Let X,Y,Z be varieties such that X is complete and X,Y geometrically irreducible.
If f : X xY — Z is a morphism such that f (X x {y,}) = {2,} for some y, € Y and
20 € Z, then f(X x {y}) is a point forall y €Y.

Let ¢ : A— G be a morphism of abelian variety A into group variety G. Then the
map

¢:A>G, a— d(@)ple)™

is a homomorphism of group varieties.

For a group variety G over K, the following are equivalent:

G is connected
G is geometrically connected
G is irreducible
G is geometrically irreducible

R L=

In particular, a connected complete geometrically reduced group variety over K is
abelian variety.

Elliptic curves are the only standard explicit examples of abelian varieties. This is
because higher-dimensional abelian varieties can be defined only by means of a very
large number of equations, and little can be understood by just looking at the equa-
tions.

However, abelian varieties are ubiquitous in algebraic geometry and they occur
most naturally through the Picard variety, which we will study here.

Let us fix a ground field K and algebraic closure K.

If ¢ : X — Y is a morphism of varieties over K and y € Y, then the fiber of ¢
over y is denoted by X, = X xy x(y). The pullback of .# € Pic(X) to the fiber X, is
denoted .Z. Its an element of Pic(X ). Note X, and .Z, are only defined over x(y).
For a fixed y we often identify X with X, using the map x — (x, y), which is only
defined over k(y).



In the following, we consider . € Pic(X x Y') and the fibers with respect to the
projections p;, p, onto the factors. For x € X,y € Y, we have

"g_y = $|X><{y} S PiC(XK(y)), gx = gl{x}xY S PIC(YK(x))

Let X be a geometrically irreducible smooth complete variety over K and Y an irre-
ducible smooth variety over K. Let £ € Pic(X x Y') and suppose there is dense open

UCYsoX,=0foralyeU. Then £ is equal to the pullback of an element of
Pic(Y) by p,.

This result holds even without the smoothness assumption. We often use this prin-
ciple in the following form.

Let X,Y be smooth varieties over K and assume Y is irreducible and that X is com-
plete and geometrically irreducible. Let . € Pic(X x Y) with £, = 0 for all y in
an open dense subset of Y and with £, =0 for all x € X(K). Then . = 0.

Proof. By Theorem ”.1, we have ¥ = p;.#”" for some .#” € Pic(Y). Now consider the

closed embedding ¢, : Y - X x Y, y — (x,y). Since p, o, is the identity map on Y,
we see

L' =0p ' =%,=0

Since this holds for all x, we are done.

Let A be abelian variety over K, p; the ith projection A x A onto A, and m be addition
as usual. The following are equivalent for £ € Pic(A):

1. m"(L)=p; L +p;ZL
2. 7(ZL)=ZL foradllaeA

If (1) or (2) holds, then [-1]"(¥) = —-%.

Proof. The equivalence is a consequence of
(m* (L) — p1(ZL) = p3(DDlaxiay = 7,(L) =2
and the seesaw principle from Corollary . If we pullback equation in (1) by the

morphism
A—AxA, a— (a,—a)



then we get [-1]%(¥) =—-%.

Let X be an irreducible smooth complete variety over K and P, € X(K) a base point
of X. Then the group Pic®(Xz) has a unique structure as an abelian variety over K,
called the Picard variety and denoted by Pic®(X), with the properties:

1. Thereis & € Pic(X x Pic®(X)) such that &, = % for % € Pic®(X) and P,
is trivial

2. For any subfamily . of Pic’(X) parametrized by an irreducible variety T over
K, the set-theoretic map

T — Pic°(X), t— .7

is actually a morphism over K.

The uniquely determined class &7 is called the Poincaré class.

Now given ¢ : X — X’ a pointed morphism between complete smooth variety over
K with base point P, € X(K) and P, € X'(K) respectively (i.e. we require ¢(P,) = P,).
Then the map
é : Pic®(X") = Pic(X), &L — ¢p* &’

is called the dual map of ¢, which is a homomorphism of abelian varieties.

In particular, if F/K is a field extension, then:

1. by base change, Pic(X) C Pic(Xy)
2. Pic®(Xz) = Pic®’(X); and its Poincaré class is obtained from & by base

change of F
3. Pic®(X)(F) = Pic°(X;) by identifying b with 2,

By the seesaw principle as in Corollary and Corollary 2.2, the Poincaré class
& is uniquely characterized by the conditions:

1. #, = £ for any £ € Pic®(X), i.e. the fiber of & at any degree O line
bundle is just that line bundle itself



In the complex analytic situation, take X be irreducible proper smooth complex
variety viewed as a compact connected complex manifold. View the transition
functions (g, g) for a line bundle . on X as a Cech cocycle valued in Oy, we see
Pic(X) = H'(X, 0}). Now consider the exponential map short exact sequence

O%ZXHﬁxﬂﬁ;%O

Now take cohomology long sequence, we get

Z ?CX
H'(X,Z) ¥~ H'(X, 0y) — H'(X,0)) = Pic(X)

L
——

H*(X,Z) — ...

where c; gives the first Chern class of line bundles. A line bundle is equivalent to
0 if and only if . has (first) Chern class 0. If we use canonical isomorphism

H'(X,0x) 2 H*'(X)

from Dolbeault complex, we conclude the Picard variety is biholomorphic to the
complex torus H*'(X)/HY(X, Z).

In the above, we defined the Picard variety Pic’(X) of irreducible smooth complete
variety X with K-rational base point. In this section, we assume X is abelian variety
over K and the base point is the origin.

Let A be smooth complete abelian variety, then Pic°(A) is called the dual abelian
variety of A and denoted by A.

The theorem of square says for any .2 € Pic(A), the point ¢ ,(a) := 7 (L) —ZL is
in A and additive in a € A.

As a consequence of the theorem of the square, we will prove:

1. abelian variety is always projective



2. for .# ample, ¢ , is surjective with finite kernel (in particular dimA = dimA)

Let Z € Pic(A) and a € A. Then ¢ 4(a) = 1(L) -2 € Pic®(A)(k(a)) and
¢ o : A— Pic’(A) is a homomorphism of abelian varieties over K.

Proof. Let p; be the ith projection of A x A onto A and consider
L' =m'(L) - pi(L) - pi(L)
on A x A. We already remarked in the proof of Corollary that
LNaxigy =T(L) =&

for a € A. Thus ¢ 4(a) € Pic’(Ay()) = Pic’(A)(x(a)) by the definition of algebraic
equivalence and Corollary 2.3. Since .Z’|(;x4 = 0, £’ is a subfamily of Pic’(A)
parametrized by A. Theorem shows ¢ o, is a morphism of varieties defined over
K. Since ¢ 4(0) is trivial, the map is a homomorphism of abelian varieties (Corollary

).

For a,b € A, we have

T () + L =1(L)+1,(L)

Proof. Apply Theorem 3.2, then subtract 2.Z on both side.

Let % € Pic(A) such that ¢, = 0. Then for any ample £ € Pic(A), there is some
a € Awith

B=1 (L)L

The kernel of ¢, gives much information about .Z. If .Z is ample, then the
kernel is finite. We will prove a partial converse of this statement, which we will
use later. On the other hand, ker(¢ ) = A if .Z € Pic’(A). These statements
about kernel will be proved next.



We first recall the following result. Let X be qcgs scheme, the following are equiv-
alent:

1. X is quasi-affine

2. There is line bundle . such that .# and . ! are ample

3. Every quasi-coherent Jy-module is generated by its global sections

4. The canonical morphism X — Spec(I'(X, y)) is quasi-compact open schemat-
ically dominant immersion.

Now, we claim if X proper variety over k, . ample line bundle with .¥ =
Oy, then X is affine. To see this, by assumption and the result above we see
X — SpecI'(X, Oy) is open immersion. Now X is also proper, which means X —
SpecT'(X, Oy) is closed. Thus X must be affine as desired. In particular, note X
proper and affine means X is finite.

A class £ € Pic(A) is ample if and only if ker(¢ o) is finite and H°(A, £™) # O for
some n > 0.

Proof. Assume .Z is ample. Let B be the connected component of the closed subgroup
ker(¢ o) containing 0. For b € B we have

T.L =2

and hence
[_1]*($|3) = _ng

by Corollary . Since
0p = Z|p+[-11"(Z15)

is ample, B has to be the trivial abelian subvariety {0} (using the fact A is complete and
then Fact 3.6, and the fact the only abelian affine group variety is A%). Thus ker(¢ o)
is finite. Choose n so large that .#" is very ample, which gives H°(A, #") # 0.

In the other direction, we may assume H°(A,.#) # 0, i.e. there is an effective
divisor D so (D) = .¥. Thus Lemma shows £ is ample.

Let D be effective divisor on A and suppose the subgroup {a € A : 7(D) = D} is
finite. Then D is ample on A.

Let us omit this proof during the talk if we dont have time.
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Proof. Note D is ample iff D¢ is ample over Az. Thus we assume K is ACE The proof
then proceeds by proving first the linear system |2D| is base-point free and define a
morphism ¢ of A into some projective space. Then we show ¢ is finite morphism and
the conclusion comes by pullback. The details are as follows.

Let a,b € A. If b is in the support of the effective divisor
E,:=7:(D)+7* (D)

then a+ b or b —a is in the support of D. For any given b € A we can always find
a¢ (D—b)U(b—D),ie. b¢ supp(E,). Then by the theorem of the square the
effective divisor E, is an element of |2D|. Thus the linear system |2D| is base-point
free and thus defines a morphism ¢ : A — Py.

The morphism ¢ is proper. Let F be an irreducible component of any fiber. All
elements of |2D| are pullbacks of hyperplanes by the definition of ¢. Now for any
a € A either F is contained in the support of E, or F N supp(E,) = @, hence we can
find a € A so F and the support of E, are disjoint, i.e. a ¢ supp(D)—F. Let Z be an
irreducible component of D, then Z —F is irreducible closed subset of A not containing
a. We conclude Z —F is of codimension 1. Now note for any b € F, we have

Z—F=Z-b

whence it follows Z is invariant by translation in F —F. Therefore, the same is true for
D instead of Z. By assumption, this is only possible for dim(F) = 0 and we conclude ¢
has finite fiber. Thus, since ¢ is proper, it must also be finite (finite fiber=quasi-fintie,
proper+quasi-finite means finite). Now recall pullback of ample by finite morphism is
ample, we see 2D is ample.

An abelian variety is projective.

Proof. Let U be affine open subset of A containing 0. We may assume dim(A) > 1. Let
Zy,...,Z, be irreducible components of A\U. Enlarging them, we may assume Z, ..., Z,
are prime divisors. In order to see this note the complement of a divisor in an affine
smooth variety is smooth. Setting

D=>7

the subgroup B = {a € A: 7}(D) = D} is closed and for b € B, U+ b = B. Since 0 € U,
we have
BCU

As a complete variety, B must be finite. Lemma shows D is ample, hence A is
projective.



For A € Pic(A), the following are equivalent:

1. # € Pic®(A)

2. ker(¢p4)=A

3. For every ample £ € Pic(A), thereisa €Aso B=1(L)—L

4. There is ample £ € Pic(A), such that # = ©v(ZL) — £ for some a €A

Proof. (1) = (2): By Corollary 2.3, we may assume K is ACE Let
¢ : A— Pic’(A) — Pic’(A)

be the map given by (a, #) — 7.%. We will prove below this is a morphism. For
T = A x Pic®(A), consider

L = (m x Idp;o) (Z) € Pic(Ax T)

where m denotes the addition morphism as usual. Note the restriction of m X Idp;c04)
to Ax {a} x {#} is given by 7, x {#}, by identifying Ax {a} x {#} with A. By Remark
and the rule (f o g)"* = g* o f* we get

ZLaxiayxizy = To B

and similarly
7 |{0}><T =7

Let us denote by p, the projection of AX T onto T. The subfamily £ —p; % of Pic’(A)
parametrized by T induces a morphism T — Pic°(A), which is equal to ¢ (Theorem

). Since ¢ (A x {0}) = 0, the constancy lemma shows 77 (%) = % for all a €A,
which proves the claim.

(2) = (3): This is Theorem
Clearly (3) = (4) as the existence of an ample class is by Corollary

(4) = (1): Theorem

The Picard variety Pic°(A) is called the dual abelian variety of A and will be
denoted by A.

The dual abelian variety of A has the same dimension as A.



Proof There is an ample .# € Pic(A), and thus ¢, : A — A is surjective and finite.
Thus they have the same dimension.
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