
Goal:

1. define group varieties
2. constancy lemma
3. generic property holds everywhere on group variety, hence rational map to abelian

variety is always morphism at smooth points

In this section we will always work over field K with a choice of algebraic closure
K . All objects will be over K .

1 Basics

Definition 1.1

Let S be a scheme and G an S-scheme, then we say G is a group scheme if there is
a factorization of the functor hG := Hom(−, G) from (Sch/S)opp to (Set) through
the forgetful functor (Grp)→ (Set).

By Yoneda’s lemma, we see the above is the same as the following two set of data:

1. For all S-scheme T , there is a group structure on hG(T ) = HomS(T, G) which is
functorial in T

2. Three S-morphisms m : G×S G→ G, i : G→ G and e : S→ G, which correspond
to multplication, inverse and unit of the group

If G happens to be a variety, then we say G is a group variety (gv for short).

Definition 1.2

An abelian variety (av for short) is a geometrically irreducible and geometrically
reduced complex group variety.

Example 1.3

Mn, the set of n by n matrices over K , is irreducible affine group variety. The
determinant gives det : Mn→ A1

K , and thus we see GL(n), the complement of the
vanishing of det, is affine open irreducible subvariety of Mn. In particular, SL(n),
defined by det(a) = 1, is a subvariety thats also affine group variety.

Some irrelevant facts:

1. Every affine group variety is isomorphic to some closed subgroup of GL(n).
2. Let G be irreducible group variety over pefect field K , then there is a smallest

irreducible affine closed subgroup H and abelian variety A so

0→ H → G→ A→ 0
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In particular, we see to study general gv, it suffices to understand both affine gv and
av. In particular, since the trivial gv A0

K is the only complete geometrically irreducible
affine variety, there are no other affine group variety that is also av.

Remark 1.4: Don’t have to include

Let X be proper irreducible over K and suppose X → Y is a K-morphism with
Y affine of finite type, then this morphism must be constant. To see this, note
we may assume both X , Y are reduced by passing to their underlying reduced
subscheme. Say Y = Spec A, i.e. X → Y is the same as A→ Γ (X ,OX ). Now since
X is proper hence complete, Γ (X ,OX ) is finite dimensional K-vector space (to see
this, X reduced means Γ (X ,OX ) is reduced finite dimensional K-algebra, but X is
also irreducible, thus it must be a field). Hence the image of A in Γ (X ,OX ) must
be a field, say k, then we see X → Y factor through X → Spec k→ Y as desired.

The following lemma roughly says if φ is constant on X × Y on one fiber, then φ
is constant on all fibers.

Lemma 1.5: Constancy Lemma

Let X , Y, Z be varieties such that X is complete and X , Y geometrically irreducible.
If f : X × Y → Z is a morphism such that f (X × {y0}) = {z0} for some y0 ∈ Y and
z0 ∈ Z, then f (X × {y}) is a point for all y ∈ Y .

Proof. By base change, we may assume K = K is ACF. Let U be open affine around z0.
The image

C = {y ∈ Y : ∃x ∈ X , f (x , y) ∈ Z\U}

of f −1(Z\U) by the projection X × Y → Y is closed as X is complete. Then

V = Y \C = {y ∈ Y : ∀x ∈ X , f (x , y) ∈ U}

is open neighbourhood of y0 and, for any y ∈ V , we have X → U , given by x 7→
f (x , y). Since X is complete and irreducible and U is affine, the morphism has to be
constant for any y ∈ V , with image f (x0, y) choice of a point x0 ∈ X (Remark 1.4
above). Now note

S = {y ∈ Y : | f (X × {y})|= 1}=
⋂

x1,x2∈X

{y ∈ Y : f (x1, y) = f (x2, y)}

is closed in Y . Since it contains the non-empty open subset V of Y and since Y is
irreducible, we conclude S = Y , proving our claim.

Corollary 1.5.1

Let X , Y be geometrically irreducible variety with at least one K-rational point. We
assume X is complete. A morphism f : X × Y → G of a product into a group variety
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factorizes as f (x , y) = g(x)h(y), for suitable morphism g : X → G and h : Y → G.

Proof. We choose y0 ∈ Y (K) and define g : X → G by g(x) = f (x , y0). The morphism
F : X × Y → G defined by F(x , y)g(x)−1 f (x , y) satisfies F(X × {y0}) = {ε} where
ε ∈ G is the identity of G. Now Constancy Lemma 1.5 shows F(X ×{y}) is a point, say
h(y), for every y ∈ Y , and f (x , y) = g(x)h(y). In order to verify h is a K-morphism,
note h= f (x0, ·)g(x0)−1 for any x0 ∈ X (K).

Corollary 1.5.2

Let φ : A→ G be a morphism of abelian variety A into group variety G. Then the
map

φ : A→ G, a 7→ φ(a)φ(εA)
−1

is a homomorphism of group varieties.

Proof. Apply the Constancy lemma 1.5 with f : A× A→ G, given by

(x , y) 7→ψ(x)ψ(y)ψ(x y)−1

and with y0, z0 the identity of A, G, respectively. We conclude the restriction of f to
A× {y} is a constant map for every y . Since f ({εA} × A) = {εG}, we deduce f is
constant, with image the identity of G.

Corollary 1.5.3

An abelian variety is commutative.

Proof. By Corollary 1.5.2, the inverse map ι is a homomorphism of group varieties.
This is equivalent to commutativity.

Example 1.6

The affine line A1
K is not complete because x y = 1 is closed subvariety of A1×A1,

while its projection on the second factor isA1\{0}, not closed inA1
K . Now consider

the morphism f : A1 × A1 → A1 given by (x , y) 7→ x y . Then f satisfies the
hypothesis of Lemma 1.5. This shows constancy lemma does not hold for non-
complete X .
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From now on, we will use additive notation for abelian varieties, i.e. m(x , y) =
x+ y , i(x) = −x , and denote the identity by 0. For a ∈ A, we have the translation map
τa(x) = x+a. For n ∈ Z, we denote [n] the endomorphism of A, which is multplication
by n. The kernel of [n] is denoted by A[n], and it forms the torsion subgroups of A.

Remark 1.7

In the following, we note if X is locally of finite type and geometrically reduced
scheme over K , then X contains an open dense locus of smooth points.

This problem is local on X , thus assume X is quasi-compact with irreducible
components X i. Then Z =

⋃

i ̸= j X i ∩ X j is nowhere dense, and thus we may re-
place X by X\Z . Thus we may assume X is irreducible as X\Z is disjoint union
of irreducible schemes. Since X is irreducible and reduced, its integral (inte-
gral=irreducible+reduced). Let η ∈ X be its generic point. Then the function
field K(X ) = κ(η) is geometrically reduced over K , hence separable over K . Let
U = Spec A ⊆ X be any nonempty affine open so κ(η) = A(0) is the fraction field
of A. This implies (recall the following: if S is finite type k-algebra, p ∈ Spec S
and κ(p) separable over k, then S is smooth at p over k if and only if Sp is regular)
A is smooth at (0) over K . By definition this means some principal localization of
A is smooth over K .

Proposition 1.8

A geometrically reduced group variety is smooth.

Proof. By base change, we may assume K is ACF. The set of smooth points of X is
open, and since X is geometrically reduced, the smooth locus is dense (Remark 1.7).
As above, we can define left and right translation by a point of the group variety. They
are automorphisms and so the left translation of U is also smooth. If we vary the left
translations, then we get an open cover of the group variety, proving the claim.

Remark 1.9

Suppose X is K-scheme, then clearly it is geometrically connected implies X is
connected.

Next, suppose X is of finite type and connected over K . Then we show if X
admits a K-rational point then X is geometrically connected. First, we see if X is
quasi-compact, then X is geometrically connected if and only if XK ′ is connected
for all finite separable extension K ′ of K . We will assume this fact.

Now, if K ′/K is finite separable, then we see Spec K ′ → Spec K is finite flat,
and hence universally closed and universally open at the same time. Thus XK ′ →
XK = X is open and closed, finite and flat. This means any connected component
of XK ′ surjects onto connected components of X (say Z is a connected component

4



of XK ′ , then Z ,→ XK ′ is open and closed, thus Z ,→ XK ′ → X is open and closed,
thus the image of Z is open and closed in X , hence a connected component of X ).

To conclude the proof, note we assumed X is connected, thus every connected
component surjects onto X , which means all connected components have the
same K-rational point x : Spec K → X in their image. But the base change of
this rational point xK ′ : Spec K ′ → X along Spec K ′ → Spec K is just a single
K ′-rational point, thus all the connected components of XK ′ meet at this single
K ′-rational point, i.e. XK ′ is connected.

Proposition 1.10

For a group variety G over K, the following are equivalent:

1. G is connected
2. G is geometrically connected
3. G is irreducible
4. G is geometrically irreducible

In particular, a connected complete geometrically reduced group variety over K is
abelian variety.

Proof. First, we note K-variety with at least one K-rational point is connected iff its
geometrically connected (Remark 1.9). Thus (1)⇔ (2). Every irreducible variety
is connected, so it remains to prove (2) ⇒ (4). We may assume K is ACF and G
connected. By Proposition 1.8 shows G is smooth and thus its disjoint union of its
irreducible components, i.e. G is irreducible.

Next, as you would guess, we want to study im(φ) and ker(φ) for φ : G → H
a homomorphism of group varieties. It can be shown (e.g. you can find this result
in SGA) im(φ) is a closed subgroup variety of H, but the kernel need more care. To
be exact, it will always be a scheme, but its possible to have non-reduced structure,
e.g. take G = H = Gm and φ(t) = t2, then ker(φ) = Spec k[t]/(t2 − 1), where
k[t]/(t2 − 1) is not a integral domain. However, since all our main results will only
concern varieties, we will take

ker(φ) := {x ∈ G(K) : φ(x) = εH}

which will be a closed subgroup variety of G.

Theorem 1.11: Dimension Theorem

Let φ : G→ H be a surjective homomorhpism of irreducible group varieties. Then

dim(G) = dim(H) + dim(ker(φ))
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This roughly follows from the following: if Y is Noetherian and universally catenary,
f : X → Y surjective morphism of irreducible schemes of finite type, then

dim X = dim Y + dim f −1(η)

where η is the generic point of Y . Using this, and note all fibers of φ : G → H are
isomorphic to ker(φ), we are done.

Lemma 1.12

Let R be Noetherian integral domain, A finitely generated R-algebra, and M a finitely
generated A-module. Then there is s ∈ R\{0} such that the localization Ms is free
Rs-module.

Theorem 1.13: Generic Flatness

Let f : X → Y be quasi-compact morphism locally of finite presentation and assume
Y is integral. Let F be quasi-coherent OX -module of finite presentation. Then there
is open dense U ⊆ Y such that F | f −1(U) is flat over U.

Proof. The question is local on Y , so we assume Y = Spec A is affine, where A is integral
domain. Since f is quasi-compact, we find open affine fintie cover X =

⋃

i Ui. If
we find dense open subsets U of Y as in the theorem for each Ui → Y , then their
intersection wil lsatisfy the desired conclusion for f .

Thus we may assume X = Spec B is affine, and then B is A-algebra of finite presenta-
tion, and F is quasi-coherent OX -module associated with the B-module M = Γ (X ,F )
of finite presentation. By elimination of Noetherianness, we may assume the situation
arises by base change for A0 → A, where A0 is a Noetherian subring of A, from an
analogous situation over A0. Over A0, the conclusion follows from Lemma 1.12, and
since flatness is stable under base change, we are done.

Corollary 1.13.1

Let f : X → Y be a morphism of finite type and locally of finite presentation, and
assume Y is integral. Then there is dense open U ⊆ Y such that f | f −1(U) : f −1(U)→
U is flat.

Proposition 1.14

Let φ : G → H be surjective homomorphism of irreducible group varieties. Then φ
is flat. Moreover, if dim(G) = dim(H), then φ is finite and |ker(φ)| is equal the
separable degree of the field extension K(G) over K(H).
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Proof. By generic flatness (Corollary 1.13.1), there is open dense subset U of G such
that φ|U is flat. Of course, any translate of U is as good as U . Assuming for a moment
K is ACF, we may cover G by translates of U . This proves flatness of φ. If K is not ACF,
we base change to K , and since flat satisfies fppf descent (actually fpqc descent), see
Stack Project, Tag 02YJ, we see φ is flat over K iff φK is flat.

Next, assume dim(G) = dim(H), then there is an open dense subset U ′ of H such
that φ induces a fintie map U := φ−1(U ′) → U ′ whose fibers have cardinality equal
the separable degree of K(G) over K(H). Also, this cardinality equals |ker(φ)|. Again,
we assume K is ACF to cover G by translates of U proving finiteness of φ overall, and
if K is not ACF, we can prove this by a base change as we have fppf descent.

A rational curve is a curve birational to P1
K . A variety is rationally connected if any

two points in X (K)may be connected by a rational curve over K . It follows from Con-
stancy Lemma 1.5 that abelian varieties do not contain rational curves. In particular,
a morphism X → A into abelian variety contracts the rational curves of X to points. It
follows that any morphism of a rationally connected variety, such as Pn, into abelian
variety is constant.

Proposition 1.15

Any morphism f : P1
K → G of the projective line into a group variety is constant.

Proof. Let (x0 : x1) be homogeneous coordinates on P1
K . The map P1×A1→ P1 given

by ((x0 : x1), y) 7→ (x0 : (x1+x0 y)) is a morphism. Now let f : P1→ G be a morphism,
we apply Corollary 1.5.1 to the composition

P1 ×A1 s
−→ P1 f

−→ G

and see f ◦ s factors as f (s(x , y)) = g(x)h(y) for two suitable morphisms g : P1→ G
and h : A1→ G.

We set y = 0 and note s(x , 0) = x , i.e. g(x) = f (x)h(0)−1. Thus

f (s(x , y)) = f (x)h(0)−1h(y)

Next set x =∞, we see s(∞, y) =∞ and hence

f (∞) = f (∞)h(0)−1h(y)

This shows h(y) = h(0), i.e. h is a constant map and f (s(x , y)) = f (x). Finally, take
x = 0 we see s(0, y) = y and so f (y) = f (0).
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Corollary 1.15.1

Let U ⊆ P1
K be open and A be an abelian variety. Then f : U → A is constant for any

f .

Proof. By valuative criterion of properness f extends to a morphism P1→ A.

Theorem 1.16

Let φ : X ¹¹Ë G be rational map of smooth X into group variety G and Umax the
domain of φ. Then every irreducible component of X\Umax is of codimension 1.

Corollary 1.16.1

A ratinoal map from a smooth variety to an abelian variety is a morphism.

Proof. Let φ : X ¹¹Ë A be a rational map with domain Umax. By valuative criterion of
properness, X\Umax has codimension at least 2. But then we see Umax = X by Theorem
1.16.

Our next goal is to prove the differential of multiplication on a group variety is
given by addition.

Proposition 1.17

Let m : G × G → G be multiplication of a smooth group variety G. Then the differ-
ential of m at ε is the map TG,ε ⊕ TG,ε→ TG,ε given by addition of tangent vectors.

Proof. In general we have TX×X ′,(x ,x ′) = TX ,x ⊕ TX ′,x ′ . Thus TG×G,(ε,ε) = TG,ε ⊕ TG,ε. For
∂ ∈ TG,ε, we have

dm(∂ , 0) = dm ◦ dι(∂ )

where ι : G → G × G is given by g 7→ (g,ε). Since dm ◦ dι = d(m ◦ ι), we conclude
dm(∂ , 0) = ∂ . In the same say, we prove dm(0,∂ ) = ∂ . By linearity of dm, this gives
the claim.
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Corollary 1.17.1

Let G be smooth group variety and for n ∈ Z, let [n] : G → G be the map x 7→ xn.
Then the differential of [n] at ε is the endomorphism of TG,ε given by multiplying
tangent vectors with n.

Proposition 1.18

Let G be an irreducible smooth group variety. Then the tangent bundle TG on G is a
trivial vector bundle of rank equal dim(G).

Proof. Let ∂ε ∈ TG,ε. By translation, we extend ∂ε to a vector field ∂ on G. More
precisely, let τx(y) := y x be right translation on G and ∂x( f ) = ∂ε( f ◦ τx) for any
x ∈ G and f ∈ OG,x . Standard arguments for derivatives show ∂ is a vector field on
G. Clearly, linearly independent tangent vectors in ε extends to vector fields, which
are linearly independent in every fiber.
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