity.

2 Wrap-up Heights on Projective Space

The main thing we will talk about will be Northcott's theorem.
Before that, we mention Segre embedding. The first one is actually very simple. Recall coordinate-wise we have closed immersion

$$
\mathbb{P}^{n} \times \mathbb{P}^{m} \rightarrow \mathbb{P}^{(n+1)(m+1)-1}
$$

given by

$$
\left(\left(x_{0}: \ldots: x_{n}\right),\left(y_{0}: \ldots: y_{m}\right)\right)=\left(x_{i} y_{j}\right)
$$

where (i, j) are ordered lexicographically. This in particular implies $h(\mathbf{x} \otimes \mathbf{y})=h(\mathbf{x})+$ $h(y)$.

Next, we define $\log ^{+}(x)=\max (0, \log (x))$, and we see for $P \in \mathbb{A}^{n}$ identified by ($\left.1: P_{1}: \ldots: P_{n}\right) \in \mathbb{P}^{n}$, we have

$$
h(P)=\sum_{v \in M_{K}} \max _{j} \log ^{+}\left|P_{j}\right|_{v}
$$

Proposition 2.1

Let $P^{1}, \ldots, P^{r} \in \mathbb{A}_{\overrightarrow{\mathbb{Q}}}^{n}$, then

$$
h\left(\sum P^{i}\right) \leq \sum h\left(P^{i}\right)+\log r
$$

Proof. We assume $P^{i} \in \mathbb{A}_{K}^{n}$ for some number field K. Then

$$
h\left(\sum_{i} P^{i}\right)=\sum_{v \in M_{K}} \max _{j} \log ^{+}\left|\sum_{i} P_{j}^{i}\right|_{v}
$$

If v is non-archimedean, then by strong trig inequality, we see

$$
\left|\sum_{i} P_{j}^{i}\right|_{v} \leq \max _{k}\left|P_{j}^{k}\right|_{v}
$$

If v is archimedean, then

$$
\left|\sum_{i} P_{j}^{i}\right|_{v} \leq|r|_{v} \cdot \max _{k}\left|P_{j}^{k}\right|_{v}
$$

but then $\sum_{v \mid \infty} \log |r|_{v}=\log r$. This shows

$$
\begin{aligned}
h\left(\sum_{i} P_{j}^{i}\right) & \leq \log r+\sum_{v \in M_{K}} \max _{j, k} \log ^{+}\left|P_{j}^{k}\right|_{v} \\
& \leq \log r+\sum_{k} \sum_{v \in M_{K}} \max _{j} \log ^{+}\left|P_{j}^{k}\right|_{v}
\end{aligned}
$$

The next small topic is fundamental inequality.

Lemma 2.2

For $\alpha \in K \backslash\{0\}$ and $\lambda \in \mathbb{Q}, h\left(\alpha^{\lambda}\right)=|\lambda| h(\alpha)$. In particular, $h(1 / \alpha)=h(\alpha)$.

This follows from $\log |\alpha|_{v}=\log ^{+}|\alpha|_{v}-\log ^{+}|1 / \alpha|_{v}$, then sum over all places.
Now let $S \subseteq M_{K}$ be a finite set of places. For $\alpha \in K \backslash\{0\}$, we have

$$
\sum_{v \in S} \log |\alpha|_{v} \leq h(\alpha)
$$

If we use $1 / \alpha$, the above lemma says

$$
\sum_{v \in S} \log |\alpha|_{v} \geq-h(\alpha)
$$

Thus, we see

$$
-h(\alpha) \leq \sum_{v \in S} \log |\alpha|_{v} \leq h(\alpha)
$$

There are only finitely many algebraic numbers of bounded degree and bounded height.

Proof. To make the statement above more precise, we will show the following. For any $B, D \geq 0$, the set

$$
\left\{P \in \mathbb{P}_{\mathbb{Q}}^{n}: H(P) \leq B \text { and }[\mathbb{Q}(P): \mathbb{Q}] \leq D\right\}
$$

is finite. In particular, for any fixed number field $K,\left\{P \in \mathbb{P}_{k}^{n}: H(P) \leq B\right\}$ is finite. In the above, $\mathbb{Q}(P)$ is the minimal number field containing all coordinates of P.

Now let $P=\left(P_{0}: \ldots: P_{n}\right)$ where we assume some $P_{i}=1$. Then for any absolute value v and index i we have

$$
\max \left(\left\|P_{0}\right\|_{v}, \ldots,\left\|P_{n}\right\|_{v}\right) \geq \max \left(\left\|P_{i}\right\|_{v}, 1\right)
$$

Hence, we see

$$
H(P) \geq H\left(P_{i}\right)
$$

for all $0 \leq i \leq n$. Further, its clear $\mathbb{Q}(P) \supseteq \mathbb{Q}\left(P_{i}\right)$, hence it suffices to prove for each $1 \leq d \leq D$, the set

$$
\{x \in \overline{\mathbb{Q}}: H(x) \leq B \text { and }[\mathbb{Q}(x): \mathbb{Q}]=d\}
$$

is finite.
Let $\xi \in \overline{\mathbb{Q}}$ have degree d and $k=\mathbb{Q}(x)$. We write $\mathbf{x}:=\left(\xi_{1}, \ldots, \xi_{d}\right)$ for the conjugates of ξ over \mathbb{Q}, and we let

$$
F_{\xi}(x)=\prod_{j=1}^{d}\left(x-x_{j}\right)=\sum_{r=0}^{d}(-1)^{r} s_{r}(\mathbf{x}) x^{d-r}
$$

the minimal polynomial of x over \mathbb{Q}. However, we see

$$
\begin{aligned}
\left|s_{r}(\mathbf{x})\right|_{v} & =\left|\sum_{1 \leq i_{1}<\ldots<i_{r} \leq d} \xi_{i_{1}} \ldots \xi_{i_{r}}\right|_{v} \\
& \leq c(v, r, d) \max _{1 \leq i_{1}<\ldots<i_{r} \leq d}\left|\xi_{i_{1}} \ldots \xi_{i_{r}}\right|_{v} \\
& \leq c(v, r, d) \max _{1 \leq i \leq d}\left|\xi_{i}\right|_{v}^{r}
\end{aligned}
$$

where $c(v, r, d)=\binom{d}{r} \leq 2^{d}$ if v is archimedean, and 1 if v is non-archimedean.
Thus we see

$$
\max \left(\left|s_{0}(\mathbf{x})\right|_{v}, \ldots,\left|s_{d}(\mathbf{x})\right|_{v}\right) \leq c(v, d) \prod_{i=1}^{d} \max \left(\left|\xi_{i}\right|_{v}, 1\right)^{d}
$$

where $c(v, d)=2^{d}$ if v is archimedean and 1 otherwise.

Now multiply this inequality over all $v \in M_{K}$, where $K=\mathbb{Q}(x)$, and take $[K: \mathbb{Q}]$ th root, we see

$$
H\left(s_{0}(\mathbf{x}), \ldots, s_{d}(\mathbf{x})\right) \leq 2^{d} \prod_{i=1}^{d} H\left(x_{i}\right)^{d}
$$

But the x_{i} 's are conjugates, and we know heights are invariant under Galois action, thus $H\left(x_{i}\right)$'s are all equal. This shows

$$
H\left(s_{0}(\mathbf{x}), \ldots, s_{d}(\mathbf{x})\right) \leq 2^{d} H(x)^{d^{2}}
$$

Now suppose x is in the set

$$
\{x \in \overline{\mathbb{Q}} \mid H(x) \leq B \text { and }[\mathbb{Q}(x): \mathbb{Q}]=d\}
$$

Then we just proven x is the root of a polynomial $F_{x}(T)$ whose coefficients s_{0}, \ldots, s_{d} are bounded by $2^{d} B^{d^{2}}$. However, it is easy to see $\mathbb{P}^{d}(\mathbb{Q})$ has only finitely many points of bounded height, so there are only finitely many possibilities for $F_{x}(T)$, and we are done.

3 Local Heights

Now let X be projective variety, and suppose we want to define a height on X based on the heights on projective space. Then immediately we see this notion must depend on the embeddings we are using.

Thus, in order to define a notion which extends heights on projective space, we must keep track of the morphism $X \rightarrow \mathbb{P}^{n}$. This data is the same as a base-point free line bundle \mathscr{L} on X, together with n sections s_{1}, \ldots, s_{n} that do not vanish at the same time.

For us, to define local heights, we require more than just this information. Instead, we require a decomposition $\mathscr{Q}=\mathscr{L} \otimes \mathscr{M}^{-1}$ where \mathscr{L}, \mathscr{M} are both base-point free line bundles with a set of generating global sections.

Convention

Throughout this section, we will let K be a field and $|\cdot|$ be a fixed absolute value on \bar{K}.

Definition 3.1

Let $D=\left(U_{i}, f_{i}\right)$ be a Cartier divisor on $X=\bigcup U_{i}$, and suppose $\mathscr{O}(D)=\mathscr{L} \otimes \mathscr{M}^{-1}$ for base-point free line bundles \mathscr{L}, \mathscr{M}. Then a presentation of D is the data $\mathcal{D}=$ ($s_{D}, \mathscr{L}, \mathbf{s}, \mathscr{M}, \mathbf{t}$) where \mathbf{s}, \mathbf{t} are generating global sections of \mathscr{L}, \mathscr{M}, respectively,
and s_{D} is the meromorphic section associated with $\mathscr{O}(D)$.

We note for Cartier divisor D, to get the line bundles \mathscr{L}, \mathscr{M} as above, we take $D_{1}=m H+D$ and $D_{2}=m H$, where H is a very ample divisor on X. Then for m large enough we see D_{1}, D_{2} are ample and $D_{1}-D_{2} \equiv D$.

Proposition 3.2

For $P \notin \operatorname{supp}(D)$, we define the local height (wrt \mathcal{D}) to be

$$
\lambda_{\mathcal{D}}(P)=\max _{k} \min _{l} \log \left|\frac{s_{k}}{t_{l} s_{D}}(P)\right|
$$

Example 3.3

Let f be non-zero rational function on X with Cartier divisor $D=D(f)$. Then $\mathscr{O}(D)=\mathscr{O}_{X}$ and f is a meromorphic section of $\mathscr{O}(D)$. Thus there is a local height λ_{f} associated with presentation $\left(f, \mathscr{O}_{X}, 1, \mathscr{O}_{X}, 1\right)$. For $P \notin \operatorname{supp}(D)$, we have

$$
\lambda_{f}(P)=-\log |f(P)|
$$

In particular, if g is another non-zero rational function on X, then $\lambda_{f g}=\lambda_{f}+\lambda_{g}$ and $\lambda_{f-1}=-\lambda_{f}$.

Next, we have two constructions for $\lambda_{\mathcal{D}}$.

Addition/Negation

Let $\mathcal{D}_{1}, \mathcal{D}_{2}$ be two presentations of D_{1}, D_{2}, respectively. Then we can define a presentation \mathcal{D} of $D_{1}+D_{2}$ as follows:

$$
\left(s_{D_{1}} s_{D_{2}}, \mathscr{L}_{1} \otimes \mathscr{L}_{2},\left(s_{1 k} s_{2 k^{\prime}}\right)_{k, k^{\prime}}, \mathscr{M}_{1} \otimes \mathscr{M}_{2},\left(t_{1 l} t_{2 l^{\prime}}\right)_{l, l^{\prime}}\right)
$$

Thus, we can define $\lambda_{\mathcal{D}_{1}}+\lambda_{\mathcal{D}_{2}}$ be the local height associated with \mathcal{D} as above.
Next, for $\mathcal{D}=\left(s_{D}, \mathscr{L}, \mathbf{s}, \mathscr{M}, \mathbf{t}\right)$ we can define a presentation for $-D$ by

$$
\left(s_{D}^{-1}, \mathscr{M}, \mathbf{t}, \mathscr{L}, \mathbf{s}\right)
$$

and this two operations together makes the set of $\lambda_{\mathcal{D}}$ into a monoid.

Pullback

Now let $\pi: Y \rightarrow X$ be dominant morphism of irreducible projective varieties over K. Let $\mathcal{D}=\left(s_{D}, \mathscr{L}, \mathbf{s}, \mathscr{M}, \mathbf{t}\right)$, then we can define a presentation $\pi^{*} \mathcal{D}$ by

$$
\left(\pi^{*} s_{D}, \pi^{*} \mathscr{L}, \pi^{*} \mathbf{s}, \pi^{*} \mathscr{M}, \pi^{*} \mathbf{t}\right)
$$

In particular, we see $\lambda_{\pi^{*} \mathcal{D}}(P)=\lambda_{\mathcal{D}}(\pi(P))$ for well-defined P, i.e. $P \in Y, \pi(P) \notin$ $\operatorname{supp}(D)$.

