
1 Results From Before

Lemma 1.1: Constancy Lemma

Let X , Y, Z be varieties such that X is complete and X , Y geometrically irreducible.
If f : X × Y → Z is a morphism such that f (X × {y0}) = {z0} for some y0 ∈ Y and
z0 ∈ Z, then f (X × {y}) is a point for all y ∈ Y .

Corollary 1.1.1

Let φ : A→ G be a morphism of abelian variety A into group variety G. Then the
map

φ : A→ G, a 7→ φ(a)φ(εA)
−1

is a homomorphism of group varieties.

Proposition 1.2

For a group variety G over K, the following are equivalent:

1. G is connected
2. G is geometrically connected
3. G is irreducible
4. G is geometrically irreducible

In particular, a connected complete geometrically reduced group variety over K is
abelian variety.

2 The Picard Variety

Elliptic curves are the only standard explicit examples of abelian varieties. This is
because higher-dimensional abelian varieties can be defined only by means of a very
large number of equations, and little can be understood by just looking at the equa-
tions.

However, abelian varieties are ubiquitous in algebraic geometry and they occur
most naturally through the Picard variety, which we will study here.

Let us fix a ground field K and algebraic closure K .

If φ : X → Y is a morphism of varieties over K and y ∈ Y , then the fiber of φ
over y is denoted by X y = X ×Y κ(y). The pullback of L ∈ Pic(X ) to the fiber X y is
denoted Ly . Its an element of Pic(X y). Note X y and Ly are only defined over κ(y).
For a fixed y we often identify X with X y using the map x 7→ (x , y), which is only
defined over κ(y).
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In the following, we consider L ∈ Pic(X × Y ) and the fibers with respect to the
projections p1, p2 onto the factors. For x ∈ X , y ∈ Y , we have

Ly =L |X×{y} ∈ Pic(Xκ(y)), Lx =L |{x}×Y ∈ Pic(Yκ(x))

Theorem 2.1: Seesaw Principle

Let X be a geometrically irreducible smooth complete variety over K and Y an irre-
ducible smooth variety over K. Let L ∈ Pic(X × Y ) and suppose there is dense open
U ⊆ Y so Ly = 0 for all y ∈ U. Then L is equal to the pullback of an element of
Pic(Y ) by p2.

This result holds even without the smoothness assumption. We often use this prin-
ciple in the following form.

Corollary 2.1.1

Let X , Y be smooth varieties over K and assume Y is irreducible and that X is com-
plete and geometrically irreducible. Let L ∈ Pic(X × Y ) with Ly = 0 for all y in
an open dense subset of Y and with Lx = 0 for all x ∈ X (K). Then L = 0.

Proof. By Theorem 2.1, we have L = p∗2L
′ for some L ′ ∈ Pic(Y ). Now consider the

closed embedding ιx : Y → X × Y , y 7→ (x , y). Since p2 ◦ ιx is the identity map on Y ,
we see

L ′ = ι∗x p∗2L
′ =Lx = 0

Since this holds for all x , we are done.

Corollary 2.1.2

Let A be abelian variety over K, pi the ith projection A×A onto A, and m be addition
as usual. The following are equivalent for L ∈ Pic(A):

1. m∗(L ) = p∗1L + p∗2L
2. τ∗a(L ) =L for all a ∈ A

If (1) or (2) holds, then [−1]∗(L ) = −L .

Proof. The equivalence is a consequence of

(m∗(L )− p∗1(L )− p∗2(L ))|A×{a} = τ
∗
a(L )−L

and the seesaw principle from Corollary 2.1.1. If we pullback equation in (1) by the
morphism

A→ A× A, a 7→ (a,−a)
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then we get [−1]∗(L ) = −L .

Theorem 2.2

Let X be an irreducible smooth complete variety over K and P0 ∈ X (K) a base point
of X . Then the group Pic0(XK) has a unique structure as an abelian variety over K,
called the Picard variety and denoted by P ic0(X ), with the properties:

1. There is P ∈ Pic(X ×P ic0(X )) such that PB =B for B ∈ P ic0(X ) and PP0

is trivial
2. For any subfamily L of Pic0(X ) parametrized by an irreducible variety T over

K, the set-theoretic map

T → P ic0(X ), t 7→Lt

is actually a morphism over K.

The uniquely determined class P is called the Poincaré class.

Now given φ : X → X ′ a pointed morphism between complete smooth variety over
K with base point P0 ∈ X (K) and P ′0 ∈ X ′(K) respectively (i.e. we require φ(P0) = P ′0).
Then the map

φ̂ : P ic0(X ′)→ P ic(X ), L ′ 7→ φ∗L ′

is called the dual map of φ, which is a homomorphism of abelian varieties.

Remark 2.3: Fact

In particular, if F/K is a field extension, then:

1. by base change, Pic(X ) ⊆ Pic(X F)
2. P ic0(X F) = P ic0(X )F and its Poincaré class is obtained from P by base

change of F
3. P ic0(X )(F) = Pic0(X F) by identifying b with Pb

Remark 2.4

By the seesaw principle as in Corollary 2.1.1 and Corollary 2.3, the Poincaré class
P is uniquely characterized by the conditions:

1. PL = L for any L ∈ P ic0(X ), i.e. the fiber of P at any degree 0 line
bundle is just that line bundle itself

2. PP0
= 0
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Remark 2.5

In the complex analytic situation, take X be irreducible proper smooth complex
variety viewed as a compact connected complex manifold. View the transition
functions (gα,β) for a line bundle L on X as a Čech cocycle valued in O×X , we see
Pic(X ) = H1(X ,O×X ). Now consider the exponential map short exact sequence

0→ ZX → OX
exp
−→ O×X → 0

Now take cohomology long sequence, we get

0

Z C C×

H1(X ,Z) H1(X ,OX ) H1(X ,O×X ) = Pic(X )

H2(X ,Z) ...

c1

where c1 gives the first Chern class of line bundles. A line bundle is equivalent to
0 if and only if L has (first) Chern class 0. If we use canonical isomorphism

H1(X ,OX )∼= H0,1(X )

from Dolbeault complex, we conclude the Picard variety is biholomorphic to the
complex torus H0,1(X )/H1(X ,Z).

3 The Theorem of Square

In the above, we defined the Picard variety P ic0(X ) of irreducible smooth complete
variety X with K-rational base point. In this section, we assume X is abelian variety
over K and the base point is the origin.

Definition 3.1

Let A be smooth complete abelian variety, then P ic0(A) is called the dual abelian
variety of A and denoted by Â.

The theorem of square says for any L ∈ Pic(A), the point φL (a) := τ∗a(L )−L is
in Â and additive in a ∈ A.

As a consequence of the theorem of the square, we will prove:

1. abelian variety is always projective
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2. for L ample, φL is surjective with finite kernel (in particular dim Â= dim A)

Theorem 3.2

Let L ∈ Pic(A) and a ∈ A. Then φL (a) := τ∗a(L ) −L ∈ P ic0(A)(κ(a)) and
φL : A→ P ic0(A) is a homomorphism of abelian varieties over K.

Proof. Let pi be the ith projection of A× A onto A and consider

L ′ = m∗(L )− p∗1(L )− p∗2(L )

on A× A. We already remarked in the proof of Corollary 2.1.2 that

L ′|A×{a} = τ∗a(L )−L

for a ∈ A. Thus φL (a) ∈ Pic0(Aκ(a)) = P ic0(A)(κ(a)) by the definition of algebraic
equivalence and Corollary 2.3. Since L ′|{0}×A = 0, L ′ is a subfamily of Pic0(A)
parametrized by A. Theorem 2.2 shows φL is a morphism of varieties defined over
K . Since φL (0) is trivial, the map is a homomorphism of abelian varieties (Corollary
1.1.1).

Theorem 3.3: Theorem of Square

For a, b ∈ A, we have

τ∗a+b(L ) +L = τ∗a(L ) +τ
∗
b(L )

Proof. Apply Theorem 3.2, then subtract 2L on both side.

Theorem 3.4

Let B ∈ Pic(A) such that φB = 0. Then for any ample L ∈ Pic(A), there is some
a ∈ A with

B = τ∗a(L )−L

Remark 3.5

The kernel of φL gives much information about L . If L is ample, then the
kernel is finite. We will prove a partial converse of this statement, which we will
use later. On the other hand, ker(φL ) = A if L ∈ Pic0(A). These statements
about kernel will be proved next.
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Fact 3.6: Ample L ∼= OX means X affine

We first recall the following result. Let X be qcqs scheme, the following are equiv-
alent:

1. X is quasi-affine
2. There is line bundle L such that L and L −1 are ample
3. Every quasi-coherent OX -module is generated by its global sections
4. The canonical morphism X → Spec(Γ (X ,OX )) is quasi-compact open schemat-

ically dominant immersion.

Now, we claim if X proper variety over k, L ample line bundle with L ∼=
OX , then X is affine. To see this, by assumption and the result above we see
X → Spec Γ (X ,OX ) is open immersion. Now X is also proper, which means X →
Spec Γ (X ,OX ) is closed. Thus X must be affine as desired. In particular, note X
proper and affine means X is finite.

Proposition 3.7

A class L ∈ Pic(A) is ample if and only if ker(φL ) is finite and H0(A,L n) ̸= 0 for
some n> 0.

Proof. Assume L is ample. Let B be the connected component of the closed subgroup
ker(φL ) containing 0. For b ∈ B we have

τ∗bL =L

and hence
[−1]∗(L |B) = −L |B

by Corollary 2.1.2. Since
0B =L |B + [−1]∗(L |B)

is ample, B has to be the trivial abelian subvariety {0} (using the fact A is complete and
then Fact 3.6, and the fact the only abelian affine group variety is A0). Thus ker(φL )
is finite. Choose n so large that L n is very ample, which gives H0(A,L n) ̸= 0.

In the other direction, we may assume H0(A,L ) ̸= 0, i.e. there is an effective
divisor D so O(D)∼=L . Thus Lemma 3.8 shows L is ample.

Lemma 3.8

Let D be effective divisor on A and suppose the subgroup {a ∈ A : τ∗a(D) = D} is
finite. Then D is ample on A.

Let us omit this proof during the talk if we dont have time.
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Proof. Note D is ample iff DK is ample over AK . Thus we assume K is ACF. The proof
then proceeds by proving first the linear system |2D| is base-point free and define a
morphism φ of A into some projective space. Then we show φ is finite morphism and
the conclusion comes by pullback. The details are as follows.

Let a, b ∈ A. If b is in the support of the effective divisor

Ea := τ∗a(D) +τ
∗
−a(D)

then a + b or b − a is in the support of D. For any given b ∈ A we can always find
a /∈ (D − b) ∪ (b − D), i.e. b /∈ supp(Ea). Then by the theorem of the square 3.3 the
effective divisor Ea is an element of |2D|. Thus the linear system |2D| is base-point
free and thus defines a morphism φ : A→ Pn

K .

The morphism φ is proper. Let F be an irreducible component of any fiber. All
elements of |2D| are pullbacks of hyperplanes by the definition of φ. Now for any
a ∈ A either F is contained in the support of Ea or F ∩ supp(Ea) = ;, hence we can
find a ∈ A so F and the support of Ea are disjoint, i.e. a /∈ supp(D)− F . Let Z be an
irreducible component of D, then Z−F is irreducible closed subset of A not containing
a. We conclude Z − F is of codimension 1. Now note for any b ∈ F , we have

Z − F = Z − b

whence it follows Z is invariant by translation in F−F . Therefore, the same is true for
D instead of Z . By assumption, this is only possible for dim(F) = 0 and we conclude φ
has finite fiber. Thus, since φ is proper, it must also be finite (finite fiber=quasi-fintie,
proper+quasi-finite means finite). Now recall pullback of ample by finite morphism is
ample, we see 2D is ample.

Corollary 3.8.1

An abelian variety is projective.

Proof. Let U be affine open subset of A containing 0. We may assume dim(A)≥ 1. Let
Z1, ..., Zr be irreducible components of A\U . Enlarging them, we may assume Z1, ..., Zr

are prime divisors. In order to see this note the complement of a divisor in an affine
smooth variety is smooth. Setting

D =
∑

Zi

the subgroup B = {a ∈ A : τ∗a(D) = D} is closed and for b ∈ B, U+ b = B. Since 0 ∈ U ,
we have

B ⊆ U

As a complete variety, B must be finite. Lemma 3.8 shows D is ample, hence A is
projective.
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Proposition 3.9

For B ∈ Pic(A), the following are equivalent:

1. B ∈ Pic0(A)
2. ker(φB) = A
3. For every ample L ∈ Pic(A), there is a ∈ A so B = τ∗a(L )−L
4. There is ample L ∈ Pic(A), such that B = τ∗a(L )−L for some a ∈ A

Proof. (1)⇒ (2): By Corollary 2.3, we may assume K is ACF. Let

φ : A→ P ic0(A)→ P ic0(A)

be the map given by (a,B) 7→ τ∗aB. We will prove below this is a morphism. For
T = A×P ic0(A), consider

L := (m× IdP ic0(A))
∗(P) ∈ Pic(A× T )

where m denotes the addition morphism as usual. Note the restriction of m× IdP ic0(A)
to A×{a}×{B} is given by τa×{B}, by identifying A×{a}×{B} with A. By Remark
2.4 and the rule ( f ◦ g)∗ = g∗ ◦ f ∗ we get

L |A×{a}×{B} = τ∗aB

and similarly
L |{0}×T =P

Let us denote by p2 the projection of A× T onto T . The subfamily L − p∗2P of Pic0(A)
parametrized by T induces a morphism T → P ic0(A), which is equal to φ (Theorem
2.2). Since φ(A× {0}) = 0, the constancy lemma 1.1 shows τ∗a(B) =B for all a ∈ A,
which proves the claim.

(2)⇒ (3): This is Theorem 3.4.

Clearly (3)⇒ (4) as the existence of an ample class is by Corollary 3.8.1.

(4)⇒ (1): Theorem 3.2.

Definition 3.10

The Picard variety P ic0(A) is called the dual abelian variety of A and will be
denoted by Â.

Corollary 3.10.1

The dual abelian variety of A has the same dimension as A.
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Proof. There is an ample L ∈ Pic(A), and thus φL : A→ Â is surjective and finite.
Thus they have the same dimension.
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