
1 Recap

Last time we talked about heights on projective spaces.

In particular, for an equivalence class of non-trivial absolute values v on field K ,
and extension L/K with place w | v, we defined its normalization by

|x |⊴w := |NLw/Kv
(x)|1/[L:K]

v

Next, for a set of places MK , we defined ML := {|x |⊴w : v ∈ MK , w | v}. In particular, for
a number field K , we define MK to be {|x |⊴v : v ∈ MQ, w | v} where MQ is the usual set
of places on Q. For a number field K , MK satisfies

∏

v∈MK
|x |v = 1 for all x ∈ K\{0}.

Then, for a point P ∈ Pn
Q

, we defined

h(P) :=
∑

v∈MK

max
j

log |Pj|v

where K is a number field contains all the coordinates of P. This definition is inde-
pendent of K and action of Q

×
. In particular, this defines a map h : Pn

Q
→ R, and we

proved

ker(Q
h
−→ R) =
⋃

r≥1

µr

That is, ξ ∈Q has height 0 if and only if ξ is a root of unity.

2 Wrap-up Heights on Projective Space

The main thing we will talk about will be Northcott’s theorem.

Before that, we mention Segre embedding. The first one is actually very simple.
Recall coordinate-wise we have closed immersion

Pn × Pm→ P(n+1)(m+1)−1

given by
((x0 : ... : xn), (y0 : ... : ym)) = (x i y j)

where (i, j) are ordered lexicographically. This in particular implies h(x⊗ y) = h(x)+
h(y).

Next, we define log+(x) = max(0, log(x)), and we see for P ∈ An identified by
(1 : P1 : ... : Pn) ∈ Pn, we have

h(P) =
∑

v∈MK

max
j

log+ |Pj|v
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Proposition 2.1

Let P1, ..., P r ∈ An
Q

, then

h(
∑

P i)≤
∑

h(P i) + log r

Proof. We assume P i ∈ An
K for some number field K . Then

h(
∑

i

P i) =
∑

v∈MK

max
j

log+ |
∑

i

P i
j |v

If v is non-archimedean, then by strong trig inequality, we see

|
∑

i

P i
j |v ≤max

k
|Pk

j |v

If v is archimedean, then
|
∑

i

P i
j |v ≤ |r|v ·max

k
|Pk

j |v

but then
∑

v|∞ log |r|v = log r. This shows

h(
∑

i

P i
j )≤ log r +
∑

v∈MK

max
j,k

log+ |Pk
j |v

≤ log r +
∑

k

∑

v∈MK

max
j

log+ |Pk
j |v

The next small topic is fundamental inequality.

Lemma 2.2

For α ∈ K\{0} and λ ∈Q, h(αλ) = |λ|h(α). In particular, h(1/α) = h(α).

This follows from log |α|v = log+ |α|v − log+ |1/α|v, then sum over all places.

Now let S ⊆ MK be a finite set of places. For α ∈ K\{0}, we have
∑

v∈S

log |α|v ≤ h(α)

If we use 1/α, the above lemma says
∑

v∈S

log |α|v ≥ −h(α)

Thus, we see
−h(α)≤
∑

v∈S

log |α|v ≤ h(α)
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Theorem 2.3: Northcott’s Theorem

There are only finitely many algebraic numbers of bounded degree and bounded
height.

Proof. To make the statement above more precise, we will show the following. For
any B, D ≥ 0, the set

{P ∈ Pn
Q

: H(P)≤ B and [Q(P) :Q]≤ D}

is finite. In particular, for any fixed number field K , {P ∈ Pn
k : H(P) ≤ B} is finite. In

the above, Q(P) is the minimal number field containing all coordinates of P.

Now let P = (P0 : ... : Pn) where we assume some Pi = 1. Then for any absolute
value v and index i we have

max(∥P0∥v , ...,∥Pn∥v)≥max(∥Pi∥v , 1)

Hence, we see
H(P)≥ H(Pi)

for all 0 ≤ i ≤ n. Further, its clear Q(P) ⊇ Q(Pi), hence it suffices to prove for each
1≤ d ≤ D, the set

{x ∈Q : H(x)≤ B and [Q(x) :Q] = d}

is finite.

Let ξ ∈Q have degree d and k =Q(x). We write x := (ξ1, ...,ξd) for the conjugates
of ξ over Q, and we let

Fξ(x) =
d
∏

j=1

(x − x j) =
d
∑

r=0

(−1)rsr(x)x
d−r

the minimal polynomial of x over Q. However, we see

|sr(x)|v =

�

�

�

�

�

∑

1≤i1<...<ir≤d

ξi1 ...ξir

�

�

�

�

�

v

≤ c(v, r, d) max
1≤i1<...<ir≤d

|ξi1 ...ξir |v

≤ c(v, r, d)max
1≤i≤d
|ξi|rv

where c(v, r, d) =
�d

r

�

≤ 2d if v is archimedean, and 1 if v is non-archimedean.

Thus we see

max(|s0(x)|v, ..., |sd(x)|v)≤ c(v, d)
d
∏

i=1

max(|ξi|v, 1)d

where c(v, d) = 2d if v is archimedean and 1 otherwise.
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Now multiply this inequality over all v ∈ MK , where K =Q(x), and take [K :Q]th
root, we see

H(s0(x), ..., sd(x))≤ 2d
d
∏

i=1

H(x i)
d

But the x i ’s are conjugates, and we know heights are invariant under Galois action,
thus H(x i)’s are all equal. This shows

H(s0(x), ..., sd(x))≤ 2d H(x)d
2

Now suppose x is in the set

{x ∈Q|H(x)≤ B and [Q(x) :Q] = d}

Then we just proven x is the root of a polynomial Fx(T ) whose coefficients s0, ..., sd

are bounded by 2d Bd2
. However, it is easy to see Pd(Q) has only finitely many points

of bounded height, so there are only finitely many possibilities for Fx(T ), and we are
done.

3 Local Heights

Now let X be projective variety, and suppose we want to define a height on X based
on the heights on projective space. Then immediately we see this notion must depend
on the embeddings we are using.

Thus, in order to define a notion which extends heights on projective space, we
must keep track of the morphism X → Pn. This data is the same as a base-point free
line bundle L on X , together with n sections s1, ..., sn that do not vanish at the same
time.

For us, to define local heights, we require more than just this information. Instead,
we require a decomposition Q =L ⊗M −1 where L ,M are both base-point free line
bundles with a set of generating global sections.

Convention

Throughout this section, we will let K be a field and | · | be a fixed absolute value
on K .

Definition 3.1

Let D = (Ui, fi) be a Cartier divisor on X =
⋃

Ui, and suppose O(D) =L ⊗M −1

for base-point free line bundles L ,M . Then a presentation of D is the data D =
(sD,L , s,M , t) where s, t are generating global sections of L ,M , respectively,
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and sD is the meromorphic section associated with O(D).

We note for Cartier divisor D, to get the line bundles L ,M as above, we take
D1 = mH + D and D2 = mH, where H is a very ample divisor on X . Then for m large
enough we see D1, D2 are ample and D1 − D2 ≡ D.

Proposition 3.2

For P /∈ supp(D), we define the local height (wrt D) to be

λD(P) =max
k

min
l

log |
sk

t lsD
(P)|

Example 3.3

Let f be non-zero rational function on X with Cartier divisor D = D( f ). Then
O(D) = OX and f is a meromorphic section of O(D). Thus there is a local height
λ f associated with presentation ( f ,OX , 1,OX , 1). For P /∈ supp(D), we have

λ f (P) = − log | f (P)|

In particular, if g is another non-zero rational function on X , then λ f g = λ f +λg

and λ f −1 = −λ f .

Next, we have two constructions for λD.

Addition/Negation

Let D1,D2 be two presentations of D1, D2, respectively. Then we can define a
presentation D of D1 + D2 as follows:

(sD1
sD2

,L1 ⊗L2, (s1ks2k′)k,k′ ,M1 ⊗M2, (t1l t2l ′)l,l ′)

Thus, we can define λD1
+λD2

be the local height associated with D as above.

Next, for D = (sD,L , s,M , t) we can define a presentation for −D by

(s−1
D ,M , t,L , s)

and this two operations together makes the set of λD into a monoid.

Pullback

Now let π : Y → X be dominant morphism of irreducible projective varieties over
K . Let D = (sD,L , s,M , t), then we can define a presentation π∗D by

(π∗sD,π∗L ,π∗s,π∗M ,π∗t)
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In particular, we see λπ∗D(P) = λD(π(P)) for well-defined P, i.e. P ∈ Y,π(P) /∈
supp(D).
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