Contents

1 Symmetric Functions 2
2 Quasisymmetric Functions 7
3 Asymmetric Functions 15
4 Schubert Calculus 23
5 Pipe Dreams 36
6 Kohnert's Formula 38
7 Demazure Characters 40
8 Pion\& Kion 48
9 Schubert Polynomials, Again 54
10 Grobner Bases 59
11 Pipe Dreams, Again 62

1 Symmetric Functions

This is a course on asymmetric functions, with instructor Oliver Pechenik at University of Waterloo, in Fall 2021.

The universe of this course will be $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$. In particular, in symmetric function theory, we will be looking at

$$
\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}
$$

which is the ring of invariant of S_{n}, where we use $s_{i}:=(i, i+1)$ as set of generators. In particular, we will consider three different actions of S_{n} on $\mathbb{Z}[X]$:

1. Permute the coordinate, i.e. $\pi \cdot f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$. In this case, the ring of invariant is symmetric polynomials $\operatorname{Sym}_{n}=\Lambda_{n}$.
2. Permute the coordinate only when one exponent is zero and one is not, i.e. the action of s_{i} on monomials is given by

$$
s_{i} \cdot x_{i}^{a} x_{i+1}^{b}= \begin{cases}x_{i}^{b} x_{i+1}^{a}, & \text { if } a, b \text { not both positive } \\ x_{i}^{a} x_{i+1}^{b}, & \text { otherwise }\end{cases}
$$

Then the ring of invariant is called quasi-symmetric polynomials, and its denoted by QSym_{n}.
3. The trivial action, i.e. $\pi(f)=f$ and the ring of invariant is $\mathbb{Z}[X]$, we call this asymmetric polynomials and its denoted by ASym_{n}.

It turns out that all the things we can do in symmetric functions, have its counter-part in
cohomology theory $\subseteq K$-theory \subseteq elliptic cohomology \subseteq cobordism
In this semester, we will be dealing with cohomology (of Grassmannian), K-theory, with and without the adjective "equivariant".

Remark 1.1. Some notations:

1. λ, μ, γ for partitions.
2. α, β, γ for compositions.
3. a, b, c for weak compositions.
4. $X^{\alpha}=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$.

To start with, we know Sym_{n} is \mathbb{Z}-module/ \mathbb{Q}-vector space, but its infinite dimensional. Hence, we are going to consider its graded pieces, i.e.

$$
\operatorname{Sym}_{n}=\bigoplus_{m \geq 0} \operatorname{Sym}_{n}^{(m)}
$$

where $\operatorname{Sym}_{n}^{(m)}$ contains all symmetric polynomials with homogenous degree k.
Thus, what is the dimension of $\operatorname{Sym}_{n}^{(m)}$? Well, given any monomial of degree m, we know its not in $\operatorname{Sym}_{n}^{(m)}$, since it need to be symmetric. Thus the minimal
symmetric polynomial contains the given monomial $\prod_{i=1}^{n} x_{i}^{u_{i}}$ would be, we apply all permutations to it and add it together, and for all repeating terms we only keep one of them in the sum.

This is the monomial symmetric polynomials m_{λ}, where λ is any partition. In particular, m_{λ} spans Sym_{n} and they are linearly independent, hence m_{λ} forms a basis of Sym_{n}. In particular, this implies

$$
\operatorname{dim}_{\mathbb{Z}} \operatorname{Sym}_{n}^{(m)}=\text { number of partitions of } m \text { with at most } n \text { parts }
$$

However, this is not the "good" basis. To see what would be a good basis, we consider a map of S_{n} on $\mathbb{Z}[X]$:

1. For $\pi \in S_{n}$, we have $\pi \cdot f\left(x_{1}, \ldots, x_{n}\right)=\operatorname{sgn}(\pi) f\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)$

The set (this is not a ring!) of polynomials satisfy the above condition are denoted by $V_{n} \operatorname{Sym}_{n}$, the alternating polynomials. In particular, inside this set, by setting any 2 variables equal gives us 0 .

There are two particular alternating polynomials we can look at. The first one being the Vandermonde polynomial

$$
v_{n}=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)
$$

This has the property that v_{n} divides all alternating polynomials, as if we set any 2 variables gives us 0 and hence it contains the factor $x_{i}-x_{j}$. In particular, we see for any alternating polynomial α we have

$$
\alpha(X)=v_{n}(X) \cdot g(X)
$$

where by apply permutations to the above equation we will see $g(X)$ must be symmetric.

In particular, if we consider the minimal alternating polynomial \tilde{j}_{a} containing X^{a}, then we see if a has repeated value then $\tilde{j}_{a}=0$. Thus, we might consider strict partitions, which are partitions without repeat and we get a basis for $V_{n} \operatorname{Sym}_{n}$, which are $\tilde{j_{\theta}}$ for θ run over all strict partitions.

Moreover, if we set $\delta=(n-1, n-2, \ldots, 0)$, then every strict partition looks like

$$
\theta=\delta+\lambda
$$

where λ are just any partitions. This is clearly a bijection. Hence we see

$$
\operatorname{dim}\left(V_{n} \operatorname{Sym}_{n}^{\left(m+\left(_{2}^{n}\right)\right)}\right)=\operatorname{dim} \operatorname{Sym}_{n}^{(m)}
$$

where the $\binom{n}{2}$ is given by Vandermonde polynomial v_{n}. Since the two vector spaces are isomorphic, we see by multiply/divide v_{n}, we get an explicit isomorphism between the two vector spaces.

By the isomorphism, we see the appropriate notation for \tilde{j}_{θ} should be j_{λ}, where $\theta=\delta+\lambda$.

Definition 1.2. The Schur polynomial s_{λ} is

$$
s_{\lambda}:=j_{\lambda} / v_{n}
$$

Using Schur polynomials, we can get two more bases of Sym, which are the following definition.

Definition 1.3. The complete homogenous symmetric polynomials are given by $h_{\lambda}:=\Pi s_{\lambda_{i}}$.

Definition 1.4. The elementary symmetric polynomials are given by $e_{\lambda}:=$ $\prod s_{1^{\lambda_{i}}}$ where $1^{\lambda_{i}}=111 \ldots 1$ is the partition of λ_{i} many 1 .
| Theorem 1.5 (Newton). $\left\{e_{\lambda}\right\},\left\{h_{\lambda}\right\}$ are bases of Sym.
Definition 1.6. For bases A, B of a free \mathbb{Z}-module, say A refines B if every element of B is a linear combination elements of A with non-negative integer coefficients. We use $B \rightarrow A$ to denote this.

Theorem 1.7. The Sym basis satisfy

Definition 1.8. A semistandard tableau T is a filling of the Young diagram of λ of positive integers such that the rows are weakly increasing from left to right and strictly increasing from top to bottom. This is denoted by SST or SSYT.

Theorem 1.9 (Littlewood).

$$
s_{\lambda}=\sum_{T \in \operatorname{SST}(\lambda)} x^{\mathrm{wt}(T)}
$$

where $\mathrm{wt}(T)=(\# 1 s, \# 2 s, \ldots)$.
Definition 1.10. Let V be an \mathbb{Z}-algebra with \mathbb{Z}-basis v_{1}, \ldots, v_{n}, define structure coefficients $c_{i j}^{k}$ by $v_{i} \cdot v_{j}=\sum_{k} c_{i j}^{k} v_{k}$.

We would love to have the $c_{i j}^{k}$ to be non-negative integers. In our Sym case, we have $\left\{m_{\lambda}\right\},\left\{e_{\lambda}\right\}$ and $\left\{h_{\lambda}\right\}$ to be non-negaitve integers. For e_{λ} and h_{λ} it is easy to see, e.g. $e_{\lambda} e_{\mu}=e_{\lambda \cup \mu}$ where $\lambda \cup \mu$ just means concatenating the two partitions and sort them.

Theorem 1.11 (A Littlewood-Richardson Rule). Suppose $s_{\lambda} \cdot s_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} s_{\nu}$. Then $c_{\lambda \mu}^{\nu}$ is equal the number of ballot semistandard tableaux of shape ν / λ and content μ.

Well, there are a lot of new words in the above theorem. So here goes definitions. Definition 1.12. Let ν, λ be two partitions, then ν / λ is the Young diagram of ν set minus the Young diagram of λ.

Definition 1.13. A content of a filling for a Young diagram is given by $\left(a_{1}, a_{2}, \ldots\right)$ where a_{i} means a_{i} many i 's in the filling.

Next we need to define what ballot means.
Definition 1.14. For a tableau we define the reading word as read the tableau from top to bottom, right to left. E.g.

1	1	2
2	4	

Then we call the reading word ballot, if when we read two leading words left to right, we always have seen at least as many i 's as $(i+1)$'s for all i.

Example 1.15. We compute $c_{21,21}^{321}$. Thus the skew diagram looks like

This correspond to the following three tableaux

Next we need to check ballot condition, and this rule out the last one 211. Hence $c_{21,21}^{321}=2$.

Next, we talk about little bit of K-theory.
Definition 1.16. We use $\operatorname{SV}(\lambda)$ to denote the set of set-valued semistandard tableaux, which is a filling of the Young diagram of λ by non-empty sets of positive integers, such that However we delete all but one entry of each box, we get a semistandard tableau, e.g. if we have

then we must have $\max (A) \leq \min (B)$ and $\max (A)<\min (C)$.
Definition 1.17. The symmetric β-Grothendieck polynomial is

$$
g_{\lambda}=\overline{s_{\lambda}}=\sum_{T \in \operatorname{SV}(\lambda)} \beta^{\operatorname{ex}(T)} x^{\mathrm{wt}(T)}
$$

where ex is another weight function given by $\operatorname{ex}(T)$ equal the number of extra numbers.

Example 1.18. We consider $\overline{s_{21}}\left(x_{1}, x_{2}\right)$. Then we have three set-valued semistandard tableaux

so

$$
\overline{s_{21}}=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+\beta x_{1}^{2} x_{2}^{2}
$$

where we note if we set $\beta=0$ we get s_{21} back.
Similarly we have five elements in $\operatorname{SV}(31)$, given by

A quick way to check whether we get all the $\operatorname{SV}(\lambda)$, we can compute $\overline{\bar{s}_{\lambda}}(\beta=$ $-1, x_{i}=1$), then normally the value should be 1 .

Theorem 1.19 (Pechenik-Yong). We have

$$
\overline{s_{\lambda}} \cdot \overline{s_{\mu}}=\sum_{\nu} C_{\lambda, \mu}^{\nu} \overline{s_{\nu}}
$$

where $C_{\lambda, \mu}^{\nu}$ is $\beta^{|\nu|-|\mu|-|\lambda|}$ multiply the number of ballot genomic tableaux of shape ν / λ and content μ.

This time, ν / λ is still the skew diagram, but we are going to get $|\nu| \geq|\lambda|+|\mu|$ as we are taking set values. Next, we need to explain what genomic means.
Definition 1.20. A gene of a family i in a semistandard tableau is a collection of labels i that are consecutive in left-to-right order with no two in the same row.

Definition 1.21. A genomic tableau is a semistandard tableau with a partition into genes.

The content in this case is given by (\# of 1 genes, \# of 1 genes, \ldots). For
example,

would have content $(2,1)$ as we have two 1 genes and one 2 gene.
A genotype is a choice of one box per gene. Then a genomic tableau is ballot if all the genotypes are.

2 Quasisymmetric Functions

Definition 2.1. Let $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$, then f is quasisymmetric if for all $\left(a_{1}, \ldots, a_{k}\right),\left(i_{1}<\ldots<i_{k}\right),\left(j_{1}<\ldots<j_{k}\right) \in \mathbb{Z}^{k}$, the coefficient of $x_{i_{1}}^{a_{1}} \ldots x_{i_{k}}^{a_{k}}$ is equal the coefficient of $x_{j_{1}}^{a_{1}} \ldots x_{j_{k}}^{a_{k}}$.

To start with, we can do something similar to monomial symmetric polynomials. For example, if we start with $x_{1} x_{3}^{2} \in \mathbb{Z}\left[x_{1}, x_{2}, x_{3}\right]$, then we see we must add $x_{1} x_{2}^{2}$ and $x_{2} x_{3}^{2}$ in it to make the polynomial quasisymmetric. In this case, the best index should be $x_{1} x_{2}^{2}$.

Definition 2.2.

1. A weak composition is a finite string of nonnegative integers.
2. A (strong) composition is a finite string of positive integers.
3. For a weak composition b we define the positive part of b, denoted by b^{+}, to be the composition obtained by delete all zero in b.

Definition 2.3. For every strong composition α, we define the monomial quasisymmetric polynomial $M_{\alpha}\left(x_{1}, \ldots, x_{n}\right)$ to be

$$
M_{\alpha}\left(x_{1}, \ldots, x_{n}\right)=\sum_{b} x^{b}
$$

where b range over weak compositions of length n with $b^{+}=\alpha$.

One should convince oneself M_{α} form a basis. Also, we should expect the structure coefficients to be positive.

Let α be composition with length m and β be with length n. Then $\alpha \beta$ is the composition obtained by concatenation. Next, consider a value k with $\max (m, n) \leq$ $k \leq m+n$ and a surjection $t:[m+n] \rightarrow[k]$ such that $t(i)<t(j)$ for $i<j \leq m$ or $m<i<j$.

For the choice of k and $t:[m+n] \rightarrow[k]$, we get the corresponding overlapping shuffle of α, β is $\gamma(t)$ given by $\gamma_{i}=\sum_{t(j)=i}(\alpha \beta)_{j}$. We write $\alpha \amalg_{o} \beta$ for the formal $\operatorname{sum} \sum_{k, t} \gamma(t)$.

Example 2.4. We have $(2) \amalg_{0}(1,2)=(2,1,2)+2(1,2,2)+(3,2)+(1,4)$.
Theorem 2.5 (Hazewinkel).

$$
M_{\alpha} \cdot M_{\beta}=\sum_{\gamma} c_{\alpha \beta}^{\gamma} M_{\gamma}
$$

where $c_{\alpha \beta}^{\gamma}$ is multiplicity of γ in $\alpha \amalg_{0} \beta$.
Example 2.6. For example, we should have $M_{2} M_{12}=M_{212}+2 M_{122}+M_{32}+M_{14}$. One can indeed verify by direct computation.

Definition 2.7. Say β refines α if α can be obtained from β by summing consecutive entries and we write $\beta \vDash \alpha$.

Example 2.8. We see $(1,2,1) \vDash(1,3)$ and $(1,2,1) \vDash(3,1)$ but $(2,1,1) \not \vDash(1,3)$.

Definition 2.9. The fundamental quasisymmetric polynomials

$$
F_{\alpha}\left(x_{1}, \ldots, x_{n}\right)=\sum_{b} x^{b}
$$

ranging over weak compositions of length n with $b^{+} \vDash \alpha$.
Example 2.10. We see

$$
F_{13}\left(x_{1}, x_{2}, x_{3}\right)=x^{130}+x^{103}+x^{013}+x^{112}+x^{121}=M_{13}+M_{112}+M_{121}
$$

Theorem 2.11. The M_{α} basis refines the F_{α} basis, i.e. $\left\{F_{\alpha}\right\} \rightarrow\left\{M_{\alpha}\right\}$. In particular, $F_{\alpha}=\sum_{\beta \vDash \alpha} M_{\beta}$.

The remarkable thing is F_{α} also have positive structure coefficients.
Definition 2.12. Let A, B be two words on disjoint alphabets \mathcal{A}, \mathcal{B}, then a shuffle of A, B is a permutation of $A B$ such that the subword on \mathcal{A} is A and on \mathcal{B} is B.

In other word, if $|A|=m,|B|=n$, then shuffle is bijection $s:[m+n] \rightarrow[m+n]$ such that $s(i)<s(j)$ when $i<j \leq m$ or $m \leq i<j$.

Now let α, β be two compositions.
Set \mathcal{A} be the alphabet of odd integers and \mathcal{B} the even integers.
Then we define A to be α_{1} copies of $2 \ell(\alpha)-1, \alpha_{2}$ copies of $2 \ell(\alpha)-3, \ldots, \alpha_{\ell(\alpha)}$ copies of 1 . For example, if $\alpha=(2,1,3,4)$ then A should be 7753331111 .

Similarly we define B to be β_{1} copies of $2 \ell(\beta), \beta_{2}$ copies of $2 \ell(\beta)-2, \ldots, \beta_{\ell(\beta)}$ copies of 2 . For example, if $\beta=(2,1,3,4)$ then B is 8864442222 .

Then let $A_{ш} B$ be the set of shuffles of A and B. Note $\left|A_{ш} B\right|=\binom{|\alpha|+|\beta|}{|\alpha|}$.
For $C \in A_{ш} B$, we break C into maximal runs of weakly increasing entries. The descent composition $\operatorname{des}(C)$ has $\operatorname{des}(C)_{i}$ equal the length of the i th run.

Definition 2.13. The shuffle product (due to Eilenberg and MacLane) is the formal sum $\alpha ш \beta=\sum_{C \epsilon A ш B} \operatorname{des}(C)$.

Example 2.14. Let $\alpha=(2), \beta=(1,2)$, then $A=11$ and $B=422$. Then we have

$$
\begin{aligned}
& A_{\text {ш }} B \\
& =4|22| 11+4|2| 12|1+4| 122|1+14| 22 \mid 1 \\
& \quad+4|2| 112+4|12| 12+14|2| 12+4|1122+14| 122+114 \mid 22
\end{aligned}
$$

and so

$$
\alpha_{\amalg} \beta=122+1121+131+221+113+122+212+14+23+32
$$

Theorem 2.15.

$$
F_{\alpha} \cdot F_{\beta}=\sum_{\gamma} C_{\alpha \beta}^{\gamma} F_{\gamma}
$$

where $c_{\alpha \beta}^{\gamma}$ is the multiplicity of γ into the shuffle product $\alpha ш \beta$.
Example 2.16. If we have four variables, then $F_{2} F_{12}=2 F_{122}+F_{1121}+F_{131}+$ $F_{221}+F_{113}+F_{212}+F_{14}+F_{23}+F_{32}$.

Now recall the symmetric group has generators $s_{i}=(i, i+1)$ with $1 \leq i \leq n-1$ with relations:

1. $s_{i}^{2}=\mathrm{Id}$
2. $s_{i} s_{j}=s_{j} s_{i}$ if $|i-j| \geq 2$
3. $s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$

This is all the relations of S_{n}, and from this we get a similar definition. Then the representations of S_{n} correspond to symmetric polynomials (this map is called the Frobenius map), and irreducible representations correspond to Schur polynomials.

Definition 2.17. The 0 -Hecke algebra has generators τ_{i} for $1 \leq i \leq n-1$ with relations:

1. $\tau_{i} \tau_{j}=\tau_{j} \tau_{i}$ if $|i-j| \geq 2$
2. $\tau_{i} \tau_{i+1} \tau_{i}=\tau_{i+1} \tau_{i} \tau_{i+1}$
3. $\tau_{i}^{2}=\tau_{i}$

In the case of 0-Hecke algebra, representations of 0-Hecke algebra correspond to quasisymmetric polynomials, and irreducible representations (they are all 1-dimensional) correspond to F_{α}. However, in this case we can get indecomposable representations of dimension greater than 1 .

Last time we learned M_{α} and F_{α}. Today we will talk about quasisymmetric Schur polynomials (or quasiSchur polynomial) due to Haglund, Luoto, Mason, Van Willigenburg in 2011.

The combinatorial structure of this will be weird, but they actually come from specialization of MacDonald polynomials.

First, if we have a weak composition, we can still make a Young diagram associated with it, e.g. if we have $(4,3,0,7,1)$ then the diagram is

In some convention, we will also add a "basement" at column 0 .
Definition 2.18. A composition tableau of shape a is an assignment of positive integers to the cells of the Young diagram of weak composition a.

Definition 2.19. A triple of boxes is a set of 3 boxes in the configuration

where at left the upper row weakly longer and at the right the upper row strictly shorter.

A triple is inversion if, when we label the above triple by the following

we don't have $X \leq Y \leq Z$.
Definition 2.20. A composition tableau is semistandard if:

1. entries don't repeat in a column.
2. rows weakly decrease left to right.
3. every triple is inversion.
4. entries in the first column (not the basement) equal the row indices.

Definition 2.21. For a weak composition a, write $\mathfrak{A S S T}(a)$ for the set of semistandard tableau of shape a. Then we define the Demazure atom

$$
\mathfrak{A}_{a}=\sum_{T \in \mathfrak{A S S T}(a)} x^{\mathrm{wt}(a)}
$$

Definition 2.22. The quasiSchur polynomial

$$
S_{\alpha}\left(x_{1}, \ldots, x_{n}\right)=\sum_{a^{+}=\alpha} \mathfrak{A}_{a}=\sum_{a^{+}=\alpha} \sum_{T \in \mathfrak{A S S T}(a)} x^{\operatorname{wt}(T)}
$$

where the latter sum is over weak composition of length n.

Example 2.23.

$$
S_{13}\left(x_{1}, x_{2}, x_{3}\right)=\mathfrak{A}_{013}+\mathfrak{A}_{103}+\mathfrak{A}_{130}
$$

Next we need to find each Demazure atoms.
We start with 130 , which have the shape

By rule 4 of semistandard composition tableau, we see we must have

1		
2		

But by rule 2 we see we already don't have much choice. Next, we see we only have one triple, which is the one contains 1 and 2 . Since we don't want $X \leq Y \leq Z$, hence we must have

1		
2	2	

and the last box can be both 1 or 2 . Thus we end up with the following

Next, we consider 103. The shape is

1

With similar argument, we see we have five possibilities here:

For 013, it is also similar and we get

Thus, we see their corresponding generating function would be

$$
\begin{aligned}
S_{13}\left(x_{1}, x_{2}, x_{3}\right)= & \left(x_{1} x_{2}^{3}+x_{1}^{2} x_{2}^{2}\right) \\
& +\left(x_{1} x_{3}^{3}+x_{1} x_{2} x_{3}^{2}+x_{1}^{2} x_{3}^{2}+x_{1} x_{2}^{2} x_{3}+x_{1}^{2} x_{2} x_{3}\right) \\
& +\left(x_{2} x_{3}^{3}+x_{2}^{2} x_{3}^{2}+x_{1} x_{2} x_{3}^{2}\right)
\end{aligned}
$$

which is indeed quasisymmetric.
Theorem 2.24. $S_{\alpha} \in$ QSym

Proof. We want to show S_{α} is invariant under $x_{i} \leftrightarrow x_{i+1}$ in monomial that without both x_{i} and x_{i+1}.

Let $X_{\alpha, i}$ is equal the semistandard tableaux of shape a with $a^{+}=\alpha$ and i not appearing.

Define $\phi: X_{\alpha, i+1} \rightarrow X_{\alpha, i}$ by replacing all i 's with ($i+1$)'s and moving row i into row $i+1$.

Thus we want to check the map is well-defined and land in $X_{\alpha, i}$, and the inverse map. Thus we look at the four conditions in definition of semistandard composition tableaux:

1. (1) is clearly satisfied.
2. (2) is fine as well, as we see if we have (a, i, b) in a row, then since we don't have $i+1$ we have $a>i+1$ and so $a \geq i+1$ and we don't care about b. Hence (2) is satisfied.
3. (3) is fine if you think about it as it only depend on relative order.
4. (4) is clearly satisfied.

By the same reasoning, we see the inverse map is also well-defined, thus we are done the proof.

Proposition 2.25. The m_{λ} expand positively in the M_{α} basis in QSym, i.e.

$$
m_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\operatorname{sort}(\alpha)=\lambda} M_{\alpha}\left(x_{1}, \ldots, x_{n}\right)
$$

Theorem 2.26. The s_{λ} expand positively in the S_{α} basis. In particular we have $s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\text {sort }(\alpha)=\lambda} S_{\alpha}\left(x_{1}, \ldots, x_{n}\right)$

Theorem 2.27. We have

Example 2.28. We continue the example and try to expand s_{31} using S_{α}. Well, we already know $S_{13}\left(x_{1}, x_{2}, x_{3}\right)$, and next we compute $S_{31}=\mathfrak{A}_{310}+\mathfrak{A}_{301}+\mathfrak{A}_{031}$. For 310, we get

1	1	1
2		

and for 301 we get

3
and 031 we have three:

Sum together we get

$$
S_{31}\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}^{2} x_{2}\right)+\left(x_{1}^{3} x_{3}\right)+\left(x_{2}^{3} x_{3}+x_{1} x_{2}^{2} x_{3}+x_{1}^{2} x_{2} x_{3}\right)
$$

Now we add $S_{13}\left(x_{1}, x_{2}, x_{3}\right)$ and $S_{31}\left(x_{1}, x_{2}, x_{3}\right)$.
Theorem 2.29. $\left\{S_{\alpha}\left(x_{1}, \ldots, x_{n}\right)\right\}$ is a basis of QSym_{n}.

Proof. Take the reverse lexicographic order on monomial, i.e. $x^{a}<x^{b}$ iff $b-a$ has rightmost non-zero entry is positive.

Notice $\mathfrak{A}_{a}=x^{a}+$ smaller stuff, so

$$
S_{\alpha}=x^{0^{n-\ell(\alpha)} \alpha}+\text { smaller stuff }
$$

where $0^{n-\ell(\alpha)} \alpha$ is concatenating a bunch of 0 in front then put α at the end. This immediately tell us S_{α} is linearly independent (since each α would have a unique $0^{n-\ell(\alpha)} \alpha$) and spanning (since each monomial quasisymmetric must contain one of $x^{\left.0^{n-\ell(\alpha)} \alpha\right)}$.

Last time we were talking about quasiSchur polynomials, and we proved they
are quasisymmetric and form a basis. In the refinment diagram

we know four of the five arrows, and we are only missing $\left\{S_{\alpha}\right\} \rightarrow\left\{F_{\alpha}\right\}$. However, we also want to know the arrows between $\left\{s_{\lambda}\right\}$ and $\left\{F_{\alpha}\right\}$, i.e. we want to know the dash arrow in the following:

Well, before this, we study $\left\{S_{\alpha}\right\} \rightarrow\left\{F_{\alpha}\right\}$.
Definition 2.30. We say T is initial if the integers i appearing in T are an initial segment of \mathbb{Z}^{+}.

Example 2.31. We reuse the example of S_{13}. We see the following are initial:

1		
2	2	2

1		
2	2	1

Definition 2.32. We say T is quasi-Yamanouchi (qY) if, for all $i \in T$, either i appears in column 1 or there is an $i+1$ weakly right ${ }^{1}$ of an i.

Example 2.33. The following are qY:

Theorem 2.34.

$$
S_{\alpha}=\sum_{T} F_{\mathrm{wt}(T)}
$$

where the T is summing over all $T \in \bigcup_{a^{+}=\alpha} \mathfrak{A} \operatorname{SST}(a)$ such that T is initial and quasi-Yamanouchi.

[^0]Since we know F_{α} correspond to 1-dimensional irreducible representation of the 0 -Hecke algebra, and S_{α} expand positively in F_{α}, each S_{α} is quasisymmetric Frobenius characters of some 0 -Hecke module.

In particular, if

$$
S_{\alpha}=\sum_{\beta} c_{\alpha}^{\beta} F_{\beta}
$$

then S_{α} corresponds to $\oplus_{\beta} c_{\alpha}^{\beta} I_{\beta}$, where I_{β} 's are irreducible representations.
However, this is boring, and we can do better. By Tewar and van Willigenburg (2015), we get a 0 -Hecke module structure on the formal span of the $\mathfrak{A S S T}$, but this is still not indecomposable. Thus, it is still an open problem to find an indecomposable module for S_{α}.

There is another sad thing. The S_{α} basis does not have positive structure constant. But, we have a weaker thing is true, that is, $s_{\lambda} \cdot S_{\alpha}$ is positive in quasiSchur (due to Haglund, Luoto, Mason, van Willigenburg). We will later find that, this seems always be the case, i.e. when we have a basis, even it may not have positive structure coefficient, but if you multiply with s_{λ}, its always positive.

Finally, we note the QSym bases have K-analogs:

1. The multi-monomial: $\overline{M_{\alpha}}=M_{\alpha}+$ higher terms.
2. The multi-fundamental: $\overline{F_{\alpha}}=F_{\alpha}+$ higher terms.
3. The quasiGrothendieck: $\overline{S_{\alpha}}=S_{\alpha}+$ higher terms.

The first two are due to Lam and Pylyavskyy in 2007 and the third one is due to Monical in 2016.

3 Asymmetric Functions

This is going to be the end of quasisymmetric polynomials, and we are going to move on to asymmetric.

Now lets talk about ASym $=\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$. The most trivial basis of ASym is of course just given by all the oridinary monomials $x^{a}=\mathfrak{X}_{a}$ with a range over all weak composition. Thus $\operatorname{dim} \operatorname{ASym}_{n}^{(m)}$ (n variables and m degree homogenous) is equal the number of weak compositions of m with length n.

But it more traditional to label some of our bases by permutations. Here is how we going to translate between weak compositions and permutations.

Definition 3.1. For $\pi \in S_{n}$, let $a_{i}=\#\{j: j>i, \pi(j)<\pi(i)\}$, then we define $\operatorname{invcode}(\pi)=\left(a_{1}, \ldots, a_{n}\right)$, which is called the Lehmer code.

We note $a_{i} \leq n-i$ and $a_{n}=0$. If we sum over the Lehmer code, we get the number of inversions, i.e. $\sum a_{i}=\operatorname{inv}(\pi)$, which is also called the coxeter length.

Example 3.2. If $\pi=2413$, then $a_{1}=1, a_{2}=2, a_{3}=0, a_{4}=0$. There is a visual way to compute the Lehmer code as follows:

To get this, we first draw n by n grid, then at 1 th row we place a laser gun at the $\pi(1)$ th column, and so on. Then laser gun destory all the things at the right and down. Then we count whats left. The above white boxes diagram (not the entire grid!) is called a Rothe diagram of π and is denoted by $D(\pi)$.

We note:

1. $D\left(\pi^{-1}\right)$ is equal the transpose of $D(\pi)$ as the lasers are symmetric.
2. $D(\pi)$ has northwest property, that is, if we have

and $A, B \in D(\pi)$ then $C \in D(\pi)$.
Definition 3.3. The rank function $r(i, j)$ of a cell $(i, j) \in[n] \times[n]$ is equal the number of "lasers"/"dots" weakly northwest of (i, j). We note $r(i, j)=$ $\#\{k \leq i: \pi(k) \leq j\}$.

Example 3.4. If $\pi=2413$ then the rank functions are given by

0	1	1	1
0	1	1	2
1	2	2	3
1	2	3	4

Definition 3.5 (Fulton). The essential set of $D(\pi)$ is the maximally southeast boxes of each connected component of $D(\pi)$, i.e. $\operatorname{Ess}(\pi)=\{(i, j) \in D(\pi)$: $(i+1, j) \notin D(\pi),(i, j+1) \notin D(\pi)\}$.

Proposition 3.6. $\pi \in S_{n}$ is determined by its Lehmer code, its Rothe diagram, or the restriction of its rank function to $\operatorname{Ess}(\pi)$.

Proof. From invcode $(\pi)=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, we recursively reconstruct π. We see we must have $\pi(1)=a_{1}+1$. Suppose we have determined $\pi(1), \ldots, \pi(k)$, then $\pi(k+1)$ is the $\left(a_{k+1}+1\right)$ th smallest element of $[n] \backslash\{\pi(1), \ldots, \pi(k)\}$. Similarly if we know its Rothe diagram, then we get its Lehmer code and we are done.

Now suppose we only know $\operatorname{Ess}(\pi)$ and the rank function on it.
If there is no $b \in \operatorname{Ess}(\pi)$ with $r(b)=0$, then $\pi(1)=1$. Otherwise, let $(i, j) \in$ $\operatorname{Ess}(\pi)$ be the rightmost with $r(i, j)=0$. Then $\pi(1)=j+1$. Now suppose we $\pi(1), \ldots, \pi(k)$ are known. Look at boxes $(i, j) \in \operatorname{Ess}(\pi)$ with $i \geq k+1$ such that $r(i, j)=r(k, j)$ where $r(k, j)$ is determined by $\pi(1), \ldots, \pi(k)$ which we already know. Then $\pi(k+1)$ must be the smallest unused value strictly right of these boxes.

Last time we showed we only need some partial data to construct the permutation back. Today we start with some examples.

Example 3.7. First, we show that with only the essential set and not the rank function, it is not enough. The following two diagrams

$$
\pi=1324 \text {, }
$$

$$
\varepsilon=3412
$$

both have the same essential set, but we could not tell they are different if we do not have the rank function.

Example 3.8. Second, we consider a large enough example to illustrate the construction using essential set:

One should try to work this out and see we indeed only have one way to do this.
Now recall S_{n} is generated by s_{1}, \ldots, s_{n-1} where s_{i} swap i and $i+1$ with relations:

1. $s_{i}^{2}=1$
2. $s_{i} s_{j}=s_{j} s_{i}$ for $|i-j| \geq 2$
3. $s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$

In this course, we set conventions that, if we have a sequence of integers, then act from the right we swap the position, and act from the left we swap the values. For example, we have

$$
3741652 \cdot s_{4}=3746152 \quad s_{4} \cdot 3741652=3751642
$$

Suppose I write $\omega \in S_{n}$ as a product of s_{i}, how many factors do I need? Well, the minimal value we need is $\operatorname{inv}(\omega)$.

Definition 3.9. If $\omega=s_{i_{1}} s_{i_{2}} \ldots s_{i_{k}}$ with $k=\operatorname{inv}(\omega)$, then we call this a reduced expression and $i_{1} i_{2} \ldots i_{k}$ is a reduced word. We write $R(\omega)$ equal the set of all reduced words.

Next, we define some partial orders on S_{n} :

1. Right weak order: we say $\mu<_{R} u s_{i}$ if $\operatorname{inv}\left(u s_{i}\right)=\operatorname{inv}(u)+1$
2. Left weak order: we say $\mu \lessdot_{R} s_{i} u$ if $\operatorname{inv}\left(s_{i} u\right)=\operatorname{inv}(u)+1$.
3. 2 -sided weak order: union of left and right weak order.
4. Strong/Bruhat order: Let $t_{i, j} \in S_{n}$ be swap i and j, then $u \lessdot u t_{i, j}$ if $\operatorname{inv}\left(u t_{i, j}\right)=$ $\operatorname{inv}(u)+1$.

Example 3.10. The following is the right and left weak orders, where L and R indicates we apply the action to left or right.

We also want to build a graph on the reduced words of ω with edges corresponding to commutation (i.e. $s_{i} s_{j}=s_{j} s_{i}$) and braids (i.e. $s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$).

Example 3.11. Say we have $\omega=31542 \in S_{5}$, then one reduced word is 42341. The complete list is given by

$$
[2,3,4,3,1],[4,2,3,4,1],[2,4,3,4,1],[2,3,4,1,3],[2,3,1,4,3]
$$

$$
[2,1,3,4,3],[4,2,3,1,4],[2,4,3,1,4],[4,2,1,3,4],[2,4,1,3,4],[2,1,4,3,4]
$$

Now start with this word 42341, we use try to draw the graph as (one edge means commutation and double edge means braid):

We see this is actually all the reduced words. We define this graph as $\mathcal{G}(\omega)$.
Remark 3.12. It is a open problem that to give a short elementary proof to the fact $\mathcal{G}(\omega)$ is bipartite.

Theorem 3.13. For all $\omega \in S_{n}$, the graph $\mathcal{G}(\omega)$ is connected.

Proof. We will prove this after some lemmas.

Lemma 3.14. Suppose $i_{1}, i_{2}, \ldots, i_{\ell} \in R(\omega)$. Then the inversion of ω are

$$
I(\omega)=\left\{s_{i_{\ell} \ldots} \ldots s_{i_{h+1}}\left(i_{h}, i_{h}+1\right): 1 \leq h \leq \ell\right\}
$$

Proof. First we consider an example. Say $\omega=31542$, and we have $2343 \in R(\omega)$. Then say $h=1$, and we have $s_{1} s_{3} s_{4} s_{3}(2,3)=(1,5)$, which is indeed an inversion if we look at the 1 th entry in ω and the 5 th entry in ω. Next, say $h=2$, then we get $s_{1} s_{3} s_{4}(3,4)=(4,5)$, which is indeed an inversion. If $h=3$ then we have $s_{1} s_{3}(4,5)=(3,5)$ and $h=4$ we have $s_{1}(3,4)=(3,4)$. Last, we see $h=5$ then $(1,2)$ is indeed an inversion.

Next, we can do this all over again with another reduced word $42134 \in R(\omega)$. This time, we get

$$
\begin{gathered}
h=1 \Rightarrow s_{4} s_{2} s_{1} s_{3}(4,5)=(3,5) \\
h=2 \Rightarrow s_{4} s_{2} s_{1}(2,3)=(1,5) \\
h=3 \Rightarrow s_{4} s_{2}(1,2)=(1,2) \\
h=4 \Rightarrow s_{4}(3,4)=(3,5) \\
h=5 \Rightarrow(4,5)
\end{gathered}
$$

Now we consider the actual proof. We use induction on the coxeter length. Clearly this holds for the identity (with coxeter length 0). Suppose $\operatorname{inv}\left(u s_{m}\right)=$ $\operatorname{inv}(u)+1$, then $I\left(u s_{m}\right)=\{(m, m+1)\} \cup s_{m} I_{u}$, which the induction follows. \odot

Lemma 3.15 (Exchange Lemma). Suppose $i_{1} \ldots i_{\ell}, j_{1} \ldots j_{\ell} \in R(w)$. Then there exists k such that $j_{1} i_{1} \ldots \hat{k_{k}} \ldots i_{\ell}$ is a reduced word.

Proof. By the above lemma for w^{-1} with $j_{1} \ldots j_{\ell}$, we see $\left(j_{1}, j_{1}+1\right)$ is an inversion for ω^{-1}, and there is some k such that $\left(j_{1}, j_{1}+1\right)=s_{i_{1}} \ldots s_{i_{k-1}}\left(i_{k}, i_{k}+1\right)$ if we use the above lemma for w^{-1} with $i_{1} \ldots i_{\ell}$. So $s_{i+1} \ldots s_{i_{k-1}}=s_{i_{1} \ldots s_{i_{k-1}}}$ and hence by the above equality about $\left(j_{1}, j_{1}+1\right)=s_{i_{1}} \ldots s_{i_{k-1}}\left(i_{k}, i_{k}+1\right)$, we see we must have

$$
s_{j_{1}} s_{i_{1}} \ldots s_{i_{k-1}}=s_{i_{1} \ldots} \ldots s_{i_{k-1}} s_{k}
$$

At this point we are done, if we just append $s_{i_{k+1}} \ldots s_{i_{\ell}}$ at the end.
Theorem 3.16. For all $w \in S_{n}$, the graph $\mathcal{G}(w)$ of reduced words is connected.

Proof. By induction on coxeter length of w. If the coxeter length is 0 or 1 we are done. Let $i_{1} \ldots i_{\ell}, j_{1} \ldots j_{\ell}$ be two reduced words. By Exchange Lemma, we see $j_{1} i_{1} \ldots \hat{i_{k}} \ldots i_{\ell}$ is a reduced word.

Case 1: Say $k \neq \ell$, then by induction, if we forget i_{ℓ} in both the words $i_{1} \ldots i_{\ell}$ and $j_{1} i_{1} \ldots \hat{i_{k}} \ldots i_{\ell}$, we get a path. However, this can also be lifted to a path from $i_{1} \ldots i_{\ell}$ to $j_{1} i_{1} \ldots \hat{i_{k}} \ldots i_{\ell}$. Next, by forget j_{1} in both $j_{1} \ldots j_{\ell}$ and $j_{1} i_{1} \ldots \hat{i_{k}} \ldots i_{\ell}$, we get a path from the two and hence a path from $i_{1} \ldots i_{\ell}$ and $j_{1} \ldots j_{\ell}$.

Case 2: Say $k=\ell$. Then we see $j_{1} i_{1} \ldots \hat{i_{k}} \ldots i_{\ell}=j_{1} i_{1} \ldots i_{\ell-1}$.
Case 2.1: If $\left|i_{1}-j_{1}\right|>1$. Then we see $i_{1} j_{1} i_{2} \ldots i_{\ell-1}$ is also a reduced word, but now we can forget i_{1} and get a path from $i_{1} j_{1} \ldots i_{\ell-1}$ and $i_{1} \ldots i_{\ell}$. On the other hand, we get a path from $j_{1} i_{1} \ldots i_{\ell-1}$ and $j_{1} \ldots j_{\ell}$ by induction.

Case 2.2: If $\left|i_{1}-j_{1}\right|=1$. Then we see, if we apply Exchange lemma again on $j_{1} i_{1} \ldots i_{\ell-1}$ with $i_{1} \ldots i_{\ell}$, we would get $i_{1} j_{1} i_{1} i_{2} \ldots \hat{i_{h}} \ldots i_{\ell-1}$, which is a reduced word with a path to $i_{1} \ldots i_{\ell}$. But then $i_{1} j_{1} i_{1} i_{2} \ldots \hat{i_{h}} \ldots i_{\ell-1}$ has a path to (using braid relation) $j_{1} i_{1} j_{1} \ldots i_{\ell-1}$, which using induction has a path to $j_{1} \ldots j_{\ell}$. Hence together we get a path between $i_{1} \ldots i_{\ell}$ and $j_{1} \ldots j_{\ell}$.

With this get out of the way, we can now finally define what is Schubert polynomials.

Definition 3.17. The i th divided difference operator ∂_{i} on $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ is

$$
\partial_{i}(f)=\frac{f-s_{i} \cdot f}{x_{i}-x_{i+1}}
$$

We observe:

1. $\partial_{i}(f)$ is symmetric in x_{i} and x_{i+1}.
2. If f is symmetric in x_{i} and x_{i+1} then $\partial_{i}(f)=0$.
3. Thus, we see $\partial_{i}^{2}(f)=0$.
4. If f is homogenous of degree d, then $\partial_{i}(f)=0$ or $\partial_{i}(f)$ is homogenous of degree $d-1$.
5. If $|i-j| \geq 2$ then

$$
\partial_{j} \partial_{i}(f)=\partial_{j}\left(\frac{f-s_{i} f}{x_{i}-x_{i+1}}\right)=\frac{f-s_{i} f-s_{j} f+s_{j} s_{i} f}{\left(x_{i}-x_{i-1}\right)\left(x_{j}-x_{j+1}\right)}=\partial_{i} \partial_{j}(f)
$$

as $s_{j} s_{i}=s_{i} s_{j}$.
6. If $|i-j|=1$, then

$$
\partial_{i} \partial_{i+1} \partial_{i}(f)=\partial_{i+1} \partial_{i} \partial_{i+1}(f)
$$

Definition 3.18. For $w \in S_{n}$ with reduced word $r=r_{1} \ldots r_{\operatorname{inv}(w)} \in R(w)$, we define

$$
\partial_{w}:=\partial_{r_{1}} \partial_{r_{2}} \ldots \partial_{r_{\operatorname{inv}(w)}}
$$

| Proposition 3.19. ∂_{w} is well-defined.

Proof. The $\mathcal{G}(w)$ is connected, hence we are done as they commute when far apart, and braid when they are close. Thus, we can take any reduced words and still get the same ∂_{w}.

Definition 3.20. For $w_{0}=n(n-1)(n-2) \ldots 21$, the Schubert polynomial for w_{0} is

$$
\mathfrak{S}_{w_{0}}=x_{1}^{n-1} x_{2}^{n-2} \ldots x_{n}^{0}=\mathfrak{X}_{\text {invcode }\left(w_{0}\right)}
$$

If we have permutation w and suppose we know \mathfrak{S}_{w} with $w(i)>w(i+1)$, then the Schubert polynomial for $w s_{i}$ is given by

$$
\mathfrak{S}_{w s_{i}}=\partial_{i}\left(\mathfrak{S}_{w}\right)
$$

In other word, for any permutation w, we have

$$
\mathfrak{S}_{w}=\partial_{w^{-1} w_{0}} \mathfrak{S}_{w_{0}}
$$

Example 3.21. Say we have the right weak order on S_{3}

If we follow the edge, we see $\mathfrak{S}_{321}=x_{1}^{2} x_{2}$. Hit it with ∂_{2}, we get $\mathfrak{S}_{312}=x_{1}^{2}$. Hit \mathfrak{S}_{312} with ∂_{1} we obtain $\mathfrak{S}_{132}=x_{1}+x_{2}$. Finally, $\mathfrak{S}_{123}=1$. The other side is similar.

Definition 3.22. The nilHecke algebra N_{n} has generators h_{1}, \ldots, h_{n-1} with relations $h_{i} h_{j}=h_{j} h_{i}$ for $|i-j| \geq 2, h_{i} h_{i+1} h_{i}=h_{i+1} h_{i} h_{i+1}$ and $h_{i}^{2}=0$.

We observe that:

1. The operators ∂_{i} gives a representation of N_{n} on $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$.
2. So do $\left\{\overline{\partial_{i}}\right\}$ defined by

$$
\bar{\partial}(f)=\partial_{i}\left(\left(1+\beta x_{i+1}\right) f\right)
$$

In particular, note $\overline{\partial_{w}}$ is also well-defined.
3. We can define Grothendieck polynomials by $\overline{\mathfrak{S}}_{w}=\overline{\partial_{w^{-1} w_{0}}} \mathfrak{S}_{w_{0}}$. In particular, $\overline{\mathfrak{S}_{w_{0}}}=\mathfrak{S}_{w_{0}}$.
4. $\mathfrak{S}_{w}=\overline{\mathfrak{S}}_{w}(\beta=0)$.
5. We can also define π_{i} by $\pi_{i}(f)=\partial\left(x_{i} f\right)$ is called isobaric divided difference operators. This no longer give a representation of N_{n}, but the 0 -Hecke algebra H_{0} on $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$.
6. So do $\overline{\pi_{i}}$ by

$$
\overline{\pi_{i}}(f)=\pi_{i}\left(\left(1+\beta x_{i+1}\right) f\right)
$$

7. Set

$$
\mathfrak{S}_{w_{0}}\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}\right)=\prod_{i+j \leq n}\left(x-i-y_{j}\right)
$$

We note we can recover $\mathfrak{S}_{w_{0}}(x)$ by setting all y in $\mathscr{F}_{w_{0}}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ equal 0 . If $w(i)>w(i+1)$ then we inductively define

$$
\mathfrak{S}_{w s_{i}}(x ; y)=\partial_{i} \mathfrak{S}_{w}(x ; y)
$$

where our ∂_{i} consider y as constant. These are double Schubert polynomials.

4 Schubert Calculus

The next topic is Schubert varieties.
Definition 4.1. A (complete) flag is a chain/nested collection of vector subspaces

$$
V_{\bullet}: 0=V_{0} \mp V_{1} \mp V_{2} \mp \ldots \mp V_{n}=\mathbb{C}^{n}
$$

We use $F \ell_{n}$ to denote the set of complete flags in \mathbb{C}^{n}.

Clearly for each basis v_{1}, \ldots, v_{n} we get a flag $V_{k}=\left\langle v_{1}, \ldots, v_{n}\right\rangle$. Thus if we take the standard basis, we get the standard flag $\left\langle e_{1}, \ldots, e_{n}\right\rangle$. On the other hand, we can also read it backward, i.e. the flag $\left\langle e_{n}, e_{n-1}, \ldots, e_{1}\right\rangle$.

Now we have the space of flags, we want to put some geometry on it. There are few ways to do this.

First, we note $\mathrm{GL}_{n}(\mathbb{C})$ has an action on $F \ell_{n}$. We see it only have one orbit. Moreover, if we have V_{\bullet} and V_{\bullet}^{\prime}, then $\operatorname{Stab}\left(V_{\bullet}^{\prime}\right)$ is isomorphic to $\operatorname{Stab}\left(V_{\bullet}\right)$ by conjugation.
Definition 4.2. If $B \leq \mathrm{GL}_{n}(\mathbb{C})$ is $\operatorname{Stab}\left(V_{\bullet}\right)$ for some $V_{\bullet} \in F \ell_{n}$, then B is called a Borel subgroup.

We note that there is a one to one correspondence between $F \ell_{n}$ and the set of Borel subgroups.

Now, what is the stablizer of the standard flag E ? Well, we want V_{0} to be fixed, hence the first column of the matrix to be $(*, 0, \ldots, 0)^{T}$. In particular, it is not hard to see, $\operatorname{Stab}(E)$ is the collection of upper triangular invertible matrices. Hence, we get a bijection between $F \ell_{n}$ and $\mathrm{GL}_{n}(\mathbb{C}) / B$.

Last time, we saw $\mathrm{F} \ell_{n}$ is in one-to-one correspondence between GL_{n} / B, where GL_{n} / B is a quotient of topological spaces, hence we get geometry out of $\mathrm{F} \ell_{n}$.

This gives $\mathrm{F} \ell_{n}$ the structure of a smooth projective complex algebraic variety of dimension $\binom{n}{2}=n^{2}-\binom{n+1}{2}$. This is exactly the number of inversions of $n(n-1)(n-$ 2)... 21 .

Here is another way to think about this variety.
How to specify a flag? Give an ordered basis is the same as give an $n \times n$ invertible matrix, where the basis is just the rows in order from top to bottom.

Clearly this is not unique, so which matrices give the same flag? Well, things that differ by downward row operations, i.e. left action of lower triangular matrices give the same flag. Thus, $\mathrm{F} \ell_{n}=B_{-} \backslash \mathrm{GL}_{n}$, where we act the set of lower triangular matrices on the left of GL_{n}.

Definition 4.3. A Borel subgroup of GL_{n} is a maximal connected solvable subgroup.

Definition 4.4. Let $T \subseteq \mathrm{GL}_{n}$ be the maximal algebraic torus of diagonal matrices.

We have an action of T on $\mathrm{F} \ell_{n}$ given by scaling the columns. What are the fixed points? Well, the identity, and actually all permutation matrices, will be fixed by T, and we denote this set by $\left\{B_{-w}\right\}_{w \in S_{n}}=\left\{e_{w}\right\}_{w \in S_{n}}$.

Also we can have B_{+}(invertible upper triangular Borel) act on $\mathrm{F} \ell_{n}$. Each orbit of this action contains exactly one e_{w}.

By the Bruhat decomposition, we have

$$
\mathrm{GL}_{n}=\bigcup_{w \in S_{n}} B_{-} w B_{+}
$$

Viz, GL_{n} is a disjoint union of $B_{-} w B_{+}$, which is a lower triangular times a permutation matrix times a upper triangular.

Thus, if we mod out on the left by B_{-}, we get the following.
Definition 4.5. We define a Schubert cell to be

$$
\Omega_{w}^{\circ}=B_{-} \backslash B_{-} w B_{+}=e_{w} B_{+}
$$

Example 4.6. Take $w=\operatorname{Id}=12345$. Then we see $e_{w} B_{+}$contains matrices with lower triangular part equal 0,1 on the diagonal, and anything on the upper triangular part. In particular, this means $\Omega_{\mathrm{Id}}^{\circ} \cong \mathbb{C}^{10}$ as we have dimension equal $\binom{5}{2}$. We note $\operatorname{inv}(w)=0$ in this case.

Take $w=54321$. Then e_{w} looks like

$$
\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

But then we don't realy have anything, hence it is just \mathbb{C}^{0}. Note $\operatorname{inv}(w)=10$ here, hence we sort of have a duality here.

Now take $w=45132$, with $\operatorname{inv}(w)=7$. Then

$$
\Omega_{w}^{\circ}=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

But note since we are moding out B_{-}, this is basically saying we can mod out anything on the left and down of the 1th in the above, i.e. it is some sort of reflected Rothe diagram. In particular, we have $\Omega_{w}^{\circ} \cong \mathbb{C}^{3}$ as we only have three boxes left.

From the three examples, we see we actually have $\operatorname{codim}\left(\Omega_{w}^{\circ}\right)=\operatorname{inv}(w)$.
Theorem 4.7. We have

$$
\begin{gathered}
\operatorname{codim}\left(\Omega_{w}^{\circ}\right)=\operatorname{inv}(w) \\
\Omega_{w}^{\circ} \cong \mathbb{C}\binom{n}{2}-\operatorname{inv}(w)
\end{gathered}
$$

Definition 4.8. We define a Schubert variety as

$$
\Omega_{w}:=\overline{\Omega_{w}^{\circ}}
$$

where the closure is taken in the Zariski topology (or classical topology).
Theorem 4.9. We have

$$
\Omega_{w}=\bigcup_{w<v} \Omega_{v}^{\circ}
$$

where $w \lessdot v$ is the strong Bruhat order.
Corollary 4.9.1. $\mathrm{F} \ell_{n}$ is a complex cell complex.
Example 4.10. Say we have $w=45132$. Then we have

where on the left we have Ω_{w}°, and on the right, we think of the star at the $(1,5)$ position goes to infinity, hence the 1 on the left and down are so small we can
just think of it as 0 . Then we get a 1 at $(1,5)$ and since we get two more 0 , we can move the 1 at $(1,4)$ to $(2,4)$.

Every topological space X has a cohomology ring $H^{\star}(X)=\oplus_{i} H^{i}(X)$. In a sense, this measure the number of holes.

Theorem 4.11. If X has a complex cell structure with n_{i} cells in (complex) codimension i, then

$$
H^{2 i}(X) \cong \mathbb{Z}^{n_{i}}
$$

with a basis indexed by the cells and

$$
H^{2 i+1}(X) \cong 0
$$

Definition 4.12. The H^{\star} classes of Schubert varieties are called Schubert classes σ_{w} and are a basis for $H^{\star}\left(\mathrm{F} \ell_{n}\right)$.

Theorem 4.13. There is a dense open subset of $g \in \mathrm{GL}_{n}$ such that $\sigma_{u} \cdot \sigma_{v}$ is equal the H^{\star} class of $\Omega_{u} \cap g \Omega_{v}$.

In particular, if Ω^{v} is Ω_{v} with respect to the opposite flag, then $\sigma_{u} \cdot \sigma_{v}$ is equal the class of $\Omega_{u} \cap \Omega^{v}$.

Definition 4.14. For $v \in S_{n}$, we call Σ^{v} the opposite Schubert variety and $\Omega_{u} \cap \Omega^{v}$ is the Richardson variety.

Theorem 4.15 (Borel).

$$
H^{\star}\left(\mathrm{F} \ell_{n}\right) \cong \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] /\left\langle e_{1}, \ldots, e_{n}\right\rangle
$$

as graded \mathbb{Z}-algebra where e_{i} are the elementary symmetric functions.

This is $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] \bmod$ out by the set of symmetric functions without constant terms.
Definition 4.16. We define $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] /\left\langle e_{1}, \ldots, e_{n}\right\rangle$ as the coinvariant ring.

In particular, for Ω_{v} of codimension k, it should correspond to a coset of homogenous degree k polynomial.

Theorem 4.17. Under the Borel isomorphism $H^{\star}\left(\mathrm{F} \ell_{n}\right) \cong \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] /\left\langle e_{1}, \ldots, e_{n}\right\rangle$, the Schubert classes correspond to Schubert polynomials. In particular,

$$
\sigma_{u} \cdot \sigma_{v}=\sum_{w \in S_{n}} c_{u v}^{w} \sigma_{w} \Leftrightarrow \mathfrak{S}_{u} \cdot \mathfrak{S}_{v}=\sum_{w \in S_{n}} c_{u v}^{w} \mathfrak{S}_{w}
$$

Corollary 4.17.1. Schubert polynomials has positive structure coefficients. But we do not have a combinatorial rule for the coefficients $c_{u v}^{w}$.

Remark 4.18 (Open Problem). Give a positive combinatorial formula for $c_{u v}^{w}$.

Recall $\mathrm{F} \ell_{n}$ has a action of T on the right given by scaling the columns.
For group G acting on space X, we get not only the cohomology ring, but a G equivariant cohomology ring $H_{G}^{\star}(X)$. So, what is this? Well, the formal definition is quite involved... But broadly speaking, this not only encode the cohomology information, but also the representation information about G.

In particular, $H_{T}^{\star}\left(\mathrm{F} \ell_{n}\right)$ is pretty nice, as we have $H_{T}^{\star}\left(\mathrm{F} \ell_{n}\right)$ is a free $H_{T}^{\star}(\mathrm{pt})-$ module, where $H_{T}^{\star}(\mathrm{pt})$ is just $\mathbb{Z}\left[y_{1}, \ldots, y_{n}\right]$.

Theorem 4.19. Double Schubert polynomial represent T-equivariant cohomology classes of Schubert varieties. Viz, we have $\sigma_{u} \circ \sigma_{v}=\sum_{w} c_{u v}^{w}(y) \sigma_{w}$ iff $\mathfrak{S}_{u}(x, y)$. $\mathfrak{S}_{v}(x, y)=\sum_{w} c_{u v}^{w}(y) \mathfrak{S}_{w}(x, y)$, where now the coefficients are polynomial in y.

We also have a K-theory ring $K\left(\mathrm{~F} \ell_{n}\right)$, where elements are equivalence classes of algebraic vector bundles on $\mathrm{F} \ell_{n}$. For each Ω_{w}, we get a class [$\mathscr{O}_{\Omega_{w}}$] in $K\left(\mathrm{~F} \ell_{n}\right)$ for its structure sheaf $\mathscr{O}_{\Omega_{w}}$, which is a linear combination of vector bundles.

There are still a basis, and the structure coefficient in this case is controled by Grothendieck polynomials.
Theorem 4.20. Grothendieck polynomials represent K-classes. Viz, $\left[\mathscr{O}_{\Omega_{u}}\right]$. $\left[\mathscr{O}_{\Omega_{v}}\right]=\sum_{w} K_{u v}^{w}\left[\mathscr{O}_{\Omega_{w}}\right]$ iff $\overline{\mathfrak{S}_{u}}(\beta=-1) \cdot \overline{\mathfrak{S}_{v}}(\beta=-1)=\sum_{w} K_{u v}^{w} \overline{\mathfrak{S}_{w}}(\beta=-1)$.

Now we get back to combinatorics about Schubert polynomials. The next formula gives a way to compute Schubert polynomials.

Definition 4.21. Let α, β be strong compositions, then we say β is α-compatible if:

1. $\ell(\alpha)=\ell(\beta)$
2. β is weakly increasing $\left(\beta_{i} \leq \beta_{i+1}\right)$
3. β is bounded above by $\alpha\left(\beta_{i} \leq \alpha_{i}\right)$
4. β strictly increasing whenever α does (if $\alpha_{i}<\alpha_{i+1}$ then $\beta_{i}<\beta_{i+1}$)

In this case, we write $\beta \rightarrow \alpha$.
Theorem 4.22 (Billey-Jockusch-Stanley, 1993).

$$
\left\{\mathfrak{S}_{w}\right\} \rightarrow\left\{\mathfrak{X}_{a}\right\}
$$

In particular, we have

$$
\mathfrak{S}_{w}=\sum_{\alpha \in R(w)} \sum_{\beta \rightarrow \alpha} \prod_{i=1}^{n} x_{\beta_{i}}
$$

where $\beta \mapsto \alpha$ means β is α-compatible.

Example 4.23. Say $w=321, \mathfrak{S}_{w}=x_{1}^{2} x_{2}=\mathfrak{X}_{210}$. Then we have $R(w)=$ $\{121,212\}$.

Thus, say $\alpha=212$, then there is only one compatible β, which is $\beta=112$.
Next, say $\alpha=121$. Then $\beta=\varnothing$. Hence

$$
\mathfrak{S}_{w}=\prod_{\beta \in\{112\}} x_{\beta_{i}}=x_{1} x_{1} x_{2}
$$

Definition 4.24. For vector space $U \subseteq V$ with bases B_{w}, B_{v}, if $B_{u} \subseteq B_{v}$, then we say B_{v} lifts B_{u} to V, or B_{v} is a lift of B_{u}.

Theorem 4.25. $\left\{\mathfrak{S}_{u}\right\}$ lift $\left\{s_{\lambda}\right\}$ from Sym to ASym. To realize s_{λ} as a Schubert polynomial, add 0's to the end of λ to make it length n, then reverse to get Lehmer code of a permutation w_{λ}. Then $\mathfrak{S}_{w_{\lambda}}=s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$.

Example 4.26. Let $s_{21} \in \operatorname{Sym}_{3}$. Then $\lambda=210$ and reverse it we get 012 , which is going to be the Lehmer code of a permutation. This permutation w_{λ} here is 13524

Definition 4.27. Permutations of the form w_{λ} are called Grassmannian permutations.

Definition 4.28. The Grassmannian $\operatorname{Grass}_{k}\left(\mathbb{C}^{n}\right)$ is the parameter space for k-dimensional vector subspaces of \mathbb{C}^{n}.

It turns out $H^{\star}\left(\operatorname{Grass}_{k}\left(\mathbb{C}^{n}\right)\right)=\operatorname{Sym}_{n}$ with a Schubert basis of Schur polynomials. The relation between $\mathrm{F} \ell_{n}$ and $\operatorname{Grass}_{k}\left(\mathbb{C}^{n}\right)$ is that, we have a forgetful map

$$
\mathrm{F} \ell_{n} \rightarrow \operatorname{Grass}_{k}\left(\mathbb{C}^{n}\right)
$$

and hence it induces a (injective) map between cohomologies

$$
H^{\star}\left(\mathrm{F} \ell_{n}\right) \hookleftarrow H^{\star}\left(\operatorname{Grass}_{k}\left(\mathbb{C}^{n}\right)\right)
$$

Those map exactly takes σ_{λ} to $\sigma_{w_{\lambda}}$ and s_{λ} to $\mathfrak{S}_{w_{\lambda}}$.
Next, we note BJS (Billey-Jockusch-Stanley) makes us want to define for composition α, a polynomial

$$
\mathfrak{F}(\alpha)=\sum_{\beta \nrightarrow \alpha} \prod_{i=1}^{n} x_{\beta_{i}}
$$

This might look like a silly thing to do, but it is actually going to be useful (as it is going to be a basis), except that this is the wrong indexing.

Well, some of the $\mathfrak{F}(\alpha)$ are bad, for example, we already computed $\mathfrak{F}(121)$, which sums over the empty set and hence $\mathfrak{F}(121)=0$.

Definition 4.29. For composition α, if $\mathfrak{F}(\alpha) \neq 0$, then $\mathfrak{F}(\alpha)$ is called a fundamental slide polynomial (due to Assaf-Searles, 2017).

Besides the problem of many of $\mathfrak{F}(\alpha)$ are zero, we also have the problem that many $\mathfrak{F}(\alpha)$ are equal. For example, $\mathfrak{F}(212)=\mathfrak{X}_{210}=\mathfrak{F}(312)$. All those suggest we have wrong index of \mathfrak{F}.

Now, observe if α has a sequence of compatible compositions, it has one that is termwise maximal element, which we will denote by $\hat{\beta}(\alpha)$ (so basically we start at the right-most location, and only decrease one if we have to, this gives the maximal element).

Lemma 4.30. If $\hat{\beta}(\alpha)=\hat{\beta}(\gamma)$ then $\mathfrak{F}(\alpha)=\mathfrak{F}(\gamma)$.

Proof. From $\hat{\beta}(\alpha)$ we can determine all other compatible compositions.
| Definition 4.31. We define $a(\alpha)$ by $a\left(\alpha_{i}\right)$ equal the number of i in $\hat{\beta}(\alpha)$.

Example 4.32. We see $a(212)=210=a(312)$, as $\hat{\beta}(212)=\hat{\beta}=112$.

This will be the way we index things, and hence we get the following definition.
| Definition 4.33. We define $F_{a(\alpha)}=F(\alpha)$ for any weak composition $a(\alpha)$.

This is a little bit weird, as we don't know yet every weak composition is of the form $a(\alpha)$.
| Lemma 4.34. Every weak composition a is of the form $a(\alpha)$ for some α.

Proof. From a, set $\alpha=1 \ldots 12 \ldots 23 \ldots 34 \ldots$ where we have a_{1} many $1, a_{2}$ many 2 , and so on. Then $\hat{\beta}(\alpha)=\alpha$ and so $a(\alpha)=a$ as desired.
| Lemma 4.35. If $a \neq b$, then $\mathfrak{F}_{a} \neq \mathfrak{F}_{b}$.

Proof. Say $a=a(\alpha)$ and $b=b(\beta)$ as constructed in above lemma. Then $\alpha \neq \beta$ but by the way the above construction works, $\hat{\beta}(\alpha)=\alpha$ and $\hat{\beta}(\beta)=\beta$, i.e. we have distinct termwise maxima so $\mathfrak{F}_{\alpha} \neq \mathfrak{F}_{\beta}$ as desired.

Example 4.36. We have $\mathfrak{F}_{0102}=\mathfrak{F}(244)$. Then the compatible sequence is given by $\beta=(244,234,233,144,134,133,124,123,122)$ and hence

$$
\mathfrak{F}(244)=x_{2} x_{4} x_{4}+x_{2} x_{3} x_{4}+x_{2} x_{3} x_{3}+x_{1} x_{4} x_{4}+\ldots
$$

Definition 4.37. Let b be weak composition, then b is a slide of weak composition a if b is obtained from a by a sequence of the following local moves:

1. $0 p \Rightarrow p 0$ where p is positive number, i.e. we can slide positive numbers to the left.
2. $0 p \Rightarrow q r$ for $q+r=p$ and $q, r>0$, i.e. we can chop positive numbers into pieces.
Theorem 4.38.

$$
\mathfrak{F}_{a}=\sum_{b \text { slide of } a} x^{b}
$$

Lemma 4.39. Take reverse lexicographic order on monomials (i.e. $x^{a}<x^{b}$ if $b-a$ has rightmost non-zero entry to be positive). Then the leading term of \mathfrak{F}_{a} is x^{a}.
Corollary 4.39.1. $\left\{\mathfrak{F}_{a}\right\}$ is a basis of ASym.

Proof. Suppose $c_{1} \mathfrak{F}_{a_{1}}+\ldots+c_{k} \mathfrak{F}_{a_{k}}=0$. One a_{i} is biggest in our total order, its leading term appears nowhere else. Thus c_{i} must be zero. Now induction follows to conclude $c_{1}=\ldots=c_{k}=0$. This concludes linearly independent, and it is clearly span as the number of weak compositions is the right dimension of ASym, hence it must span as well.

Definition 4.40. Say a dominates b and write $a \geq b$ if for all k we have $\sum_{i=1}^{k} a_{i} \geq \sum_{i=1}^{k} b_{i}$.

We note this is just the same as partitions, and in particular this is also not a total order, e.g. 2220 and 3111 are not comparable.

Theorem 4.41.

$$
\mathfrak{F}_{a}=\sum_{\substack{b^{+}+a^{+} \\ b \geq a}} x^{b}
$$

This look similar. Now, we ask, when is $\mathfrak{F}_{a} \in$ QSym? If we look back to the example from last lecture, we see we want those weak compositions that shoved all the zeros to the left.
Definition 4.42. Say weak composition a is quasistrong if its non-zero terms appear consecutively.
| Lemma 4.43. If a is not quasistrong, then $\mathfrak{F}_{a} \notin \mathrm{QSym}_{n}$.

Proof. Choose $i<j<k$ with $a_{i}>0, a_{j}=0, a_{k}>0$. Then define new weak composition b by

$$
b_{h}=\left\{\begin{array}{l}
0, \quad h=1 \\
a_{h-1}, \quad 2 \leq h \leq j \\
a_{h}, \quad h>j
\end{array}\right.
$$

Then $x^{a} \in \mathfrak{F}_{a}$ but $x^{b} \notin \mathfrak{F}_{a}$ (because we literally slide things in the wrong way), thus it is not quasisymmetric, i.e. we found a explicit missing term in \mathfrak{F}_{a} to make it not quasisymmetric.

Proposition 4.44. If $a=0^{k} \alpha$ is quasistrong, then $\mathfrak{F}_{a} \in \operatorname{QSym}_{\ell(a)}$ and $\mathfrak{F}_{a}=$ $F_{\alpha}\left(x_{1}, \ldots, x_{\ell(a)}\right)$.

Proof.

$$
\mathfrak{F}_{a}=\sum_{\substack{b^{+} \vDash a^{+} \\ b \geq a}} x^{b}=\sum_{\substack{b^{+} \vDash \alpha \\ b \geq a}} x^{b}=F_{\alpha}\left(x_{1}, \ldots, x_{\ell(a)}\right)
$$

| Corollary 4.44.1. \mathfrak{F}_{a} lifts F_{α} basis from QSym to ASym.

Theorem 4.45. $\left\{\mathfrak{F}_{a}\right\}$ has positive structure coefficients, with an explicit positive combinatorial rule that extending the formula for F_{α}.

Proof. Will follow from more general K-theory analogue.

Definition 4.46. A weak komposition is a weak composition where the nonzero terms are coloured either red or black.

Definition 4.47. Weak komposition b is a glide of a weak composition a if it can be obtained by a sequence of following locally:

1. $0 p \Rightarrow p 0$ if $p>0$
2. $0 p \Rightarrow q r$ if $q+r=p$ and $p, q, r>0$.
3. $0 p \Rightarrow$ st if $s, t>0$ and $s+t=p+1$.
where the black letters are actually black in the definition of komposition (i.e. we cannot use 1,2 to red $0 p$).

Example 4.48. Say $a=0200201$ is a weak komposition. Then glides includes

1202011

2121110

Definition 4.49. The fundamental glide polynomial $\overline{\mathfrak{F}_{a}}$ is

$$
\overline{\mathfrak{F}_{a}}=\sum_{b \text { glide of } a} \beta^{\# \text { red }} x^{b}
$$

where here $x^{b}=x_{1}^{b_{1}} \ldots x_{n}^{b_{n}}$ regardless of the colour.

Example 4.50. Say $a=0201$, then we can get the following glides

$$
0210,2001,1101,0211,2101,1201
$$

$$
2010,1110,2011,1111,2111,2110,1211
$$

$2100,2110,2101,2111$

Then the fundamental glide polynomial is given by

$$
\begin{aligned}
\widetilde{\mathfrak{F}_{a}}= & x^{0210}+x^{0210}+x^{2001}+x^{1101}+x^{1110}+x^{2010}+x^{2100} \\
& +\beta\left(x^{0211}+2 x^{2101}+x^{1201}+x^{1111}+x^{2011}+2 x^{2110}+x^{1210}\right) \\
& +\beta^{2}\left(x^{1211}+2 x^{2111}\right)
\end{aligned}
$$

A general way to know if we are doing it right is that if we set $x=1$ and $\beta=-1$, then we should end up with 1 . This is related to the Euler's characteristic of some simplicial complex.

We also observe that $\overline{\mathfrak{F}_{a}}(\beta=0)=\mathfrak{F}_{a}$.
Definition 4.51. We define multi-fundamental quasisymmetric polynomial $\overline{F_{\alpha}}\left(x_{1}, \ldots, x_{n}\right):=\overline{\mathfrak{F}_{0^{n-\ell(\alpha)}}}$. This definition is due to Lam-Pylyavskyy in 2007.

Theorem 4.52. $\left\{\overline{\mathfrak{F}_{a}}\right\}$ has positive structure coefficients. Moreover, there is an explicit positive combinatorial rule, such that specialized to $\left\{\mathfrak{F}_{a}\right\},\left\{F_{\alpha}\right\},\left\{\overline{F_{\alpha}}\right\}$.

The proof is actually not so bad, once we write down explicitly what the rule is. And we already know a combinatorial rule for F_{α}, thus, it is natural to consider shuffles of weak compositions.

Recall if A, B are words on disjoint alphabets \mathcal{A}, \mathcal{B}, the shuffle product $\mathcal{A} ш \mathcal{B}$ is all permutations of $A B$ with the subwords on \mathcal{A} is A and the subwords on \mathcal{B} is B.
Definition 4.53. For alphabet \mathcal{A}, let $\mathcal{A}^{\text {gen }}=\left\{i^{j}: i \in \mathcal{A}, j \in \mathbb{Z}_{+}\right\}$. For A a word in \mathcal{A}, we define $A^{\text {gen }}$ by replacing j th instance of i with i^{j} from left to right.
| Example 4.54. If $A=1311212$, then $A^{\text {gen }}=1^{1} 3^{1} 1^{2} 1^{3} 2^{1} 1^{4} 2^{2}$.
Definition 4.55. The genomic shuffle product $A_{\amalg_{g e n}} B$ is all words in $(\mathcal{A} \cup \mathcal{B})^{\text {gen }}$ such that:

1. If i^{j} left of i^{k}, then $j \leq k$.
2. No consecutive i^{j}.
3. Every genotype is in $A ш B$, where genotype means we delete all but one of each symbol, forget the superscript.

Example 4.56. The genomic shuffle $331 \amalg_{\text {gen }} 62$ is an infinite set. Indeed, consider $3^{1} 3^{2} 6^{1} 1^{1} 2^{1} 1^{1} 2^{1} \overline{1^{1} 2^{1}}$, i.e. we can put infinitely many $1^{1} 2^{1}$ at the end and they are all valid shuffles. However, we note this contains finitely many words of each length.

For length 5 element, we have 10 words, and it is basically $331 ш 62$.
For length 6 element, we have 35 words. For example we have $6^{1} 3^{1} 2^{1} 3^{1} 3^{2} 1^{1}$, then genotypes for this includes $63231,62331,36231$. We also have $3^{1} 6^{1} 2^{1} 3^{2} 1^{1} 2^{1}$, and a genotype is 36312 .

Remark 4.57 (Open Question?). What is

$$
\sum_{w \in A \mathbb{H g}_{g e n} B} x^{\ell(w)}
$$

Definition 4.58. Let $S=\left(w_{1}, \ldots, w_{n}\right)$ be a sequence of words in \mathcal{A} and $\mathcal{B} \subseteq \mathcal{A}$. Then $\operatorname{Comp}_{\mathcal{B}}(S)=\left(a_{1}, \ldots, a_{n}\right)$ with a_{i} equal number of \mathcal{B}-words/letters in w_{i}. We also let $\operatorname{Comp}(S)=\operatorname{Comp}_{\mathcal{A}}(S)$.

Definition 4.59. Put lexicographic order on $\mathbb{Z}_{+}^{\text {gen }}$ with $i^{j}<k^{l}$ if $i<k$ or $i=k$ and $j<l$. For C a word in $\mathbb{Z}_{+}^{\text {gen }}$, let $\operatorname{Runs}(C)$ be the sequence of maximal increasing runs.

Example 4.60. For example, if $C=3^{1} 3^{2} 6^{1} 1^{1} 2^{1} 1^{1} 2^{1} \overline{1^{1} 2^{1}}$ then $\operatorname{Runs}(C)=3^{1} 3^{2} 6^{1}\left|1^{1} 2^{1}\right| 1^{1} 2^{1} \overline{1^{1} 2^{1}}$

Let us spit out how to multiply fundamental glide polynomials. Consider two set of letters \mathcal{A}, \mathcal{B} with $\mathcal{A} \cap \mathcal{B}=\varnothing$. Then $A_{\text {ш }} B$ is the set of all permutations with subword from \mathcal{A} being A and subword from \mathcal{B} being B.

Then, we upgraded this to $\mathcal{A}^{\text {gen }}$, the genomic version. Then for A in \mathcal{A}, we have $A^{\text {gen }}$ by i th instance of j becomes j^{i}.

Using this, we defined genomic shuffle product last time and worked out some examples.

Definition 4.61. A genetype of $\operatorname{Runs}(C)$ means delete all but one of each symbol and forget the superscript.

Example 4.62. Let $C=6^{1} 3^{1} 6^{1} 3^{2} 1^{1} 2^{1}$, then $\operatorname{Runs}(C)=\left(6^{1}, 3^{1} 6^{2}, 3^{2}, 1^{1}, 2^{1}\right)$, $\operatorname{Comp}(\operatorname{Runs}(C))=(1,2,1,2)$. A genetype of $\operatorname{Runs}(C)$ would be $G_{1}=(6,3,3,1,2)$ and $G_{2}=(\varnothing, 36,3,12)$. Then $\operatorname{Comp}_{\text {even }}\left(G_{2}\right)=(0,1,0,1)$.

Definition 4.63. Let a, b be weak compositions of length n. Define

$$
\begin{gathered}
A=(2 n-1)^{a_{1}} \ldots(3)^{a_{n-1}}(1)^{a_{n}} \\
B=(2 n)^{b_{1}} \ldots(4)^{b_{n-1}}(2)^{b_{n}}
\end{gathered}
$$

The genomic shuffle set $\operatorname{GSS}(a, b)$ to be all $C \in A_{\amalg_{g e n}} B$ such that for all genetype of $\operatorname{Runs}(C), \operatorname{Comp}_{\text {odd }}(G) \geq a$ and $\operatorname{Comp}_{\text {even }}(G) \geq b$.

We note by require $\operatorname{Comp}_{\text {odd }}(G)$ and $\operatorname{Comp}_{\text {even }}(G)$ dominate some composition, we make sure those infinite terms vanishes.

Example 4.64. Suppose $a=021, b=101$. Then $A=331$ and $B=62$ and $\operatorname{GSS}(a, b)$ is equal the following

$$
\begin{gathered}
\operatorname{GSS}(a, b)_{5}=\left\{6^{1} 2^{1} 3^{1} 3^{2} 1^{1}, 6^{1} 3^{1} 3^{2} 1^{1} 2^{1}, 3^{1} 6^{1} 2^{1} 3^{2} 1^{1}, 3^{1} 6^{1} 3^{2} 1^{1} 2^{1}, 3^{1} 3^{2} 6^{1} 2^{1} 1^{1}, 3^{1} 3^{2} 6^{1} 1^{1} 2^{1}\right\} \\
\operatorname{GSS}(a, b)_{6}=\left\{6^{1} 2^{1} 3^{1} 3^{2} 1^{1} 2^{1}, 3^{1} 6^{1} 2^{1} 3^{1} 3^{2} 1^{1}, \ldots\right\}
\end{gathered}
$$

where the subscript means the length of the shuffle words. We have in total 10 shuffles for length 5 , but only 6 satisfy the dominate condition. There are in total 35 shuffles of length 6 , but only 8 dominates. For length 7 , we have in total 81 shuffles, but only 3 works

$$
\operatorname{GSS}_{7}(a, b)=\left\{3^{1} 6^{1} 2^{1} 3^{1} 3^{2} 1^{1} 2^{1}, 3^{1} 3^{2} 6^{1} 2^{1} 3^{2} 1^{1} 2^{1}, 3^{1} 3^{2} 6^{1} 1^{1} 2^{1} 1^{1} 2^{1}\right\}
$$

Definition 4.65. Let a, b be two weak compositions of length n. For $C \in$ $\operatorname{GSS}(a, b)$, let BumpRuns (C) be the dominance minimal way to insert empty runs to $\operatorname{Runs}(C)$ maintaining the dominance condition.

Definition 4.66. The glide product $a_{\amalg_{g e n}} b$ is the multiset $\{\{\operatorname{Comp}(\operatorname{Bump} \operatorname{Runs}(C))$: $C \in \operatorname{GSS}(a, b)\}\}$.

Theorem 4.67.

$$
\overline{\mathfrak{F}_{a}} \cdot \widetilde{\mathfrak{F}_{b}}=\sum_{c} \beta^{|c|-|a|-|b|} g_{a b}^{c} \widetilde{\mathfrak{F}_{c}}
$$

where $g_{a b}^{c}$ is the multiplicity of c in $a \amalg_{g e n} b$.

Proof. WLOG set $\beta=1$. Given $C \in \operatorname{GSS}(a, b)$, form \bar{C} by inserting red \mid to separate as in Bump Runs. For example, we would have $3^{1} 3^{2} 6^{1} 1^{1} 2^{1}$ becomes $3^{1} 3^{2} 6^{1} \| 1^{1} 2^{1}$. Let shift C be the words obtainable from \bar{C} by:

1. duplicating any i^{j}.
2. moving | to the right.
such that if i^{j} followed by k^{l} then $i^{j}<k^{l}$.
For example, if $\bar{C}=3^{1} 3^{2} 6^{1} \| 1^{1} 2^{1}$, then

$$
\text { shift } \bar{C}=\left\{\begin{array}{l}
3^{1} 3^{2} 6^{1}| | 1^{1} 2^{1} \\
3^{1} 3^{2} 6^{1}\left|1^{1}\right| 2^{1} \\
3^{1} 3^{2} 6^{1}\left|1^{1} 2^{1}\right| \\
3^{1} 3^{2} 6^{1}\left|1^{1}\right| 1^{1} 2^{1} \\
3^{1} 3^{2} 6^{1}\left|1^{1} 2^{1}\right| 2^{1}
\end{array}\right.
$$

Let $\overline{\operatorname{GSS}(a, b)}=\bigcup_{C \epsilon \operatorname{GSS}(a, b)} \operatorname{shift}(\bar{C})$.
Let $M(a, b)=\left\{\left(a^{\prime}, b^{\prime}\right)\right\}$ be the set of tuples of weak compositions such that a^{\prime} is a glide of a and b^{\prime} is a glide of b. These correspond to the monomials in $\overline{\mathfrak{F}_{a}}(\beta=1) \cdot \overline{\mathfrak{F}_{b}}(\beta=1)$.

We claim $M(a, b)$ is in bijection with $\overline{\operatorname{GSS}(a, b)}$.
For $D \in \overline{\operatorname{GSS}(a, b)}$, let $\operatorname{Seq}(D)$ be the sequence of words between bars. We get $\left(a^{\prime}, b^{\prime}\right) \in M(a, b)$ by

$$
\left(a^{\prime}, b^{\prime}\right)=\left(\operatorname{Comp}_{\text {odd }}(\operatorname{Seq}(D)), \operatorname{Comp}_{\text {even }}(\operatorname{Seq}(D))\right)
$$

where a_{i}^{\prime} is red if the i th part of $\operatorname{Seq}(D)$ contains a oddgen letter from earlier in the sequence.

For example, take $D:=3^{1} 3^{2} 6^{1} \| 1^{1} 2^{1} \in \operatorname{shift}(\bar{C})$, then $\operatorname{Seq}(D)=\left(3^{1} 3^{2} 6^{1}, \varnothing, 1^{1} 2^{1}\right)$ and hence $\left(a^{\prime}, b^{\prime}\right)=((2,0,1),(1,0,1))$ and we have no red because we have no repeat. Now take $D=3^{1} 3^{2} 6^{1}\left|1^{1}\right| 1^{1} 2^{1}$, then $\operatorname{Seq}(D)=\left(3^{1} 3^{2} 6^{1}, 1^{1}, 1^{1} 2^{1}\right)$. This gives $((2,1,1),(1,0,1))$ and the second one should be red, i.e.

$$
\left(a^{\prime}, b^{\prime}\right)=((2,1,1),(1,0,1))
$$

Now consider $\left(a^{\prime}, b^{\prime}\right) \in M(a, b)$, we recover $D \in \overline{\operatorname{GSS}(a, b)}$ by:

1. The first run of D is the first a_{1}^{\prime} letters of $A^{\text {gen }}$ and the first b_{1}^{\prime} letters of $B^{g e n}$, sorted to be increasing.
2. The second run of D is the next a_{2}^{\prime} letters of $A^{\text {gen }}$ and b_{2}^{\prime} letters of $B^{g e n}$, sorted to be increasing, EXCEPT, if a_{2}^{\prime} or b_{2}^{\prime} is red, then repeat the last letter of the appropriate alphabet from the previous part.
3. The rest are similar to the second run.

Let us look at an example. Note in the running example, we have $A^{\text {gen }}=3^{1} 3^{2} 1^{1}$, $B^{g e n}=6^{1} 2^{1}$. Then $(210,111) \in M(a, b)$. This would maps to

$$
3^{1} 3^{2} 6^{1}\left|1^{1} 2^{1}\right| 2^{1}
$$

These maps are inverse of each other if you think about it...
So, $\overline{\operatorname{GSS}(a, b)}$ bijects with monomials of $\overline{\mathfrak{F}_{a}}(\beta=1) \cdot \overline{\mathfrak{F}_{b}}(\beta=1)$. But for $C \in$ $\operatorname{GSS}(a, b)$, the monomials for shift (\bar{C}) make up $\overline{\mathfrak{F}}_{\operatorname{Comp}(\operatorname{Bump} \operatorname{Runs}(C))}(\beta=1)$.

For example, if $\bar{C}=3^{1} 3^{2} 6^{1} \| 1^{1} 2^{1}$, then we get monomials $x^{302}+x^{311}+x^{320}+x^{312}+$ x^{321} which equals $\overline{\mathfrak{F}}_{302}(\beta=1)$.

Thus, $\overline{\operatorname{GSS}(a, b)}$ are partitioned by $C \in \operatorname{GSS}(a, b)$ with each block giving the appropriate glide polynomial.

The reason why we cannot do this to Schubert polynomial is that, we don't have a good partitioning like GSS above for Schubert polynomial, i.e. we don't know how to collect monomials into Schubert polynomials.
Remark 4.68 (Open Problem). What is the geometric interpretation of glide polynomials?

5 Pipe Dreams

Now we dealt with positive formula for glide, we talk about a (non-positive) formula for Schubert polynomial. This lead to pipe dreams.

Definition 5.1. A (reduced) pipe dream is a tiling of the plane using two blocks \boxplus-block and \mathbb{e}-block (called "cross" and "jr/bump") with finitely many cross blocks and no 2 pipes cross more than once.

Example 5.2. Here is a (partial) example that's not reduced:

Let us see another partial example (we say partial because those pipe dream suppsed to be infinite).

Example 5.3. Consider

where we ignored some of the bump blocks. We note we can associate the above reduced pipe dream to a permutation, by put $1,2,3,4$ above, and see where the pipe lead us to at the end.

Definition 5.4. We let $P D_{0}(w)$ be the set of reduced pipe dreams for permutation w.
Theorem 5.5 (Fomin0Kirillov, Bergeron-Billey,Knutson-Miller).

$$
\begin{gathered}
\mathfrak{S}_{w}(x)=\sum_{P \in P D_{0}(w)} x^{\mathrm{wt}(P)} \\
\left.\mathfrak{S}_{w}(x, y)=\sum_{P \in P D_{0}(w)} \prod_{(i, j)} \text { with } \boxplus \text { (} x_{i}-y_{j}\right)
\end{gathered}
$$

where wt means the number of \boxplus-blocks in each row.
Example 5.6. Let $w=15324$. Then we have the following reduced pipe dreams (in the matrix, we use + to denote the cross and empty to mean bump):

$$
\begin{array}{|l}
+++ \\
+ \\
+\quad+ \\
+
\end{array} \sqrt{+++}
$$

$$
\begin{array}{|l|l|l}
& +\quad+ \\
+ & & \begin{array}{llll}
+\quad+\quad+ \\
+ & & + & +
\end{array} \\
\hline \begin{array}{lll}
+ & + \\
+ & +
\end{array}
\end{array}
$$

The reduced words for w is $4323,4232,2432$. The compatible sequences are given by

$$
4323: 1112,1113,1123,1223,2223
$$

$$
4232 \text { : } 1122
$$

$$
2432: 1222
$$

This is a good sign as we have seven pipe dreams and it matchs up.
Next, we see 1222 would correspond to

$$
\begin{array}{r}
+ \\
+\quad+\quad+
\end{array}
$$

because it has one cross in the first row, and the three cross in the second row. Similarly, we see all of the weights matche up exactly.

This is because, when we view the pipe dreams, we also recorded the reduced word. The way to read reduced word from pipe dreams is that, we read the crosses from top to bottom, right to left, and record the reversed diagonal it is located at.

Lemma 5.7. Let P be a reduced pipe dream. If all \boxplus-blocks in row i are strictly east of all \boxplus-blocks in row $i+1$. Then slide them diagonally southwest, the resulting diagram is a pipe dream for the same permutation and same reduced word.

Proof. Each \boxplus-block stay at the same diagonal and we read in the same order. 0
Definition 5.8. The destandardization of $P \in P D_{0}(w)$ is the pipe dream obtained by applying the lemma as much as possible.

Definition 5.9. A pipe dream is quasi-Yamanouchi if the leftmost \boxplus-block in each row satisfies either:

1. it is in the first column, or

2 . it is weakly west of some \boxplus-block in the row below.
We use $Q P D_{0}(w)$ to denote the set of quasi-Yamanouchi pipe dreams for w.

Lemma 5.10. A pipe dream is destandardization iff it is quasi-Yamanouchi.

Theorem 5.11.

$$
\mathfrak{S}_{w}=\sum_{P \in Q P D_{0}(w)} \mathfrak{F}_{w t(P)}
$$

Proof. For $P \in Q P D_{0}(w)$, let $d s t^{-1}(P)$ be the set of pipe dreams that destandardization to P. Enough to show

$$
\sum_{Q \in d s t^{-1}(P)} x^{\mathrm{wt}(Q)}=\mathfrak{F}_{\mathrm{wt}(P)}
$$

If $\operatorname{dst}(Q)=P$, then $\operatorname{wt}(Q)$ is a slide of $\operatorname{wt}(P)$. Conversely, if a is a slide of $\mathrm{wt}(P)$, then there is a unique pipe dream Q correspond to a that its destandardization is P. To get this Q, we see how to get a from wt (P), but then this is a sequence of local action, which can be translated to the local move of P.

6 Kohnert's Formula

Next, we introduce two more rules for Schubert polynomials. The first one is Kohnert's formula, which is conjectured in 1990 by Kohnert. This is "proved" Winkel in 1999, but it has a bunch of gaps (he traced through the divided difference operator this time). Next, in 2002, Winkel proposed another proof uses some recurrence, but there are also gaps and the details become hard. In 2017, Assaf proposed another proof, but the detail also become devilish.

It also have a Grothendieck extension, which is conjectured by Ross and Yong in 2015.

Definition 6.1. Let D be a collection of boxes in one quadrant. A Kohnert move is to take the rightmost box in any row and move it stright up to the next available open spot.

We let $K D(D)$ be the set of all diagrams reachable from D by a sequence of Kohnert moves.

Then we define $\operatorname{wt}(D)=\left(a_{1}, \ldots, a_{n}\right)$ where a_{i} is the number of boxes in row i.

Example 6.2. Suppose $D=D(15324)$, i.e. we have D is the Rothe diagram of 15324, and it looks like

where the \bullet 's denotes boxes. Then, we get the following configurations from the

Kohnert moves:

Include $D=D(15324)$, we indeed get 7 diagrams, and the weight match up.

Conjecture 6.3 (Kohnert's Formula).

$$
\mathfrak{S}_{w}=\sum_{D \in K D(D(w))} x^{\operatorname{wt}(D)}
$$

Definition 6.4. A spectral Kohnert move takes the rightmost box in some row and moves it stright up to the next available open spot, leaving a "ghost" in the original position. Neither oridinary nor spectral Kohnert moves can pass through a ghost, and a ghost cannot move.

We use $\overline{K D}(D)$ to denote all spectral diagrams reachable from D using both Kohnert move and spectral Kohnert move.

Example 6.5. Still take $D=D(15324)$. Then some example of spectral Kohnert moves are (we use letter g to denote a ghost)

We also have some diagrams with two ghosts:

$$
\begin{array}{|lll}
\hline \bullet & & \bullet \\
\hline g & & g \\
\hline & \bullet & \bullet \\
\bullet & & \\
\hline
\end{array}
$$

Conjecture 6.6 (Ross-Yong).

$$
\overline{\mathfrak{S}}_{w}=\sum_{D \in \overline{K D(D(w))}} \beta^{\# \text { of ghosts }} x^{\mathrm{wt}(D)}
$$

The problem for those Kohnert moves is that, we do not have double version of Kohnert diagrams. In particular, this means our geometry would be realy weird in the sense that it would not be nice enough to give double version, but it is good enough to spit out the single version.

7 Demazure Characters

Last time we had Kohnert's formula for the Schubert polynomial, which is take a permutation w, convert to Rothe diagram, then take all Kohnert moves. This is not obvious at all, and today we are going to do something more obvious.

For a weak composition a, let $D(a)$ be Young diagram, i.e. a_{i} left-justified boxes in row i.

Definition 7.1. The Demazure character/key polynomial is

$$
\mathfrak{D}_{a}:=\sum_{D \in K D(D(a))} x^{\mathrm{wt}(D)}
$$

Conjecture 7.2. The Lascoux polynomial is given by

$$
\overline{\mathfrak{D}}_{a}=\sum_{D \epsilon \overline{K D(D(a))}} \beta^{\# \text { of ghosts }} x^{\mathrm{wt}(D)}
$$

Example 7.3. Suppose $a=\lambda$, then there are no Kohnert moves and it just become x^{λ}.

In the homework, we are asked to describe Rothe diagrams for 2143-avoiding permutation.
Proposition 7.4. A permutation w is 2143-avoiding if and only if $\mathfrak{F}_{w}=\mathfrak{D}_{\text {invcode }(w)}$.

Recall $\pi_{i}(f)=\partial_{i}\left(x_{i} f\right)$ and $\overline{\pi_{i}}(f)=\pi_{i}\left(\left(1+\beta x_{i+1}\right) f\right)$. They both satisfy braid relation.

Let $a s_{i}$ be a with i th and $(i+1)$ st entries swaped. Let $w(a)$ be the shortest permutation with $a \cdot(w(a))=\operatorname{sort}(a)$, where for example sort (3412) $=4321$.
Definition 7.5. $\mathfrak{D}_{a}=\pi_{w(a)} x^{\operatorname{sort}(a)}$ and $\overline{\mathfrak{D}}_{a}=\bar{\pi}_{w(a)} x^{\operatorname{sort}(a)}$.
Example 7.6. In the silly case, if $a=\lambda=\operatorname{sort}(a)$, then $\overline{\mathfrak{D}}_{a}=\mathfrak{D}_{a}=x^{\operatorname{sort}(a)}$.
Next we consider a real example. If $a=021$, then we get

Enumerate over all Kohnert moves, we get

This gives weights $021,120,210,111,201$.
On the other hand, we see $a=021$ and so $w(a)=s_{1} s_{2}$. This gives

$$
\pi_{w(a)} x^{\mathrm{sort}(a)}=\pi_{1}\left(\pi_{2}\left(x^{210}\right)\right)=\left(x_{1}^{2} x_{2}+x_{1} x_{2}^{2}\right)+\left(x_{1}^{2} x_{3}+x_{1} x_{2} x_{3}+x_{2}^{2} x_{3}\right)
$$

after a lengthy computation. Clearly we end up with the same equation.
Theorem 7.7. The $\left\{\mathfrak{D}_{a}\right\}$ and $\left\{\overline{\mathfrak{D}}_{a}\right\}$ are bases of ASym_{a}.

Proof. Well, we have the correct number of polynomials (they are labelled by weak compositions). Next, with reverse lexicographic term order, the leading term of \mathfrak{D}_{a} is x^{a}, so they are linearly independent.

We remark that \mathfrak{D}_{a} is non-symmetric MacDonald polynomial at $q=t=\infty$ (or $0)$. But the point is, we can get another formula for \mathfrak{D}_{a}.

To do this, take a, we write it backword, denoted by $r(a)$, and take its Young diagram $D(r(a))$, and augment by adding a column 0 at the left, called the basement.

Now consider fillings, called semi-skyline filling, such that:

1. entries don't repeat in a column.
2. entries weakly decreasing left to right along rows.
3. every triple is inversion triple (for definition of inversion triple, see Definition 2.19).
4. basement box b_{i} is labelled by $n+1-i$.

Let $\mathfrak{D} \operatorname{SST}(a)$ be the set of key semi-skyline fillings for a.
Let $a=021$, then we need to draw the Young diagram of 120 :

Next, we need to add the basement, and we get (could not get the horizontal line appear after the first dot...)

Filling numbers in, we end up with the following

$$
\begin{array}{l|lll|lll|lll|lll|ll}
3 & 3 & & 3 & 3 & & 3 & 3 & & 3 & 2 & & 3 & 1 & \\
2 & 2 & 2 & 2 & 2 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 2 & 2 \\
1 & & 1 & & & 1 & & & & & & 1 & &
\end{array}
$$

Theorem 7.8.

$$
\mathfrak{D}_{a}=\sum_{T \in \mathfrak{D} \operatorname{SST}(a)} x^{\mathrm{wt}(T)}
$$

with $\operatorname{wt}(T)=\left(a_{1}, \ldots, a_{n}\right)$ with a_{i} equal the number of i 's not counting basement.

We remark that $\left\{\mathfrak{D}_{a}\right\}$ does not have positive structure coefficients. Multiply \mathfrak{D}_{a} are correspond to tensor products of some modules, and hence we should not expect the expansion is positive.

First, let's ask, what's $\left.\left\{\mathfrak{D}_{a}\right\}\right|_{\text {Sym }}$, i.e. restrict Demazure characters to symmetric polynomials.

Recall from assignment we have the Grassmannian permutations, in particular they are 2143 -avoiding. Thus, we see for any Grassmannian permutation, we have $\mathfrak{S}_{\text {Grass }}=s_{\lambda}=\mathfrak{D}_{a}$ where Grass is any Grassmannian permutation.

Theorem 7.9. We have the following lift relations

Before we think about the lift relation, let's ask what's the right \mathfrak{D}_{a} for s_{λ}.
Suppose we have $s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$. Then we need $a=\lambda 0^{k}$ so that its of length n. Then $\mathfrak{S}_{r(a)}=s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$ where we recall $r(a)$ is write a in reverse order. But then we know $\mathfrak{S}_{r(a)}=\mathfrak{D}_{r(a)}$.

Example 7.10. Let $\lambda=(4,2,1)$, then $s_{\lambda}\left(x_{1}, \ldots, x_{5}\right)=$? (it is really long!). THen we have $\mathfrak{S}_{00124}(x)=\mathfrak{S}_{123693578}(x)=\mathfrak{D}_{00124}$.

In fact, if a is weakly increasing, then $\mathfrak{D}_{a}=s_{r(a)}\left(x_{1}, \ldots, x_{\ell(a)}\right)$.
This tells us when is \mathfrak{D}_{a} a symmetric polynomial. All the above still holds after you add a bar on top (i.e. all the above are true for K-theory version as well).

Next, we have the following refinment relations:

The refinment is due to Shimozono-Yu in 2021. Now get back to the world of Sym and QSym, we have

The natural question to ask is, do we have the following dash arrows and polynomials:

The good thing is, we indeed have all the arrows and polynomials:

where \mathfrak{Q}_{a} are the quasikey polynomials and \mathfrak{M}_{a} are the monomial slide polynomials.
The K-theory arrows are almost true, except we miss the Shimozono-Yu arrow. In particular, $\overline{\mathfrak{Q}}_{a}$ are called quasi-Lascoux polynomials and $\overline{\mathfrak{M}}_{a}$ are called the monomial glide polynomials.

We also have the following refinment, where \mathfrak{A}_{a} are the Demazure atoms:

The funny thing here is that, the change of basis matrix for \mathfrak{Q}_{a} to \mathfrak{A}_{a} is exactly the same matrix for \mathfrak{Q}_{a} to \mathfrak{X}_{a}. Denote this change of basis matrix by u, we might expect if we hit u with \mathfrak{F}_{a}, we might get something. This is indeed the case, and they are called the pions. Thus, we get the following, where the letters on the arrow would
denote change of basis matrix:

The amazing thing is that we have arrows from \mathfrak{A}_{a} to \mathfrak{P}_{a} and \mathfrak{P}_{a} to \mathfrak{X}_{a}, as even we have the matrices expansion, we should not expect the entries to be positive (remember we have arrows iff there is a refinment relation), but they do, in both cases.

Recall last class we had the following picture

We seen

$$
\mathfrak{A}_{a}=\sum_{T \in \mathfrak{A} \operatorname{SST}(a)} x^{\mathrm{wt}(T)}
$$

where we recall \mathfrak{A} SST is the set of semistandard composition tableaux of shape a such that:

1. entries don't repeat in columns
2. rows weakly decreasing
3. every triple is inversion
4. the first column entries match row indices.

The K-theory version of the Demazure atoms are called Lascoux atoms. In this case, we have

$$
\overline{\mathfrak{A}}_{a}=\sum_{T \in \overline{\mathfrak{Z}} \mathrm{SST}} \beta^{\operatorname{ex}(T)} x^{\mathrm{wt}(T)}
$$

and we need to figure out what the four conditions above are, for set-valued $\overline{\mathfrak{A}} \operatorname{SST}(a)$. They are given by

1. entries don't repeat in columns, as sets
2. rows weakly decreasing setwise
3. every triple of anchors is inversion, where anchor is the biggest thing in its box, and we call an number is free if its not an anchor
4. first column anchor match row indices
5. every free entry is with the smallest anchor in its column subject to (2).

Example 7.11. Lets look at an example, say $\overline{\mathfrak{A}}_{1032}$. Then we can do

The 5th condition applies to the 2's in the first column, which tells the 2 cannot live with the 1 in the first row, because it will not be free anymore, and so on.

Proposition 7.12. $\left\{\mathfrak{A}_{a}\right\}$ is a basis of ASym_{n}.

Proof. With respect to a reverse lexicographic order, the leading term fo \mathfrak{A}_{a} is x^{a}. \circ
Proposition 7.13. Demazure atoms refines quasiSchur

$$
S_{\alpha}\left(x_{1}, \ldots, x_{n}\right)=\sum_{a^{+}=\alpha} \mathfrak{A}_{a}
$$

Proof. By definition.

There is an alternative definition of Demazure atoms. Recall π_{i} operator, and we can define $\hat{\pi}=\pi_{i}-1$. This has a K-theory version which is $\hat{\bar{\pi}}_{i}=\bar{\pi}-1$.

Now recall $w(a)$ is the shortest permutation with $a w(a)=\operatorname{sort}(a)$. Then we can define

$$
\mathfrak{A}_{a}:=\hat{\pi}_{w(a)} x^{\text {sort }(a)}
$$

and

$$
\overline{\mathfrak{A}}_{a}:=\hat{\bar{\pi}}_{w(a)} x^{\mathrm{sort} a}
$$

The first equivalence of definitions is well-known, but the second equivalence of definitions is pretty new, due to Buciumas, Scrimshaw, Weber in 2020.

By looking at the operators, we get the following.
Proposition 7.14. Demazure atoms refine Demazure characters, i.e.

$$
\mathfrak{D}_{a}=\sum_{\substack{\operatorname{sort}(b)=\operatorname{sort}(a) \\ w(b) \leq w(a)}} \mathfrak{A}_{b}
$$

where the second inequality is strong Bruhat order. The K-theory version also holds.

Corollary 7.14.1.

$$
s_{\lambda}=\sum_{a \in S_{\lambda}} \mathfrak{A}_{a}
$$

where S_{λ} is the set of permutations on λ. The K-theory version also holds.

We note the Demazure characters don't have positive structure coefficients. The Demazure atoms also don't have positive structure coefficients.

However, we have the following conjecture.
| Conjecture 7.15 (Reiner-Shimozono). $\mathfrak{D}_{a} \cdot \mathfrak{D}_{b}$ is a positive sum of \mathfrak{A}_{c}.

There is also the K-theory version conjecture, which is due to Monical-PechenikSearles in 2021. This is the end of Demazure atoms, and we are moving to key polynomials \mathfrak{Q}_{a}.

Definition 7.16 (Assaf-Searles, 2018). We define the quasikey polynomial as

$$
\mathfrak{Q}_{a}=\sum_{\substack{b^{+}=a^{+} \\ b \geq a}} \sum_{\mathfrak{Z S T}(b)} x^{\mathrm{wt}(T)}=\sum_{\substack{b^{+}=a^{+} \\ b \geq a}} \mathfrak{A}_{b}
$$

where $b \geq a$ means b dominance a. We also define the K-theory version, called quasiLascoux polynomial, as

$$
\overline{\mathfrak{Q}}_{a}=\sum_{\substack{b^{+}=a^{+} \\ b \geq a}} \sum_{T \in \mathfrak{\mathfrak { Z }} \mathrm{SST}} x^{\operatorname{wt}(T)}=\sum_{\substack{b^{+}=a^{+} \\ b \geq a}} \overline{\mathfrak{A}}_{b}
$$

The K-theory definition is due to Monical-Pechenik-Searles in 2021.
Example 7.17. We have

$$
\mathfrak{Q}_{103}=\mathfrak{A}_{103}+\mathfrak{A}_{130}
$$

Note we are missing the \mathfrak{A}_{013} piece, and if we add this, we get back to \mathfrak{S}_{α}.

We note $\mathfrak{Q}_{a} \rightarrow \mathfrak{A}_{a}$ is built-in in the definition.
Theorem 7.18 (Assaf-Searles). We have the following expansion

$$
\mathfrak{Q}_{a} \rightarrow \mathfrak{F}_{a}
$$

given by

$$
\mathfrak{Q}_{a}=\sum_{T} \mathfrak{F}_{\mathrm{wt}(T)}
$$

where the sum is over $T \in \bigcup \mathfrak{A S S T}(b)$ with $b^{+}=a^{+}, b \geq a$, with T being quasiYamanouchi and T containing the support of a.

Example 7.19. We consider \mathfrak{Q}_{103}. The tableaux are given by

1			1			1						1			
3	3	3	3	3	2	3	3	1	3	2	2	3			1

Then we to check the quasi-Yamanouchi condition. This gives

Next, we need to check T containing the support of a. This rule out two more and we are left with

Hence we conclude

$$
\mathfrak{Q}_{103}=\mathfrak{F}_{103}+\mathfrak{F}_{202}
$$

We see this is indeed the case.
We are going to finish quasikey and start pion and kion.
Proposition 7.20. We have $\mathfrak{Q}_{a} \in \operatorname{QSym}_{n}$ if and only if $a=0^{k} \alpha$. In this case, $\mathfrak{Q}_{0^{k} \alpha}=S_{\alpha}\left(x_{1}, \ldots, x_{n}\right)$.

The last topic on quasikey is to expand key in terms of quasikey.
Definition 7.21. A left swap of a exchanges entries $a_{i}<a_{j}$ with $i<j$. We use $\operatorname{lswap}(a)$ be the set of all b obtainable by a sequence of left swaps.

Example 7.22 . If $a=103$, then using one left swap we get $\{130,301\}$, use another left swap we get 310 , and use the empty left swap we get 103 . Hence

$$
\operatorname{lswap}(103)=\{130,301,310,103\}
$$

Remark 7.23. We see $\operatorname{lswap}(a)$ is exactly the set of b with $\operatorname{sort}(a)=\operatorname{sort}(b)$ and $w(b) \leq w(a)$.

Corollary 7.23.1.

$$
\mathfrak{D}_{a}=\sum_{b \in \operatorname{lswap}(a)} \mathfrak{A}_{b}
$$

Definition 7.24. Let $Q \operatorname{lswap}(a)$ be the set of $b \in \operatorname{lswap}(a)$ such that for all $c \in \operatorname{lswap}(a)$ with $c^{+}=b^{+}$, we have $c \geq b$.

Example 7.25. Recall lswap(103) $=\{130,301,310,103\}$, then we $\operatorname{see} Q \operatorname{lswap}(103)=$ $\{301,103\}$ by a simple observation.

Proposition 7.26.

$$
\mathfrak{D}_{a}=\sum_{b \in Q \operatorname{lswap}(a)} \mathfrak{Q}_{b}
$$

Proof. We see $\mathfrak{D}_{a}=\sum_{b \in \operatorname{lswap}(a)} \mathfrak{A}_{b}$, but for $b \in Q \operatorname{lswap}(a)$ we see $\sum_{\substack{c \in \operatorname{lswap}(a) \\ c^{+}=b^{+}}} \mathfrak{A}_{c}=$ \mathfrak{Q}_{b}.

$$
\bigcirc
$$

Example 7.27. Continue the above example, we see this means

$$
\mathfrak{D}_{103}=\mathfrak{Q}_{103}+\mathfrak{Q}_{301}
$$

Conjecture 7.28 (Monical-Pechenik-Searles,2021). If $\overline{\mathfrak{Q}_{a}}=\sum_{b} M_{b}^{a}(\beta) \overline{\mathfrak{F}_{b}}$, then $\sum_{b} M_{b}^{a}(-1) \in\{0,1\}$.

Equivalently, we see the above is the same as $\overline{\mathfrak{Q}}_{a}(x=1, \beta=-1) \in\{1,0\}$, as we know $\overline{\mathfrak{F}_{b}}(x=1, \beta=-1)=1$, which is due to Smirnov-Tutubalina, 2021.

Example 7.29. Let $a=0662$, we see

$$
\sum_{b} M_{b}^{a}(\beta)=36+94 \beta+75 \beta^{2}+16 \beta^{3}=1
$$

8 Pion\& Kion

Now we switch topic, first recall the definition of glide in Definition 4.47.
Definition 8.1. A glide of a is mesonic if it is obtainable without applying $0 p \rightarrow p 0$ to initial non-zero positions.

To picture this, we know general glide smear things to the left, and mesonic glide can only smear the numbers in a more rigid way:

Example 8.2. Let $a=03002$, then $b=31002$ is not a mesonic glide. On the other hand, $b^{\prime}=21102$ is mesonic.

Definition 8.3. The kaon is defined by

$$
\overline{\mathfrak{P}}_{a}:=\sum_{b \text { mesonic glide of } a} \beta^{\# \text { red }} x^{b}
$$

Definition 8.4. The pion is defined by

$$
\mathfrak{P}_{a}=\overline{\mathfrak{P}}_{a}(\beta=0)=\sum_{b \text { mesonic slide of } a} x^{b}
$$

Now recall the refinment relations

We already know the top arrow, which is given by $\overline{\mathfrak{Q}}_{a}=\sum_{b^{+}=a^{+}, b \geq a} \overline{\mathfrak{A}}_{a}$. This also gives $\overline{\mathfrak{P}}$ formula.

Theorem 8.5.

$$
\overline{\mathfrak{F}}_{a}=\sum_{\substack{b^{+}=a^{+} \\ b \geq a}} \overline{\mathfrak{P}}_{a}
$$

Proof. Let g be glide of a. Suppose a has non-zero entries in positions $n_{1}<\ldots<n_{\ell}$. By summing initial segments of g, we know which entries of g came from a.

Let i_{j} be the rightmost position where g has a contribution from position n_{j} of a. Then we can obtain g from a by using $0 p \rightarrow p 0$ to move each n_{j} entry to i_{j}. Call
this weak composition b. Then we have $b^{+}=a^{+}$, and $b \geq a$ since we slide things to the left. The point is, we can get g out of b, and we already done all the $0 p \rightarrow p 0$ that would cross zero entries when doing a to b, we don't have to do $0 p \rightarrow p 0$ moves at i_{j}. Hence every glide of a is going to be mesonic glide of a unique b, where $b^{+}=a^{+}$ and $b \geq a$.

Thus the proof follows.
| Corollary 8.5.1. $\left\{\overline{\mathfrak{P}}_{b}\right\}$ is a basis of $\mathrm{ASym}_{n}[\beta]$.

Proof. The matrix describing $\overline{\mathfrak{F}_{a}} \rightarrow \overline{\mathfrak{P}}_{b}$ is triangular with 1 on the diagonal. So it is invertible over \mathbb{Z} and we know $\left\{\overline{\mathfrak{F}}_{a}\right\}$ is a basis.

Kaons don't have positive structure coefficients.
| Conjecture 8.6 (Monical-Pechenik-Searles, 2021). $\overline{\mathfrak{P}}_{a} \cdot \overline{\mathfrak{F}}_{b}$ is $\overline{\mathfrak{P}}$-positive.

The question is also open when set $\beta=0$.
| Conjecture 8.7. $\overline{\mathfrak{P}}_{a} \cdot \bar{s}_{\lambda}$ is $\overline{\mathfrak{P}}$-positive.
| Theorem 8.8 (Searles, 2020). $\mathfrak{P}_{a} \cdot s_{\lambda}$ is \mathfrak{P}-positive.

The next arrow we are going to talk about is $\mathfrak{A} \rightarrow \mathfrak{P}$.
Definition 8.9. Let $T \in \overline{\mathfrak{A}} \operatorname{SST}(a)$, for $i \in T$, let i^{\uparrow} be the next largest label in T. Say T is meson-highest if for each i, the leftmost i is either:

1. an anchor in first column
2. there is an i^{\uparrow} weakly to its right in a different box.

We see this is similar to the quasi-Yamanouchi condition, if we flattening down the alphabet.

Theorem 8.10 (Monical-Pechenik-Searles, 2021).

$$
\overline{\mathfrak{A}}_{a}=\sum_{\substack{\text { meson-highest } \\ T \in \overline{\mathfrak{Z}} \operatorname{SST}(a)}} \beta^{\# \operatorname{ex}(T)} \overline{\mathfrak{P}}_{\mathrm{wt}(T)}
$$

Example 8.11. We compute $\overline{\mathfrak{A}} \operatorname{SST}(102)$, as any larger examples would blowup to a huge number of data. We have

Now we look at the meson-highest tableaux, which are

This suggests

$$
\overline{\mathfrak{A}}_{a}=\overline{\mathfrak{P}}_{103}+\beta \overline{\mathfrak{P}}_{202}
$$

One can check this is indeed the case, by translate the mesonic glides to the above two tableaux indeed gives all the elements in $\overline{\mathfrak{A}} \operatorname{SST}(102)$.

Next time, we do $\mathfrak{F} \rightarrow \mathfrak{M}$, where we need to show it expand positively, which are called monomial slide/glide polynomials. Also, those \mathfrak{M} have positive structure coefficients.

Definition 8.12. We define the monomial slide polynomial

$$
\mathfrak{M}_{a}=\sum_{\substack{b^{+}=a^{+} \\ b \geq a}} \mathfrak{X}_{b}
$$

Example 8.13. We have

$$
\mathfrak{M}_{0203}=x^{0203}+x^{2003}+x^{0230}+x^{2030}+x^{2300}
$$

Recall we have three local moves on weak kompositions:

1. $0 p \rightarrow p 0$.
2. $0 p \rightarrow q r$ with $q+r=p$ and $r, q>0$.
3. $0 p \rightarrow q s$ with $q+s=p+1$ and $q, s>0$.

For $S \subseteq 1,2,3$, write $\omega_{S}(a)$ for the set of weak kompositions obtainable from a by rules in S, e.g if $S=\{1,2,3\}$ then we can use rule 1 to 3 , and if $S=\{1,2\}$ then we can only use rule 1 and 2 but not 3 . Then

$$
\begin{gathered}
\overline{\mathfrak{F}}_{a}=\sum_{b \in \Pi_{123}(a)} \beta^{\# \mathrm{red}} x^{b} \\
\mathfrak{F}_{a}=\sum_{b \in \amalg 12(a)} x^{b}
\end{gathered}
$$

On the other hand, we also know

$$
\mathfrak{M}_{a}=\sum_{b \in \mathrm{~m}_{1}(a)} x^{b}
$$

Thus, the natural guess of the definition of the K-theory version of \mathfrak{M} should be the following:

$$
\overline{\mathfrak{M}}_{a}=\sum_{b \in \Pi_{13}(a)} \beta^{\# \mathrm{red}} x^{b}
$$

This is a conjectural definition ${ }^{2}$.
From this perspective, we also have the silly

$$
\mathfrak{X}_{a}=\sum_{b \in \amalg \varnothing(a)} x^{b}
$$

and hence the K-ified polynomial should be

$$
\overline{\mathfrak{X}}_{a}=\sum_{b \in \amalg 3(a)} \beta^{\# \mathrm{red}} x^{b}
$$

This is conjectural as wel.
| Conjecture 8.14 (Lam-Pylyavskyy). $\left\{\overline{\mathfrak{M}}_{a}\right\} \cap \operatorname{QSym}=\left\{\bar{M}_{a}\right\}$
Theorem 8.15. $\left\{\mathfrak{M}_{a}\right\}$ is a basis of ASym.

Proof. With respect to a linear extension of dominance order, the matrix expanding \mathfrak{M}_{a} into \mathfrak{X}_{b} is uni-triangular. Thus it is invertible over \mathbb{Z}.
| Theorem 8.16. $\mathfrak{M}_{a} \in \operatorname{QSym}_{n}$ if and only if $a=0^{k} \alpha$. In this case, $\mathfrak{M}_{a}=M_{\alpha}$.

Proof. Suppose a is not quasistrong. Then there exists $i<k$ with $a_{i-1}>0, a_{i}=0$, $a_{h}>0$. Then $x^{a}=x_{1}^{a_{1}} \ldots x_{i-1}^{a_{i-1}} x_{i}^{0} \ldots x_{k}^{a_{k}}$ is a term of \mathfrak{M}_{a}. But $x_{1}^{a_{1}} \ldots x_{i-1}^{a_{i-1}} \ldots x_{k}^{a_{k}}$ is not a term and so \mathfrak{M}_{a} is not in QSym as desired.

Suppose a is quasistrong, i.e. $a=0^{k} \alpha$, then the b with $b^{+}=\alpha$ are exactly the b with $b^{+}=a^{+}$and $b \geq a$. Thus we see $\mathfrak{M}_{a}=M_{\alpha}$ as desired.

Thus, we concluded another arrow in the diagram, and we have two things left to do. First, we want to look at the arrow $\mathfrak{F}_{a} \rightarrow \mathfrak{M}_{a}$, and we want to talk about the positivity of structure coefficient of \mathfrak{M}_{a}.

Before talk about the arrow, we need a new definition.
Definition 8.17. We say $b \unrhd a$ if:

1. $b \geq a$
2. if $c \geq a$ and $c^{+}=b^{+}$then $c \geq b$.

Proposition 8.18. $\mathfrak{F}_{a} \rightarrow \mathfrak{M}_{b}$ with

$$
\mathfrak{F}_{a}=\sum_{\substack{b \triangleright a \\ b^{+}+a^{+}}} \mathfrak{M}_{b}
$$

[^1]Proof. By the definition.
Example 8.19. Consider \mathfrak{F}_{0203}. We see

$$
\begin{aligned}
\mathfrak{F}_{0203}= & \mathfrak{M}_{0203}+\mathfrak{M}_{0212}+\mathfrak{M}_{0221}+\mathfrak{M}_{1103} \\
& +\mathfrak{M}_{1112}+\mathfrak{M}_{1121}+\mathfrak{M}_{2111}
\end{aligned}
$$

Definition 8.20. For weak compositions a, b, let $S(a, b)$ be the set of all pairs (a^{\prime}, b^{\prime}) such that:

1. $\left(a^{\prime}\right)^{+}=a^{+}$and $\left(b^{\prime}\right)^{+}=b^{+}$
2. $a^{\prime} \geq a$ and $b^{\prime} \geq b$
3. $a^{\prime}+b^{\prime}$ is a strong composition.

Definition 8.21. Let a, b be weak compositions. Fix $\left(a^{\prime}, b^{\prime}\right) \in S(a, b)$, let c be a weak composition with $c^{+}=a^{\prime}+b^{\prime}$. Let c_{a} be the weak composition with 0^{\prime} 's in the same position as c, but the other entries are a_{i}^{\prime} instead of $\left(a^{\prime}+b^{\prime}\right)_{i}$. So, in particular, $c_{a}^{+}=\left(a^{\prime}\right)^{+}=a^{+}$. Define the same for c_{b}, i.e. c_{b} have 0's in the same position as c but other entries are b_{i}^{\prime} instead of $\left(a^{\prime}+b^{\prime}\right)_{i}$. In particular, note $c_{a}+c_{b}=c$.

Now, for every pair $\left(a^{\prime}, b^{\prime}\right) \in S(a, b)$, let $\operatorname{Bump}\left(a^{\prime}, b^{\prime}\right)$ be the dominancesmallest (shove to the right as possible) weak composition such that:

1. $\operatorname{Bump}\left(a^{\prime}, b^{\prime}\right)^{+}=a^{\prime}+b^{\prime}$
2. $\operatorname{Bump}\left(a^{\prime}, b^{\prime}\right)_{a} \geq a$
3. $\operatorname{Bump}\left(a^{\prime}, b^{\prime}\right)_{b} \geq b$

Definition 8.22. The overlapping slide product of a and b is the formal sum $a \amalg_{o} b$ of all the weak compositions $\operatorname{Bump}\left(a^{\prime}, b^{\prime}\right)$ for $\left(a^{\prime}, b^{\prime}\right) \in S(a, b)$.

Example 8.23. Let $a=0102, b=1001$, then $S(a, b)$ is the set
$\{(0102,1010),(0120,1001),(012,101),(012,110),(120,101),(102,110),(12,11)\}$
Then

$$
a \underset{o}{\amalg} b=1112+1121+11 \underline{0} 3+2 \underline{0} 12+12 \underline{0} 2+2 \underline{0} 21+2 \underline{0} 3
$$

where in the above, we use underline to denote the 0 added during Bump.
Theorem 8.24. The $\left\{\mathfrak{M}_{a}\right\}$ basis has positive structure coefficients. In particular,

$$
\mathfrak{M}_{a} \cdot \mathfrak{M}_{b}=\sum c_{a b}^{c} \mathfrak{M}_{c}
$$

where $c_{a b}^{c}$ is the multiplicity of c in $a \amalg_{o} b$

Proof. By definition, $\mathfrak{M}_{a} \mathfrak{M}_{b}=\sum_{\left(a^{\prime}, b^{\prime}\right)} x^{a^{\prime}+b^{\prime}}$ with sum over $\left(a^{\prime}, b^{\prime}\right)$ such that $\left(a^{\prime}\right)^{+}=a$ and $\left(b^{\prime}\right)^{+}=b$. Our rule collects together such monomials as monomial slide polynomials.

Example 8.25. We see by the above computation, we get

$$
\mathfrak{M}_{0102} \cdot \mathfrak{M}_{1001}=\mathfrak{M}_{1112}+\mathfrak{M}_{1121}+\mathfrak{M}_{1103}+\mathfrak{M}_{1202}+\mathfrak{M}_{2012}+\mathfrak{M}_{2021}+\mathfrak{M}_{2003}
$$

Theorem 8.26. For all 8 bases of ASym, the product of a basis element times a Schur polynomial expands positivity in the same basis.

For \mathfrak{S}_{a}, this above theorem is from geometry (i.e. $\mathfrak{S}_{a} \cdot s_{\lambda}$ is just product of two Schubert polynomial, hence positive as desired).

For \mathfrak{F}_{a} and \mathfrak{M}_{a} and \mathfrak{X}_{a}, this follows from each having positive structure coefficients and $s_{\lambda} \rightarrow \mathfrak{F}_{a} \rightarrow \mathfrak{M}_{a} \rightarrow \mathfrak{X}_{a}$.

For \mathfrak{D}_{a} and \mathfrak{A}_{a}, see Haglund, Luoto, Mason and van Willigenburg in 2011.
For \mathfrak{Q}_{a} and \mathfrak{P}_{a}, see Searles 2020 .
Conjecture 8.27. The same is true for K-version of the 8 bases and symmetric Grothendieck polynomials.

This is about the end of the general ASym polynomials. Next we are going to focous on Schubert polynomials. But before this, let's ask:

1. What are all the polynomials telling us?
2. what do these weird bases mean?
3. Three of those 8 polynomials are coming from MacDonald theory, what about the rest 5 ?

9 Schubert Polynomials, Again

The rest of the term will be about Schubert polynomials.
So, Schubert polynomials, and we will think about the space M_{n} of $n \times n$ matrices, which is just $\mathbb{C}^{n^{2}}$.

Inside the space of matrices, what happen when I multiply them together? Say, we want to look at all $A \in M_{n}$ such that $A^{2}=0$, denote this set as N. This is an algebraic variety because $A \in N$ is determined by vanishing of polynomials. For example, say we have

$$
A=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3} \\
z_{1} & z_{2} & z_{3}
\end{array}\right]
$$

then we have 9 things to compute, and we need to set all of them equal 0 . In general, we need to set n^{2} polynomials to 0 .

The next question is, are these only polynomial relations satisfied on N ? Of course not, as we recall $N=V(\mathcal{I})=\operatorname{Spec} \mathbb{C}\left[x^{1}, \ldots, x^{n^{2}}\right] / \sqrt{\mathcal{I}}$, hence we have the entire ideal \mathcal{I} generated by the n^{2} polynomials vanishes on N.

This is easy to see, and the next question is, are we done yet? Are there anything else? Is there any secret equations? Well, we are missing the trace equation. Since those polynomials are nilpotent, we know its trace is always zero, and this is a linear term.

Beside the trace, is there anything else? Nope, and this is the following theorem.
Theorem 9.1. Let $\mathcal{I}(N)$ be the set of polynomials that vanish identically on N, then $\mathcal{I}(N)$ is generated by the n^{2} terms and the trace.

The moral of the story is, the generator of \mathcal{I} is not always the full generators of $\sqrt{\mathcal{I}}$.

Definition 9.2. For I a set of polynomials in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, we define

$$
V(I)=V(\mathcal{I})=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}: \forall f \in \mathcal{I}, f(x)=0\right\}
$$

where \mathcal{I} is the ideal generated by the set of polynomials I.
Definition 9.3. For V a set of points in \mathbb{C}^{n}, we define

$$
I(V)=\left\{f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]: \forall x \in V, f(x)=0\right\}
$$

The above two definitions almost look like inverse of each other, and the question of secret equations above is just the question of how much is V the inverse of I. In other word, when does $I(V(\mathcal{I}))=\mathcal{I}$?

Observe if $f^{k} \in I(V(\mathcal{I}))$, then we see $\forall p \in V(\mathcal{I})$ we have $f^{k}(p)=0$. But this is $(f(p))^{k}=0$ and hence we must have $f(p)=0$ as \mathbb{C} is a field. Thus we see $f \in I(V(\mathcal{I}))$.

Definition 9.4. For \mathcal{I} an ideal, we define the radical of I as

$$
\sqrt{\mathcal{I}}=\left\{f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]: f^{k} \in \mathcal{I} \text { for some } k>0\right\}
$$

We say \mathcal{I} is radical if $\mathcal{I}=\sqrt{\mathcal{I}}$.

Proposition 9.5. $\sqrt{\sqrt{\mathcal{I}}}=\sqrt{\mathcal{I}}$ for all ideal \mathcal{I}.
Theorem 9.6 (Nullstellensatz). For any ideal \mathcal{I} of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, we have

$$
I(V(\mathcal{I}))=\sqrt{\mathcal{I}}
$$

Thus, apply Nullstellensatz to $\mathcal{I}(N)$, we see this means some power k of trace sits inside the n^{2} quadratic equations. To show we don't have any more secret equations, we just need to show $\mathcal{I}(N)=\sqrt{\mathcal{I}(N)}$. This is doable, but not always computationally easy.

This is the sort of geometry we want to think about, and the next topic is classical determinantal varieties.

Let M_{n} be the space of $n \times n$ matrices, consider the locus of singular matrices in M_{n}. It is a variety given by $V(\operatorname{det})$, in this case, it is a hypersurface.

More generally, let $M_{m n}$ be the space of $m \times n$ matrices, and this time we cannot talk about invertibility, but instead the rank. In particular, we can consider the locus of matrices of rank $\leq k$.

It is an algebraic variety, denoted by $M_{m n}^{k}$, cutout by all $(k+1) \times(k+1)$ minors (if you have a $k+1$ by $k+1$ minor refuse to die, then your rank is at least $k+1$).
Example 9.7. Consider M_{34}^{1}, so we have the following

$$
\left[\begin{array}{lll}
x_{1} & \ldots & x_{4} \\
y_{1} & \ldots & y_{4} \\
z_{1} & \ldots & z_{4}
\end{array}\right]
$$

Then $M_{34}^{1}=V(\langle 2 \times 2$ minors $\rangle)$, which is generated by, for example, $x_{1} z_{3}-x_{3} z_{1}$ and so on.

Thus, is there any secret equations this time? The answer is no this time, but it made people busy for a centuries or so.
| Definition 9.8. An ideal \mathcal{I} is prime if $f g \in \mathcal{I}$ implies $f \in \mathcal{I}$ or $g \in \mathcal{I}$.
| Lemma 9.9. \mathcal{I} is prime implies \mathcal{I} is radical.

Proof. Say $f^{k} \in \mathcal{I}$, then $f^{k-1} f \in \mathcal{I}$ and so either $f \in \mathcal{I}$ or $f^{k-1} \in \mathcal{I}$, now induction follows.

Example 9.10. Consider $\mathcal{I}:=\left\langle\left(y-x^{2}\right)(y-x)\right\rangle$, then $V(\mathcal{I})$ is given by

Clearly this is two "graphs" glued together, and those two graphs are given by
$V(y-x)$ and $V\left(y-x^{2}\right)$. Its not hard to see $(y-x)$ and $\left(y-x^{2}\right)$ are primes, and hence \mathcal{I} is "decomposed" into two prime ideals.

Theorem 9.11. $\left\langle\operatorname{minor}_{(k+1)}\right\rangle$ is a prime ideal (hence radical), where $\operatorname{minor}_{(k+1)}$ is the set of $k+1$ by $k+1$ minors.

The right context for those questions is "Schubert determinant ideals".
For $w \in S_{n}$, recall the rank matrix (see Definition 3.3). For example, if $w=2143$, then the rank matrix is

$$
\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 \\
1 & 2 & 2 & 3 \\
1 & 2 & 3 & 4
\end{array}\right]
$$

We note this is indeed the "rank" of a matrix. To be precise, the (i, j) entry of the above matrix, is the rank of a submatrix in the permutation matrix associated with w.
Definition 9.12. The matrix Schubert variety X_{w} is the locus in M_{n} such that the northwest submatrix has rank at most $r_{i j}$, where $r_{i j}$ is the (i, j)-entry of w 's rank matrix.

Definition 9.13. The Schubert determinantal ideal is the ideal

$$
\mathcal{I}_{w}=\left\langle\text { minor }_{r_{i j}+1} \text { in the northwest submatrix } Z_{i j}\right\rangle
$$

So why we can put Schubert in front of everything? If we take X_{w}, and consider $X_{w} \cap \mathrm{GL}_{n}(\mathbb{C})$, and take a quotient by Borel subgroup B. This gives $X_{w} \cap \mathrm{GL}_{n}(\mathbb{C}) / B \subseteq$ Flag, then we get the Schubert variety $\Omega_{w_{0} \cdot w^{-1}}$.

We want to understand what's going on with those, and the first question to ask is, is \mathcal{I}_{w} radical, and if this is the case, is \mathcal{I}_{w} is prime?

To do this, we will deform our space to something simpler.
Example 9.14. Take $w=4321$, then the rank matrix is

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 2 \\
0 & 1 & 2 & 3 \\
1 & 2 & 3 & 4
\end{array}\right]
$$

Most of the conditions in the Schubert determinantal ideal is redundant. In particular, all we need is the information from the blue boxes in the following:

To see this, note if we know, for example, the rank of the submatrix at $(3,1)$ is zero, then the rank of submatrices on top of this blue box must all be 0 . If we know the submatrix at $(3,1)$ and $(2,2)$, then we know the submatrix at $(3,2)$ is at most 1 , and so on.

Theorem 9.15 (Fulton). \mathcal{I}_{w} is generated by the minors from the essential rank conditions.

This is plausible because rank functions restricted to essential set determines the permutation. Apparently, people just call this the Fulton generators.

Let $R=\mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$ be a polynomial ring and \mathcal{I} an ideal of R. Then we have the quotient ring R / \mathcal{I}. If \mathcal{I} is homogenous, then R / \mathcal{I} is graded, and each graded piece is a \mathbb{C}-vector space.

Thus, the natural question is, what is $\operatorname{dim}_{\mathbb{C}}(R / \mathcal{I})^{(m)}$? Well, since this is a combinatorics course, of course we want to build the generating function:

$$
H(t):=\sum_{m=0}^{\infty} \operatorname{dim}_{\mathbb{C}}(R / \mathcal{I})^{(m)} t^{m}
$$

This is the Hilbert series of R / \mathcal{I}.
Example 9.16. Consider $\mathbb{C}[x, y, z] /(0)$, then

$$
H(t)=1+3 t+6 t^{2}+\binom{3+2}{2} t^{3}+\binom{4+2}{2} t^{4}+\ldots+\binom{m+2}{2} t^{m}+\ldots=\frac{1}{(1-t)^{3}}
$$

Similarly, we see $\mathbb{C}\left[z_{1}, \ldots, z_{n}\right] /(0)$ gives $H(t)=\frac{1}{(1-t)^{n}}$.
Next, take $\mathcal{I}=(x y)$ and consider $\mathbb{C}[x, y, z] /(x y)$. In this case,
$H(t)=1+3 t+5 t^{2}+7 t^{3}+(15-6) t^{4}+\ldots+\left(\binom{m+2}{2}-\binom{m+2-2}{2}\right) t^{m}+\ldots=\frac{1-t^{2}}{(1-t)^{3}}$

We observe in all three examples, the $H(t)$ always has the rational form, and it is of the form $H(t)=\frac{k(t)}{(1-t)^{n}}$, if we are working with n variables, where the $k(t)$ is called the k-polynomial of R / \mathcal{I}. There is another piece of information we can obtain from this.

Example 9.17. Take $\mathcal{I}=(x y)$ and $R=\mathbb{C}[x, y, z]$. In this case, we have $k(t)=$ $1-t^{2}$. Next, we make a change of variable $t \mapsto 1-t$, and then $k(t)$ becomes $2 t-t^{2}$, and we call the lowest degree part to be the degree of R / \mathcal{I}. In this case, the degree is $2 t$. If the setting is nice, then the coefficient of the degree gives the number of irreducible components of R / \mathcal{I}, and t tells you the codimension of those irreducible components are 1.

We also note normal people would say the degree is 2 , not $2 t$.

Next, we want to milk the Schubert polynomials out of this. Thus, let's go back to the setup with a matrix of variables $\left(z_{i j}\right)_{1 \leq i, j \leq n}$. Next, we say $z_{i j}$ has multidegree $\hat{e}_{i}=(0, \ldots, 1, \ldots, 0)$ where we get 1 at i th position. For example, in this case, the polynomial $z_{13} z_{25} z_{14} z_{23}^{2} z_{78}$ has multidegree

$$
(2,3,0,0,0,0,1,0)
$$

Now consider $R\left(z_{i j}\right) / \mathcal{I}$ with \mathcal{I} multidegree homogenous, we get multi-graded Hilbert series

$$
\begin{aligned}
H\left(t_{1}, \ldots, t_{n}\right) & =\sum_{m \in \mathbb{Z}_{\geq 0}^{n}} \operatorname{dim}_{\mathbb{C}}(R / \mathcal{I})^{\left(m_{1}, \ldots, m_{n}\right)} t_{1}^{m_{1}} t_{2}^{m_{2}} \ldots t_{n}^{m_{n}} \\
& =\frac{k\left(t_{1}, \ldots, t_{n}\right)}{\prod_{i=1}^{n} \prod_{j=1}^{n}\left(1-t_{i}\right)}
\end{aligned}
$$

Next, let's do the change of variable $t_{i} \mapsto 1-t_{i}$, we get the lowest degree part to be the multi-degree of R / \mathcal{I}.

Remark 9.18. What we are secretly doing is, we have the left action of diagonal invertible matrices T to $\left(z_{i j}\right)$. Then $V(\mathcal{I})$ has an T-equivariant cohomology class which is more or less the multi-degree of R / \mathcal{I} we are considering, and the k-polynomial is more or less the T-equivariant K-class.

Theorem 9.19 (Feher-Rimanyi, 2003; Knutson-Miller, 2005). The matrix Schubert variety X_{w} has multi-degree is equal $\mathfrak{S}_{w}\left(t_{1}, \ldots, t_{n}\right)$. Next, sending $t_{i} \mapsto 1-t_{i}$, the k-polynomial becomes $\overline{\mathfrak{S}_{w}}\left(\beta=-1, t_{1}, \ldots, t_{n}\right)$.

Well, it is natural to ask, we got 8 different bases of ASym, do we have analogous varieties for the rest seven bases? We don't know.

10 Grobner Bases

The next topic will be Grobner bases.

Definition 10.1. Let $R=\mathbb{C}[Z]$. A monomial order is a total orders on monomials such that:

1. $m<n$ if and only if $m p<n p$.
2. $m \leq m p$.

Example 10.2. The lexicographic order is a monomial order: we order the variables $z_{1}<z_{2}<\ldots<z_{n}$, then $Z^{a}<Z^{b}$ if rightmost non-zero entry of $b-a$ is positive.

The graded lexicographic order is also monomial order: first order by total degree, break ties with lexicographic order.

Definition 10.3. For $f \in R$, the initial term $\operatorname{init}(f)$ is the one term in f whose monomial is biggest. For $F \subseteq R$, we $\operatorname{define~} \operatorname{init}(F)=\{\operatorname{init}(f): f \in F\}$, and hence for an ideal \mathcal{I} we define the initial ideal as $\langle\operatorname{init}(\mathcal{I})\rangle$.

Example 10.4. Consider two variables $x<y$ and $f=2 x^{2}+3 x y+4 y^{2}$, then we see $V(f)$ is a hyperbola. For $t \in \mathbb{C} \backslash 0$, we send $(x, y) \mapsto\left(t x, t^{2} y\right)$, then we get $f \mapsto 2 t^{2} x^{2}+3 t^{3} x y+4 t^{4} y^{2}$. Then, observe

$$
\begin{aligned}
V(t \cdot f) & =V\left(2 t^{2} x^{2}+3 t^{3} x y+4 t^{4} y^{2}\right) \\
& =V\left(\frac{2 t^{2} x^{2}+3 t^{3} x y+4 t^{4} y^{2}}{t^{4}}\right) \\
& =V\left(\frac{2}{4 t^{2}} x^{2}+\frac{3}{4 t} x y+y^{2}\right)
\end{aligned}
$$

However, if we consider $t \rightarrow \infty$, we get our vanishing locus becomes $V\left(y^{2}\right)$. To think about this, we have the two branches of the hyperbola becomes closer and closer together as t becomes bigger and bigger, and when t goes to infinity, the two branches just become one branch with multiplicity 2 .

The moral is, if you don't understand what hyperbolas are, we can just look at the limit of this family of hyperbolas, and we see it is $V\left(y^{2}\right)$ in our case, and we can say, oh, so hyperbolas are "just" two lines. So, using degeneration, we get simpler objects, and properties can only get worse.

Remark 10.5. The general principal is, for many properties, $V(\langle\operatorname{init} \mathcal{I}\rangle)$ is weakly "worse" than $V(\mathcal{I})$. So if you can compute $V(\langle\operatorname{init} \mathcal{I}\rangle)$ is "nice", then $V(\mathcal{I})$ is at least that nice.

Here are some examples:

1. If \langle init $\mathcal{I}\rangle$ is reduced, then \mathcal{I} was reduced.
2. If $\langle\operatorname{init} \mathcal{I}\rangle$ is prime, then \mathcal{I} was prime.
3. If $\langle\operatorname{init} \mathcal{I}\rangle$ is Cohen-Macaulay (CM), then \mathcal{I} was CM.
4. The multi-graded Hilbert function of R / \mathcal{I} and $R /\langle\operatorname{init} \mathcal{I}\rangle$ are equal. So, the k-polynomial and the multidegree also match.

Thus, this gives us a way to compute the multidegree of matrix Schubert variety, by finding $\left\langle\operatorname{init} \mathcal{I}_{w}\right\rangle$.

Now, suppose $\mathcal{I}=\left\langle g_{1}, \ldots, g_{k}\right\rangle$, then we can take $\left\langle\operatorname{init}\left(g_{i}\right): 1 \leq i \leq k\right\rangle \subseteq\langle\operatorname{init} \mathcal{I}\rangle$. It would be nice if they are equal.

Definition 10.6. Say $\left\{g_{1}, \ldots, g_{k}\right\}$ is a Grobner basis for \mathcal{I} if $\mathcal{I}=\left\langle g_{1}, \ldots, g_{k}\right\rangle$ and

$$
\left\langle\text { init } g_{i}: 1 \leq i \leq n\right\rangle=\langle\text { init } \mathcal{I}\rangle
$$

Example 10.7. Here is an example of non-Grobner basis. Say $w=2143$, and our Fulton generators is

$$
\mathcal{I}_{w}=\left\langle z_{11}, d:=\right| \begin{array}{lll}
z_{11} & z_{12} & z_{13} \\
z_{21} & z_{22} & z_{23} \\
z_{31} & z_{32} & z_{33}
\end{array}| \rangle
$$

Thus we see $z_{11} z_{22} z_{33} \in \mathcal{I}$ and $z_{11} z_{23} z_{32} \in \mathcal{I}$. Then $d-z_{11} z_{22} z_{33}+z_{11} z_{23} z_{32} \in \mathcal{I}$ and this term contains no z_{11}. Then, suppose take a monomial order such that $z_{11} z_{22} z_{33}$ is the lead term for d.

THen, we see $\operatorname{init}\left(\mathcal{I}_{w}\right)$ is not the same as $\operatorname{init}\left(z_{11}\right)=z_{11}$ and $\operatorname{init}(d)=$ $z_{11} z_{22} z_{33}$ because $\operatorname{init}(d) \in\left\langle z_{11}\right\rangle$ and hence

$$
\left\langle\operatorname{init}\left(z_{11}\right), \operatorname{init}(d)\right\rangle=\left\langle z_{11}\right\rangle \mp\left\langle\operatorname{init} \mathcal{I}_{w}\right\rangle
$$

This shows, by picking the monomial order in a bad way, we get a non-Grobner basis.

Last time we talked about Grobner bases. However, we note this is not realy a basis because we can always add new terms to a Grobner basis to get another, i.e. we don't have minimal condition on the basis, hence they are realy just a spanning set.

Next, we ask do they exist? Well, of course, just take the whole \mathcal{I}. But this is bad, so a better question is, do finite Grobner basis exists?

Theorem 10.8 (Hilbert). Every \mathcal{I} has a finite set of generators.

Theorem 10.9 (Buchberger). There is a finite algorithm to produce a finite Grobner basis from finite set of generator.

However, Hilbert's basis theorem only tells you finite generators exists, but not what they are. So, in general it is still hard to find Grobner basis.

Definition 10.10. For $R=\mathbb{C}[Z]$ where Z is $n \times n$ matrix of variables. We say a monomial order is diagonal if the lead term of every minor is the product along the main diagonal. We say it is anti-diagonal if lead term of every minor is product along the anti-diagonal.

Theorem 10.11 (Knutson-Miller, 2005). For all $w \in S_{n}$, and any anti-diagonal monomial order, the Fulton generators are a Grobner basis.
| Corollary 10.11.1. \mathcal{I}_{w} is radical.

Proof. Fulton generators are determinants, so lead terms are square-free and hence there are no root we can take. This shows \mathcal{I}_{w} is radical as well.

Example 10.12. Last time we considered $\operatorname{init}\left(\mathcal{I}_{2143}\right)$, which gives non-Grobner basis. Now we consider the anti-diagonal one, which gives

$$
\left\langle\operatorname{init}_{a d}\left(\mathcal{I}_{2143}\right)\right\rangle=\left\langle z_{11}, z_{13} z_{22} z_{31}\right\rangle=\left\langle z_{11}, z_{13}\right\rangle \cap\left\langle z_{11}, z_{22}\right\rangle \cap\left\langle z_{11}, z_{31}\right\rangle
$$

Viz, it has pretty simple primiary decomposition (i.e. you get prime ideals).
Theorem 10.13 (Lasker, 1905; Noether, 1921). Every radical ideal \mathcal{I} in a polynomial ring $\mathbb{C}[Z]$ has an essentially unique primiary decomposition into prime ideals, i.e. $\mathcal{I}=\mathcal{P}_{1} \cap \ldots \cap \mathcal{P}_{k}$.

Geometrically, this tells us $V(\mathcal{I})=V\left(\mathcal{P}_{1} \cap \ldots \cap \mathcal{P}_{k}\right)=V\left(\mathcal{P}_{1}\right) \cup \ldots \cup V\left(\mathcal{P}_{k}\right)$. Hence, in the example of \mathcal{I}_{2143}, see

$$
V\left(\mathcal{I}_{2143}\right)=V\left(z_{11}, z_{13}\right) \cup V\left(z_{11}, z_{22}\right) \cup V\left(z_{11}, z_{31}\right)
$$

But we see $V\left(z_{11}, z_{13}\right)$ is just the codimension 2 linear subspace given by $z_{11}-z_{31}=0$, and similarly for the other two.

We can always do this, and decompose matrix Schubert varieties into union of coordinate subspaces.

11 Pipe Dreams, Again

Recall $w=2143$, and let's consider its pipe dream. To get the pipe dream, we first take its Rothe diagram

Thus, we get all the pipe dreams by slide the + along the diagonal its located. Hence we get three pipe dreams as follows

But, now if we look at where the crosses are located, they are exactly given by $((1,1),(2,2)),((1,1),(3,1))$ and $((1,1),(1,3))$. This is exactly our coordinate subspaces, and this is always happening for matrix Schubert varieties.

Theorem 11.1 (Knutson, 2019). Schubert polynomials, pipe dreams, and multidegree of matrix Schubert varieties all satisfies the same "cotransition" recurrence as follows: for $w \neq w_{0}$, let i be the least such that $i+w(i)<n$, then

$$
x_{i} \mathfrak{S}_{w}=\sum_{\substack{w<u \\ w(i) \neq u(i)}} \mathfrak{S}_{u}
$$

Clearly they have the same base case:

1. $\mathfrak{S}_{w_{0}}=x_{1}^{n-1} x_{2}^{n-2} \ldots x_{n}^{0}$
2. We only have one pipe dream for w_{0}, which is all + stuffed at the top left corner.
3. The matrix Schubert variety $\mathcal{I}_{w_{0}}=\left\langle z_{11}, z_{12}, z_{13}, z_{21}, z_{22}, z_{31}, \ldots\right\rangle$

Next, we check this on $w=2143=s_{1} s_{3}=s_{3} s_{1}$. In this case, the Rothe diagram is

where the red star is the i we are looking for, i.e. $i=1$ and $w(i)=2$.
Next, we check cover in the Bruhat order. They are given by

$$
\begin{gathered}
u_{1}=s_{1} s_{3} s_{2}=2143 s_{2}=2413 \\
u_{2}=s_{2} s_{1} s_{3}=s_{2} 2143=3142 \\
u_{3}=s_{1} s_{2} s_{3}=2341 \\
u_{4}=s_{3} s_{2} s_{1}=4123
\end{gathered}
$$

In the above, u_{1}, u_{3} does not work because we don't have $w(1) \neq u(1)$. Thus, by the cotransition recurrence, we have

$$
\mathfrak{S}_{2143}=x_{1}\left(x_{1}+x_{2}+x_{3}\right)
$$

On the other hand,

$$
\begin{gathered}
\mathfrak{S}_{3142}=x_{1}^{2}\left(x_{2}+x_{3}\right) \\
\mathfrak{S}_{4123}=x_{1}^{3}
\end{gathered}
$$

It's not hard to see we indeed have

$$
x_{1} \mathfrak{S}_{2143}=\mathfrak{S}_{3142}+\mathfrak{S}_{4123}
$$

Theorem 11.2 (Knutson-Miller, 2005). For $w \in S_{n}$,

$$
\left\langle\operatorname{init}_{a d}\left(\mathcal{I}_{w}\right)\right\rangle=\bigcap_{\substack{\text { reduced } \\
\text { pipe } \begin{array}{c}
\text { dreams } \\
\text { of } w
\end{array}}}\left\langle z_{i j}: P \text { has } \boxplus \text { in }(i, j)\right\rangle
$$

We note on the left hand side, we need to pick a particular order (i.e. anti-diagonal order). This means, when we change the monomial order on the LHS, we should have different combinatorics on the right hand side.

In particular, what about diagonal orders? In this case, the Fulton generators for $w=2143$ were not Grobner basis, so we have to try harder.

Theorem 11.3 (Knutson-Miller-Yong, 2009). The Fulton generator of \mathcal{I}_{w} are diagonal Grobner iff w avoid 2143 (i.e. w is vexillary).

The terms of the prime decomposition of $\left\langle\operatorname{init}_{d} \mathcal{I}_{w}\right\rangle$ correspond to flagged semistandard tableaux. In particular, if w is Grassmannian permutation, then this correspond to tableaux formula for Schur functions.

This seems like the end of the story, but we also have an ester egg from Lascoux. Definition 11.4 (Hamaker-Pechenik-Weigandt). The dominant part, $\operatorname{Dom}(w)$, of the Rothe diagram $D(w)$ is its cells with rank 0 . Let Z be a matrix of variables, let $Z^{\operatorname{Dom}(w)}$ be Z with $Z_{i j} \mapsto 0$ if $(i, j) \in \operatorname{Dom}(w)$.

Example 11.5. In the case of 2143 , we get

$$
Z^{\operatorname{Dom}(w)}=\left[\begin{array}{ccc}
0 & z_{12} & z_{13} \\
z_{21} & z_{22} & z_{23} \\
z_{31} & z_{32} & z_{33}
\end{array}\right]
$$

On the other hand, if $w=21543$, then the Rothe diagram is

Then $Z^{\operatorname{Dom}(w)}$ is similar to the above, with only z_{11} equal 0 .

Then, we have \mathcal{I} is equal the ideal generated by $z_{i j}$ for $(i, j) \in \operatorname{Dom}(w)$ and the $\left(r_{i j}+1\right) \times\left(r_{i j}+1\right)$ minors in NW submatrix of $Z_{i j}^{\operatorname{Dom}(w)}$ for essential, non-dominant (i, j). Those are called the CDG (Canca, DeNegr, Corla) generators.

Last time we have the dominant part associated with the Rothe diagram.
Example 11.6. Consider $w=2143$ with Rothe diagram

Then we get

$$
\mathcal{I}_{2143}=\left\langle z_{11},\right| \begin{array}{ccc}
0 & z_{12} & z_{13} \\
z_{21} & z_{22} & z_{23} \\
z_{31} & z_{32} & z_{33}
\end{array}| \rangle
$$

and

$$
\mathcal{I}_{2143}=\left\langle z_{11}, z_{12} z_{23} z_{31}+z_{13} z_{21} z_{32}-z_{12} z_{21} z_{33}-z_{13} z_{22} z_{31}\right\rangle
$$

The anti-diagonal Grobner basis is $z_{11}, z_{13} z_{22} z_{31}$, and the diagonal Grobner basis is $z_{11}, z_{12} z_{21} z_{33}$.

Theorem 11.7 (Klein, 2020). The $C D G$ generators of \mathcal{I}_{w} are diagonal Grobner iff we avoids

$$
13254,21543,214635,215364,241635,315264,215634,4261735
$$

In the above, we note 214635 and 215364 are inverse of each other, and 241645 and 315264 are inverse of each other.

In the case of 13254 , it is just 2143 bumped to S_{5} by adding a one.
In the case of 21543, even we have a box at the top left place, it is still bad because the two boxes $(4,3)$ and $(3,4)$ locations.

In the case of 214635 , there are two boxes on the same row.
Next, we are going to talk about bumpless pipe dreams.
Consider the tiling of n by n grids, and last time we have two tiles, and for bumpless pipe dreams we are going to throw away the bumps and use the following set of tiles $\boxplus, \llbracket, \rrbracket, \square, \llbracket, ~ \boxminus$.

The rules are, there are n pipes starting at the bottom edges and ending at the right edge, each pair of pipes crossing at most once.

Here is an example:

Each BPD has an associated permutation, as we can see from above.
The BPDs for $w \in S_{n}$ are constructed by droop moves. First, each $w \in S_{n}$ associates to a natural BPD by change the laser dots in the Rothe diagram to the [-tile. We can see from the above example. Next, we are going to get all the BPDs from this via droop moves.

A droop move is given by the following:

where the blue colour indicates blank tiles.
Let's see a real example in action:

where on the blue indicates blank, the green and purple dots indicates possible droops, and the left and bottom are results of droops.

Now let's look back to the CDG generator of \mathcal{I}_{2143}, which is

$$
\left\langle z_{11}, z_{12} z_{21} z_{33}\right\rangle=\left\langle z_{11}, z_{12}\right\rangle \cap\left\langle z_{11}, z_{21}\right\rangle \cap\left\langle z_{11}, z_{33}\right\rangle
$$

How is this correspond to our above BPD? Well, they correspond to the blank tiles.
Theorem 11.8 (Lam-Lee-Shimozono, 2021; Lascoux, 2002; Weigandt, 2021).
For all $w \in S_{n}$,

$$
\mathfrak{S}_{w}(x, y)=\sum_{P \in \operatorname{BPD}(w)} \prod_{\substack{(i, j) \in P \\ i \varsigma \\ i s}}\left(x_{i}-y_{j}\right)
$$

Let's compare the oridinary formula and this new formula. The old one we have

$$
\mathfrak{S}_{w}(x, y)=\sum_{P \in \operatorname{PD}(w)} \prod_{\substack{(i, j) \in P \\ \text { is } \llbracket}}\left(x_{i}-y_{j}\right)
$$

and we see they are very similar.
However, when we write out the example, we see the new formula gives

$$
\begin{aligned}
\mathfrak{S}_{2143}(x, y) & =\left(x_{1}-y_{1}\right)\left(x_{3}-y_{3}\right)+\left(x_{1}-y_{1}\right)\left(x_{2}-y_{1}\right)+\left(x_{1}-y_{1}\right)\left(x_{1}-y_{2}\right) \\
& =\left(x_{3}-y_{3}\right)+\left(x_{2}-y_{1}\right)+\left(x_{1}-y_{2}\right)
\end{aligned}
$$

and the old formula gives

$$
\begin{aligned}
\mathfrak{S}_{2143}(x, y) & =\left(x_{1}-y_{1}\right)\left(x_{3}-y_{1}\right)+\left(x_{1}-y_{1}\right)\left(x_{2}-y_{2}\right)+\left(x_{1}-y_{1}\right)\left(x_{1}-y_{3}\right) \\
& =\left(x_{3}-y_{1}\right)+\left(x_{2}-y_{2}\right)+\left(x_{1}-y_{3}\right)
\end{aligned}
$$

We see they are the same polynomial, with variables changed. This implies there is no bijection between $\operatorname{BPD}(w)$ and $\mathrm{PD}(w)$ preserving the double weight.

Theorem 11.9 (Gao-Huang, 2021). There is an explicit bijection preserving the x-weight.

The naive hope is that, for $w \in S_{n},\left\langle\operatorname{init}_{d}\left(\mathcal{I}_{w}\right)\right\rangle$ has a prime decomposition as

$$
\bigcap_{P \in \operatorname{BPD}(w)}\left\langle z_{i j}:(i, j) \in P \text { is } \square\right\rangle
$$

This works for $w=2143$, but this is wrong in general!
Problem one: $\operatorname{In}\left\langle\operatorname{init}_{d}\left(\mathcal{I}_{w}\right)\right\rangle$ is not radical in general. Thus it does not have a prime decomposition at all (it still has primiary decomposition, of course).

Problem two: In general, $\left\langle\operatorname{init}_{d}\left(\mathcal{I}_{w}\right)\right\rangle$ is not well-defined. It depends on the choice of diagonal order.

The resolution of problem two is that, the dependence is mild, although we get different primiary decomposition, the set of associated primes are equal. Actually, the multiplicity of each associated prime is equal as well (in this case, we can't distinguish, say in $\mathbb{C}[x, y, z]$, that $\left\langle x^{2}, y\right\rangle$ and $\left\langle x, y^{2}\right\rangle$ are different)

The resolution of problem one is that, BPDs also appear with multiplicity. What this means is that, in normal pipe dream, if we know all the crosses, then we know the entire tiling, but this is not the same in BPDs, where even we know all the blank tiles, we can't ascertain a unique BPD.

Example 11.10. For example, say $w=321654$. Then one possible list of droop moves are

Another possible sequence that gives the same resulting BPD is

Both contribute to

$$
\left(x_{1}-y_{1}\right)\left(x_{1}-y_{2}\right)\left(x_{1}-y_{3}\right)\left(x_{2}-y_{1}\right)\left(x_{2}-y_{2}\right)\left(x_{3}-y_{1}\right)
$$

This correspond to coordinate subspace

$$
\left\langle z_{11}, z_{12}, z_{13}, z_{21}, z_{22}, z_{31}\right\rangle
$$

But every diagonal degeneration of \mathcal{I}_{321654} has the above subspace with multiplicity 2.

Theorem 11.11 (Klein-Weigandt, 2021). For any diagonal monomial order d and any $w \in S_{n}$, the irreducible components of $V\left(\left\langle\operatorname{init}_{d}\left(\mathcal{I}_{w}\right)\right\rangle\right)$ counted with multiplicity correspond to the BPDs for w counted with multiplicity, ie. the coordinate subspace $V\left(\left\langle z_{i_{1}, j_{1}}, \ldots, z_{i_{k}, j_{k}}\right\rangle\right)$ appear with multiplicity m if and only if
there exist m many BPDs for w with \square in exactly positions $\left(i_{l}, j_{l}\right)$.
There are still some problems with this:

1. We still don't have Grobner bases (except CDG case).
2. When does multiplicity occur?

Example 11.12. Consider $w=21543$, which is not CDG. The Rothe diagram is

The Fulton generators are z_{11}, four 3×3 minors in the matrix enclosed by z_{11} and z_{34}, and three more 3×3 minors enclosed by z_{11} and z_{43}. Take diagonal order that is going left to right in rows first and top to bottom second. Then

$$
\left\langle\operatorname{init}_{d}\left(\mathcal{I}_{21543}\right)\right\rangle
$$

has a minimal generating set with q elements including one with degree 5 . But what is the degree five element? We don't realy know...

Example 11.13. Consider $w=214365$. Let d be diagonal order that's lexicographic and it's going left to right first and top to bottom. Let d^{\prime} be lexicographic and going top to bottom first, then going left to right second. The Rothe diagram for w is

Then the Fulton generators are $z_{11}, \operatorname{det}\left(z_{11} \rightarrow z_{33}\right)$ and $\operatorname{det}\left(z_{11} \rightarrow z_{55}\right)$ where $a \rightarrow$ b means the submatrix enclosed by a and b. Then $\left\langle\operatorname{init}_{d}\left(\mathcal{I}_{214365}\right)\right\rangle$ is generated by $z_{11}, z_{12} z_{21} z_{33}, z_{12} z_{21} z_{34} z_{43} z_{55}, z_{12} z_{23} z_{31} z_{34} z_{43} z_{55}$ and $z_{13} z_{21}^{2} z_{32} z_{31} z_{43} z_{55}$. When we take d^{\prime} instead of d, we get $\left\langle\operatorname{init}_{d^{\prime}}\left(\mathcal{I}_{214365}\right)\right\rangle$ is generated almost similar terms, namely $z_{11}, z_{12} z_{21} z_{33}, z_{12} z_{21} z_{34} z_{43} z_{55}, z_{12}^{2} z_{23} z_{31} z_{34} z_{43} z_{55}$ and $z_{13} z_{21} z_{32} z_{31} z_{43} z_{55}$. Here, the last generator don't have square terms anymore, and the second last generator gained a square term.

Both gives $V\left(\left\langle z_{11}, z_{12}, z_{21}\right\rangle\right)$ with multiplicity 2 , one from $V\left(z_{11}, z_{12}^{2}, z_{21}\right)$ and one from $V\left(z_{11}, z_{12}, z_{21}^{2}\right)$.

Example 11.14. Now move to $w=2143675$. Define d and d^{\prime} as as before. Then $\left\langle\operatorname{init}_{d}\left(\mathcal{I}_{w}\right)\right\rangle$ has 43 associated primes at height 4 that correspond to irreducible components and 10 embedded primes at height 5 . On the other hand, if we change d to d^{\prime}, then we still get 43 associated primes at height 4, and 6 embedded primes at height 5 .

We don't have any understanding when is this happening (i.e. when do embedded primes occur?). It would be nice if this is some pattern avoiding, but we don't know.

Next, we talk about how transition fit in the story.
Theorem 11.15 (Equivariant Transition, Kohnert-Veigneau, 1997). Let (a, b) be a maximally southeast box of $D(w)$. Set $v=w t_{a, w^{-1}(b)}$ where $t_{a, b}$ is the permutation swaps a and b such that $D(w)=D(v) \cup\{(a, b)\}$. Let $\Phi(w, v)=\left\{v t_{i, a}\right.$: $\left.i<a, v t_{i, a}>v\right\}$. Then

$$
\mathfrak{S}_{w}(x, y)=\left(x_{a}-y_{b}\right) \mathfrak{S}_{v}(x, y)+\sum_{u \in \Phi(w, v)} \mathfrak{S}_{u}(x, y)
$$

Example 11.16. Let $w=42154$, then we have the following droops:

Next, fix $(a, b)=(4,3)$, and let $v=w t_{45}=42135$. Then we get

$$
\Phi(w, v)=\left\{u_{1}:=43125=v t_{24}, u_{2}:=42315=v t_{34}\right\}
$$

For u_{1} and u_{2}, we have the following

where the purple arrow indicates equality. Thus, we see the above theorem indeed holds if we add $v=w t_{45}$ in the picture.

Theorem 11.17 (Weigandt, 2021). Let (a, b) be maximally southeast in $D(w)$ and $v=w t_{a, w^{-1}(b)}$. There is a bijection

$$
\Psi: \operatorname{BPD}(w) \rightarrow \operatorname{BPD}(v) \cup \bigcup_{u \in \Phi(w, v)} \operatorname{BPD}(u)
$$

such that:

1. if $\Psi(P) \in \operatorname{BPD}(v)$, then the blank boxes \square for P is equal the blank boxes of $\Psi(P)$ union a blank box at (a, b).
2. otherwise the blank boxes of P is equal blank boxes of $\Psi(P)$.

Proof. The Rothe diagram for v comes from the Roth diagram for w by supplying the exits of pipes b and $w(a)$. Every BPD for w has the same tiles southeast of (a, b) becausethey are connected by droops, so we can do this same swap on all of $\operatorname{BDP}(w)$. Let $P \in \operatorname{BPD}(w)$, then (a, b) has either \square or \square.

Case 1: P has \square in (a, b). Then the pipe swap gives a BPD P^{\prime} for v with $\square(P)=\square\left(P^{\prime}\right) \cup\{(a, b)\}$, set $\Psi(P)=P^{\prime}$. Here $\square(P)$ just mean the blank boxes of P.

Case 2: P has \rrbracket in (a, b). Then the pipe swap puts a bumping tile \mathbb{E} in (a, b). But this is a bump and hence we want to fix this, and we have a unique way to do this: replace \square with \boxplus and call the result $\Psi(P)$. Clearly $\square(P)=\square(\Psi(P))$. Now $\Psi(P) \in \bigcup_{u \epsilon \Phi(w, v)} \operatorname{BPD}(u)$.

It remains to check this is a bijection, and the proof follows.

[^0]: ${ }^{1}$ Not in the same row, but just on the right in general

[^1]: ${ }^{2}$ In the sense that it should be correct, but our prof don't have a proof yet

