Goal:

- 1. define group varieties
- 2. constancy lemma
- 3. generic property holds everywhere on group variety, hence rational map to abelian variety is always morphism at smooth points

In this section we will always work over field *K* with a choice of algebraic closure \overline{K} . All objects will be over *K*.

1 Basics

Definition 1.1

Let *S* be a scheme and *G* an *S*-scheme, then we say *G* is a *group scheme* if there is a factorization of the functor $h_G := \text{Hom}(-, G)$ from $(\mathbf{Sch}/S)^{\text{opp}}$ to (\mathbf{Set}) through the forgetful functor $(\mathbf{Grp}) \rightarrow (\mathbf{Set})$.

By Yoneda's lemma, we see the above is the same as the following two set of data:

- 1. For all *S*-scheme *T*, there is a group structure on $h_G(T) = \text{Hom}_S(T, G)$ which is functorial in *T*
- 2. Three *S*-morphisms $m : G \times_S G \to G$, $i : G \to G$ and $e : S \to G$, which correspond to multplication, inverse and unit of the group

If *G* happens to be a variety, then we say *G* is a group variety (gv for short).

Definition 1.2

An *abelian variety* (av for short) is a geometrically irreducible and geometrically reduced complex group variety.

Example 1.3

 M_n , the set of *n* by *n* matrices over *K*, is irreducible affine group variety. The determinant gives det : $M_n \to \mathbb{A}^1_K$, and thus we see GL(*n*), the complement of the vanishing of det, is affine open irreducible subvariety of M_n . In particular, SL(*n*), defined by det(*a*) = 1, is a subvariety thats also affine group variety.

Some irrelevant facts:

- 1. Every affine group variety is isomorphic to some closed subgroup of GL(n).
- 2. Let *G* be irreducible group variety over pefect field *K*, then there is a smallest irreducible affine closed subgroup *H* and abelian variety *A* so

$$0 \to H \to G \to A \to 0$$

In particular, we see to study general gv, it suffices to understand both affine gv and av. In particular, since the trivial gv \mathbb{A}^0_K is the only complete geometrically irreducible affine variety, there are no other affine group variety that is also av.

Remark 1.4: Don't have to include

Let *X* be proper irreducible over *K* and suppose $X \to Y$ is a *K*-morphism with *Y* affine of finite type, then this morphism must be constant. To see this, note we may assume both *X*, *Y* are reduced by passing to their underlying reduced subscheme. Say *Y* = Spec*A*, i.e. $X \to Y$ is the same as $A \to \Gamma(X, \mathcal{O}_X)$. Now since *X* is proper hence complete, $\Gamma(X, \mathcal{O}_X)$ is finite dimensional *K*-vector space (to see this, *X* reduced means $\Gamma(X, \mathcal{O}_X)$ is reduced finite dimensional *K*-algebra, but *X* is also irreducible, thus it must be a field). Hence the image of *A* in $\Gamma(X, \mathcal{O}_X)$ must be a field, say *k*, then we see $X \to Y$ factor through $X \to \text{Spec } k \to Y$ as desired.

The following lemma roughly says if ϕ is constant on $X \times Y$ on one fiber, then ϕ is constant on all fibers.

Lemma 1.5: Constancy Lemma

Let X, Y, Z be varieties such that X is complete and X, Y geometrically irreducible. If $f : X \times Y \to Z$ is a morphism such that $f(X \times \{y_0\}) = \{z_0\}$ for some $y_0 \in Y$ and $z_0 \in Z$, then $f(X \times \{y\})$ is a point for all $y \in Y$.

Proof. By base change, we may assume $K = \overline{K}$ is ACF. Let *U* be open affine around z_0 . The image

$$C = \{ y \in Y : \exists x \in X, f(x, y) \in Z \setminus U \}$$

of $f^{-1}(Z \setminus U)$ by the projection $X \times Y \to Y$ is closed as X is complete. Then

$$V = Y \setminus C = \{ y \in Y : \forall x \in X, f(x, y) \in U \}$$

is open neighbourhood of y_0 and, for any $y \in V$, we have $X \to U$, given by $x \mapsto f(x, y)$. Since X is complete and irreducible and U is affine, the morphism has to be constant for any $y \in V$, with image $f(x_0, y)$ choice of a point $x_0 \in X$ (Remark 1.4 above). Now note

$$S = \{y \in Y : |f(X \times \{y\})| = 1\} = \bigcap_{x_1, x_2 \in X} \{y \in Y : f(x_1, y) = f(x_2, y)\}$$

is closed in *Y*. Since it contains the non-empty open subset *V* of *Y* and since *Y* is irreducible, we conclude S = Y, proving our claim.

Corollary 1.5.1

Let X, Y be geometrically irreducible variety with at least one K-rational point. We assume X is complete. A morphism $f : X \times Y \rightarrow G$ of a product into a group variety

factorizes as f(x, y) = g(x)h(y), for suitable morphism $g: X \to G$ and $h: Y \to G$.

Proof. We choose $y_0 \in Y(K)$ and define $g: X \to G$ by $g(x) = f(x, y_0)$. The morphism $F: X \times Y \to G$ defined by $F(x, y)g(x)^{-1}f(x, y)$ satisfies $F(X \times \{y_0\}) = \{\epsilon\}$ where $\epsilon \in G$ is the identity of G. Now Constancy Lemma 1.5 shows $F(X \times \{y\})$ is a point, say h(y), for every $y \in Y$, and f(x, y) = g(x)h(y). In order to verify h is a K-morphism, note $h = f(x_0, \cdot)g(x_0)^{-1}$ for any $x_0 \in X(K)$.

Corollary 1.5.2

Let $\phi : A \rightarrow G$ be a morphism of abelian variety A into group variety G. Then the map

 $\phi: A \to G, \quad a \mapsto \phi(a)\phi(\epsilon_A)^{-1}$

is a homomorphism of group varieties.

Proof. Apply the Constancy lemma 1.5 with $f : A \times A \rightarrow G$, given by

 $(x, y) \mapsto \psi(x)\psi(y)\psi(xy)^{-1}$

and with y_0, z_0 the identity of *A*, *G*, respectively. We conclude the restriction of *f* to $A \times \{y\}$ is a constant map for every *y*. Since $f(\{\epsilon_A\} \times A) = \{\epsilon_G\}$, we deduce *f* is constant, with image the identity of *G*.

Corollary 1.5.3

An abelian variety is commutative.

Proof. By Corollary 1.5.2, the inverse map ι is a homomorphism of group varieties. This is equivalent to commutativity.

Example 1.6

The affine line \mathbb{A}_{K}^{1} is not complete because xy = 1 is closed subvariety of $\mathbb{A}^{1} \times \mathbb{A}^{1}$, while its projection on the second factor is $\mathbb{A}^{1} \setminus \{0\}$, not closed in \mathbb{A}_{K}^{1} . Now consider the morphism $f : \mathbb{A}^{1} \times \mathbb{A}^{1} \to \mathbb{A}^{1}$ given by $(x, y) \mapsto xy$. Then f satisfies the hypothesis of Lemma 1.5. This shows constancy lemma does not hold for non-complete X.

From now on, we will use additive notation for abelian varieties, i.e. m(x, y) = x + y, i(x) = -x, and denote the identity by 0. For $a \in A$, we have the translation map $\tau_a(x) = x + a$. For $n \in \mathbb{Z}$, we denote [n] the endomorphism of A, which is multiplication by n. The kernel of [n] is denoted by A[n], and it forms the torsion subgroups of A.

Remark 1.7

In the following, we note if X is locally of finite type and geometrically reduced scheme over K, then X contains an open dense locus of smooth points.

This problem is local on *X*, thus assume *X* is quasi-compact with irreducible components X_i . Then $Z = \bigcup_{i \neq j} X_i \cap X_j$ is nowhere dense, and thus we may replace *X* by $X \setminus Z$. Thus we may assume *X* is irreducible as $X \setminus Z$ is disjoint union of irreducible schemes. Since *X* is irreducible and reduced, its integral (integral=irreducible+reduced). Let $\eta \in X$ be its generic point. Then the function field $K(X) = \kappa(\eta)$ is geometrically reduced over *K*, hence separable over *K*. Let $U = \text{Spec}A \subseteq X$ be any nonempty affine open so $\kappa(\eta) = A_{(0)}$ is the fraction field of *A*. This implies (recall the following: if *S* is finite type *k*-algebra, $\mathfrak{p} \in \text{Spec}S$ and $\kappa(\mathfrak{p})$ separable over *k*, then *S* is smooth at \mathfrak{p} over *k* if and only if $S_{\mathfrak{p}}$ is regular) *A* is smooth at (0) over *K*. By definition this means some principal localization of *A* is smooth over *K*.

Proposition 1.8

A geometrically reduced group variety is smooth.

Proof. By base change, we may assume K is ACF. The set of smooth points of X is open, and since X is geometrically reduced, the smooth locus is dense (Remark 1.7). As above, we can define left and right translation by a point of the group variety. They are automorphisms and so the left translation of U is also smooth. If we vary the left translations, then we get an open cover of the group variety, proving the claim.

Jues.

Remark 1.9

Suppose *X* is *K*-scheme, then clearly it is geometrically connected implies *X* is connected.

Next, suppose X is of finite type and connected over K. Then we show if X admits a K-rational point then X is geometrically connected. First, we see if X is quasi-compact, then X is geometrically connected if and only if $X_{K'}$ is connected for all finite separable extension K' of K. We will assume this fact.

Now, if K'/K is finite separable, then we see $\operatorname{Spec} K' \to \operatorname{Spec} K$ is finite flat, and hence universally closed and universally open at the same time. Thus $X_{K'} \to X_K = X$ is open and closed, finite and flat. This means any connected component of $X_{K'}$ surjects onto connected components of X (say Z is a connected component of $X_{K'}$, then $Z \hookrightarrow X_{K'}$ is open and closed, thus $Z \hookrightarrow X_{K'} \to X$ is open and closed, thus the image of *Z* is open and closed in *X*, hence a connected component of *X*).

To conclude the proof, note we assumed *X* is connected, thus every connected component surjects onto *X*, which means all connected components have the same *K*-rational point $x : \operatorname{Spec} K \to X$ in their image. But the base change of this rational point $x_{K'} : \operatorname{Spec} K' \to X$ along $\operatorname{Spec} K' \to \operatorname{Spec} K$ is just a single *K'*-rational point, thus all the connected components of $X_{K'}$ meet at this single *K'*-rational point, i.e. $X_{K'}$ is connected.

Proposition 1.10

For a group variety G over K, the following are equivalent:

- 1. *G* is connected
- 2. G is geometrically connected
- 3. *G* is irreducible
- 4. G is geometrically irreducible

In particular, a connected complete geometrically reduced group variety over K is abelian variety.

Proof. First, we note *K*-variety with at least one *K*-rational point is connected iff its geometrically connected (Remark 1.9). Thus (1) \Leftrightarrow (2). Every irreducible variety is connected, so it remains to prove (2) \Rightarrow (4). We may assume *K* is ACF and *G* connected. By Proposition 1.8 shows *G* is smooth and thus its disjoint union of its irreducible components, i.e. *G* is irreducible.

Next, as you would guess, we want to study $\operatorname{im}(\phi)$ and $\operatorname{ker}(\phi)$ for $\phi : G \to H$ a homomorphism of group varieties. It can be shown (e.g. you can find this result in SGA) $\operatorname{im}(\phi)$ is a closed subgroup variety of H, but the kernel need more care. To be exact, it will always be a scheme, but its possible to have non-reduced structure, e.g. take $G = H = \mathbb{G}_m$ and $\phi(t) = t^2$, then $\operatorname{ker}(\phi) = \operatorname{Spec} k[t]/(t^2 - 1)$, where $k[t]/(t^2 - 1)$ is not a integral domain. However, since all our main results will only concern varieties, we will take

$$\ker(\phi) := \{x \in G(\overline{K}) : \phi(x) = \epsilon_H\}$$

which will be a closed subgroup variety of G.

Theorem 1.11: Dimension Theorem

Let $\phi : G \to H$ be a surjective homomorphism of irreducible group varieties. Then

 $\dim(G) = \dim(H) + \dim(\ker(\phi))$

This roughly follows from the following: if *Y* is Noetherian and universally catenary, $f : X \rightarrow Y$ surjective morphism of irreducible schemes of finite type, then

$$\dim X = \dim Y + \dim f^{-1}(\eta)$$

where η is the generic point of *Y*. Using this, and note all fibers of $\phi : G \to H$ are isomorphic to ker(ϕ), we are done.

Lemma 1.12

Let R be Noetherian integral domain, A finitely generated R-algebra, and M a finitely generated A-module. Then there is $s \in R \setminus \{0\}$ such that the localization M_s is free R_s -module.

Theorem 1.13: Generic Flatness

Let $f : X \to Y$ be quasi-compact morphism locally of finite presentation and assume Y is integral. Let \mathscr{F} be quasi-coherent \mathscr{O}_X -module of finite presentation. Then there is open dense $U \subseteq Y$ such that $\mathscr{F}|_{f^{-1}(U)}$ is flat over U.

Proof. The question is local on *Y*, so we assume Y = SpecA is affine, where *A* is integral domain. Since *f* is quasi-compact, we find open affine finite cover $X = \bigcup_i U_i$. If we find dense open subsets *U* of *Y* as in the theorem for each $U_i \rightarrow Y$, then their intersection will satisfy the desired conclusion for *f*.

Thus we may assume $X = \operatorname{Spec} B$ is affine, and then B is A-algebra of finite presentation, and \mathscr{F} is quasi-coherent \mathscr{O}_X -module associated with the B-module $M = \Gamma(X, \mathscr{F})$ of finite presentation. By elimination of Noetherianness, we may assume the situation arises by base change for $A_0 \to A$, where A_0 is a Noetherian subring of A, from an analogous situation over A_0 . Over A_0 , the conclusion follows from Lemma 1.12, and since flatness is stable under base change, we are done.

Corollary 1.13.1

Let $f : X \to Y$ be a morphism of finite type and locally of finite presentation, and assume Y is integral. Then there is dense open $U \subseteq Y$ such that $f|_{f^{-1}(U)} : f^{-1}(U) \to U$ is flat.

Proposition 1.14

Let $\phi : G \to H$ be surjective homomorphism of irreducible group varieties. Then ϕ is flat. Moreover, if dim(G) = dim(H), then ϕ is finite and $|\ker(\phi)|$ is equal the separable degree of the field extension K(G) over K(H).

Proof. By generic flatness (Corollary 1.13.1), there is open dense subset *U* of *G* such that $\phi|_U$ is flat. Of course, any translate of *U* is as good as *U*. Assuming for a moment *K* is ACF, we may cover *G* by translates of *U*. This proves flatness of ϕ . If *K* is not ACF, we base change to \overline{K} , and since flat satisfies fppf descent (actually fpqc descent), see Stack Project, Tag 02YJ, we see ϕ is flat over *K* iff $\phi_{\overline{K}}$ is flat.

Next, assume dim(*G*) = dim(*H*), then there is an open dense subset *U'* of *H* such that ϕ induces a finite map $U := \phi^{-1}(U') \rightarrow U'$ whose fibers have cardinality equal the separable degree of *K*(*G*) over *K*(*H*). Also, this cardinality equals $|\ker(\phi)|$. Again, we assume *K* is ACF to cover *G* by translates of *U* proving finiteness of ϕ overall, and if *K* is not ACF, we can prove this by a base change as we have fppf descent.

A rational curve is a curve birational to \mathbb{P}^1_K . A variety is rationally connected if any two points in $X(\overline{K})$ may be connected by a rational curve over \overline{K} . It follows from Constancy Lemma 1.5 that abelian varieties do not contain rational curves. In particular, a morphism $X \to A$ into abelian variety contracts the rational curves of X to points. It follows that any morphism of a rationally connected variety, such as \mathbb{P}^n , into abelian variety is constant.

Proposition 1.15

Any morphism $f : \mathbb{P}^1_K \to G$ of the projective line into a group variety is constant.

Proof. Let $(x_0 : x_1)$ be homogeneous coordinates on \mathbb{P}^1_K . The map $\mathbb{P}^1 \times \mathbb{A}^1 \to \mathbb{P}^1$ given by $((x_0 : x_1), y) \mapsto (x_0 : (x_1 + x_0 y))$ is a morphism. Now let $f : \mathbb{P}^1 \to G$ be a morphism, we apply Corollary 1.5.1 to the composition

$$\mathbb{P}^1 \times \mathbb{A}^1 \xrightarrow{s} \mathbb{P}^1 \xrightarrow{f} G$$

and see $f \circ s$ factors as f(s(x, y)) = g(x)h(y) for two suitable morphisms $g : \mathbb{P}^1 \to G$ and $h : \mathbb{A}^1 \to G$.

We set *y* = 0 and note s(x, 0) = x, i.e. $g(x) = f(x)h(0)^{-1}$. Thus

$$f(s(x, y)) = f(x)h(0)^{-1}h(y)$$

Next set $x = \infty$, we see $s(\infty, y) = \infty$ and hence

$$f(\infty) = f(\infty)h(0)^{-1}h(y)$$

This shows h(y) = h(0), i.e. *h* is a constant map and f(s(x, y)) = f(x). Finally, take x = 0 we see s(0, y) = y and so f(y) = f(0).

Corollary 1.15.1

Let $U \subseteq \mathbb{P}^1_K$ be open and A be an abelian variety. Then $f : U \to A$ is constant for any f.

Proof. By valuative criterion of properness f extends to a morphism $\mathbb{P}^1 \to A$.

Theorem 1.16

Let $\phi : X \dashrightarrow G$ be rational map of smooth X into group variety G and U_{\max} the domain of ϕ . Then every irreducible component of $X \setminus U_{\text{max}}$ is of codimension 1.

Corollary 1.16.1

A ratinoal map from a smooth variety to an abelian variety is a morphism.

Proof. Let $\phi : X \dashrightarrow A$ be a rational map with domain U_{max} . By valuative criterion of properness, $X \setminus U_{\text{max}}$ has codimension at least 2. But then we see $U_{\text{max}} = X$ by Theorem 1.16.

Our next goal is to prove the differential of multiplication on a group variety is given by addition.

Proposition 1.17

Let $m: G \times G \rightarrow G$ be multiplication of a smooth group variety G. Then the differential of m at ϵ is the map $T_{G,\epsilon} \oplus T_{G,\epsilon} \to T_{G,\epsilon}$ given by addition of tangent vectors.

Proof. In general we have $T_{X \times X', (x, x')} = T_{X, x} \oplus T_{X', x'}$. Thus $T_{G \times G, (\epsilon, \epsilon)} = T_{G, \epsilon} \oplus T_{G, \epsilon}$. For $\partial \in T_{G,\epsilon}$, we have

$$dm(\partial, 0) = dm \circ d\iota(\partial)$$

where $\iota : G \to G \times G$ is given by $g \mapsto (g, \epsilon)$. Since $dm \circ d\iota = d(m \circ \iota)$, we conclude $dm(\partial, 0) = \partial$. In the same say, we prove $dm(0, \partial) = \partial$. By linearity of dm, this gives the claim.

Corollary 1.17.1

Let G be smooth group variety and for $n \in \mathbb{Z}$, let $[n] : G \to G$ be the map $x \mapsto x^n$. Then the differential of [n] at ϵ is the endomorphism of $T_{G,\epsilon}$ given by multiplying tangent vectors with n.

Proposition 1.18

Let G be an irreducible smooth group variety. Then the tangent bundle T_G on G is a trivial vector bundle of rank equal dim(G).

Proof. Let $\partial_{\epsilon} \in T_{G,\epsilon}$. By translation, we extend ∂_{ϵ} to a vector field ∂ on *G*. More precisely, let $\tau_x(y) := yx$ be right translation on *G* and $\partial_x(f) = \partial_{\epsilon}(f \circ \tau_x)$ for any $x \in G$ and $f \in \mathcal{O}_{G,x}$. Standard arguments for derivatives show ∂ is a vector field on *G*. Clearly, linearly independent tangent vectors in ϵ extends to vector fields, which are linearly independent in every fiber.

