When Is Linear Recursion Non-negative

Dongshu Dai

University of Waterloo
April 3, 2023

Linear Recursion

Question

Linear Recursion

Question

Tell me if the terms of $u_{n}=u_{n-1}+u_{n-2}$ eventually ≥ 0 for initial values:

Linear Recursion

Question

Tell me if the terms of $u_{n}=u_{n-1}+u_{n-2}$ eventually ≥ 0 for initial values:

- $u_{0}=u_{1}=1$

Linear Recursion

Question

Tell me if the terms of $u_{n}=u_{n-1}+u_{n-2}$ eventually ≥ 0 for initial values:
($u_{0}=u_{1}=1$

- $u_{0}=-1, u_{1}=1$

Linear Recursion

Question

Tell me if the terms of $u_{n}=u_{n-1}+u_{n-2}$ eventually ≥ 0 for initial values:
($u_{0}=u_{1}=1$

- $u_{0}=-1, u_{1}=1$

This is pretty easy, right?

Linear Recursion

Question

Tell me if the terms of $u_{n}=u_{n-1}+u_{n-2}$ eventually ≥ 0 for initial values:

- $u_{0}=u_{1}=1$
- $u_{0}=-1, u_{1}=1$

This is pretty easy, right?

Question

Tell me what initial values of u_{0}, u_{1}, u_{2} makes the recursion $u_{3}=\frac{3}{2} u_{2}+\frac{3}{2} u_{1}-u_{0}$ eventually ≥ 0 ?

Linear Recursion

Question

Tell me if the terms of $u_{n}=u_{n-1}+u_{n-2}$ eventually ≥ 0 for initial values:
($u_{0}=u_{1}=1$

- $u_{0}=-1, u_{1}=1$

This is pretty easy, right?

Question

Tell me what initial values of u_{0}, u_{1}, u_{2} makes the recursion $u_{3}=\frac{3}{2} u_{2}+\frac{3}{2} u_{1}-u_{0}$ eventually ≥ 0 ?

Not so easy now, isn't it?

Linear Recursion

Question

Tell me if the terms of $u_{n}=u_{n-1}+u_{n-2}$ eventually ≥ 0 for initial values:
($u_{0}=u_{1}=1$

- $u_{0}=-1, u_{1}=1$

This is pretty easy, right?

Question

Tell me what initial values of u_{0}, u_{1}, u_{2} makes the recursion $u_{3}=\frac{3}{2} u_{2}+\frac{3}{2} u_{1}-u_{0}$ eventually ≥ 0 ?

Not so easy now, isn't it?

Question

What about $u_{3}=(2 \sqrt{5}+3) u_{2}-3(2 \sqrt{5}+3) u_{1}-27 u_{0}$?

Definition

Let $\mathbf{u}=\left\{u_{n}\right\}_{n \geq 0}$ be a linear recurrence sequence (LRS) defined by

$$
u_{n+k}=a_{1} u_{n+k-1}+\ldots+a_{k} u_{k}
$$

Definition

Let $\mathbf{u}=\left\{u_{n}\right\}_{n \geq 0}$ be a linear recurrence sequence (LRS) defined by

$$
u_{n+k}=a_{1} u_{n+k-1}+\ldots+a_{k} u_{k}
$$

Definition

We say \mathbf{u} is:

Definition

Let $\mathbf{u}=\left\{u_{n}\right\}_{n \geq 0}$ be a linear recurrence sequence (LRS) defined by

$$
u_{n+k}=a_{1} u_{n+k-1}+\ldots+a_{k} u_{k}
$$

Definition

We say \mathbf{u} is:

- positive if $u_{n} \geq 0$ for all $n \geq 0$

Definition

Let $\mathbf{u}=\left\{u_{n}\right\}_{n \geq 0}$ be a linear recurrence sequence (LRS) defined by

$$
u_{n+k}=a_{1} u_{n+k-1}+\ldots+a_{k} u_{k}
$$

Definition

We say \mathbf{u} is:
(positive if $u_{n} \geq 0$ for all $n \geq 0$
(ultimately positive if $\exists N$ so $u_{n} \geq 0$ for all $n \geq N$

Questions To Keep In Mind

At first glance, there are four types of questions we can ask:

Questions To Keep In Mind

At first glance, there are four types of questions we can ask:

- Can we decide \mathbf{u} contains a 0 or not?

Questions To Keep In Mind

At first glance, there are four types of questions we can ask:

- Can we decide \mathbf{u} contains a 0 or not?
- Can we decide \mathbf{u} contains infinitely many 0 or not?

Questions To Keep In Mind

At first glance, there are four types of questions we can ask:

- Can we decide u contains a 0 or not?
- Can we decide \mathbf{u} contains infinitely many 0 or not?
- Can we decide \mathbf{u} is positive?

Questions To Keep In Mind

At first glance, there are four types of questions we can ask:

- Can we decide u contains a 0 or not?
- Can we decide \mathbf{u} contains infinitely many 0 or not?
- Can we decide \mathbf{u} is positive?
- Can we decide \mathbf{u} is ultimately positive or not?

State of the Art

So far, the following is what we know:

State of the Art

So far, the following is what we know:

- question 1 is still open (for about 90 to 100 years)

State of the Art

So far, the following is what we know:

- question 1 is still open (for about 90 to 100 years)
- this is called the Skolem's problem

State of the Art

So far, the following is what we know:

- question 1 is still open (for about 90 to 100 years)
- this is called the Skolem's problem
- question 2 is solved

State of the Art

So far, the following is what we know:

- question 1 is still open (for about 90 to 100 years)
- this is called the Skolem's problem
- question 2 is solved
- question 3 and 4 are still open for large depth

Aside

Linear recursive model arises very naturally from different areas of science.

Aside

Linear recursive model arises very naturally from different areas of science.

- In biology we have what's called L-system, which was originated from simulating the development of multicellular organisms

Aside

Linear recursive model arises very naturally from different areas of science.

- In biology we have what's called L-system, which was originated from simulating the development of multicellular organisms
- In echonomics we have stability problem of supply and demand equilibria

Aside

Linear recursive model arises very naturally from different areas of science.

- In biology we have what's called L-system, which was originated from simulating the development of multicellular organisms
- In echonomics we have stability problem of supply and demand equilibria
O In computer science we have verification of lienar automata

Aside

Linear recursive model arises very naturally from different areas of science.

- In biology we have what's called L-system, which was originated from simulating the development of multicellular organisms
- In echonomics we have stability problem of supply and demand equilibria

O In computer science we have verification of lienar automata We want to know whether those sequences will be ultimately positive or not because some models would not have real-life meaning if the values are negative

Definitions

Fix linear recurrence sequence $(\mathrm{LRS}) \mathbf{u}=\left\{u_{i}\right\}_{i \geq 0}$ with relation

$$
\begin{equation*}
u_{n+k}=a_{1} u_{n+k-1}+\ldots+a_{k} u_{k} \tag{Eq.1.1}
\end{equation*}
$$

Definitions

Fix linear recurrence sequence $(\mathrm{LRS}) \mathbf{u}=\left\{u_{i}\right\}_{i \geq 0}$ with relation

$$
\begin{equation*}
u_{n+k}=a_{1} u_{n+k-1}+\ldots+a_{k} u_{k} \tag{Eq.1.1}
\end{equation*}
$$

Definition 1

The characteristic polynomial of \mathbf{u} is

$$
f_{\mathbf{u}}(x):=x^{k}-a_{1} x^{k-1}-\ldots-a_{k-1} x-a_{k}
$$

Definitions

Fix linear recurrence sequence $(\mathrm{LRS}) \mathbf{u}=\left\{u_{i}\right\}_{i \geq 0}$ with relation

$$
\begin{equation*}
u_{n+k}=a_{1} u_{n+k-1}+\ldots+a_{k} u_{k} \tag{Eq.1.1}
\end{equation*}
$$

Definition 1

The characteristic polynomial of \mathbf{u} is

$$
f_{\mathbf{u}}(x):=x^{k}-a_{1} x^{k-1}-\ldots-a_{k-1} x-a_{k}
$$

- The roots of $f_{\mathbf{u}}(x)$ are called characteristic roots of \mathbf{u}

Definitions

Fix linear recurrence sequence $(\mathrm{LRS}) \mathbf{u}=\left\{u_{i}\right\}_{i \geq 0}$ with relation

$$
\begin{equation*}
u_{n+k}=a_{1} u_{n+k-1}+\ldots+a_{k} u_{k} \tag{Eq.1.1}
\end{equation*}
$$

Definition 1

The characteristic polynomial of \mathbf{u} is

$$
f_{\mathbf{u}}(x):=x^{k}-a_{1} x^{k-1}-\ldots-a_{k-1} x-a_{k}
$$

- The roots of $f_{\mathbf{u}}(x)$ are called characteristic roots of \mathbf{u}
- The dominant roots of \mathbf{u} are the roots with maximum modulus.

Theorem

Theorem 2

Let u be a LRS, then

$$
u_{n}=p_{1}(n) \gamma_{1}^{n}+\ldots+p_{k}(n) \gamma_{k}^{n}
$$

where $p_{i}(x) \in \mathbb{C}[x]$ are polynomials, and γ_{i} are the characteristic roots.

Proof: Simple Case

We first deal with $f_{\mathbf{u}}(x)=\left(x-\gamma_{1}\right) \ldots\left(x-\gamma_{k}\right)$, i.e. $f_{\mathbf{u}}$ has k distinct complex roots.

Proof: Simple Case

We first deal with $f_{\mathbf{u}}(x)=\left(x-\gamma_{1}\right) \ldots\left(x-\gamma_{k}\right)$, i.e. $f_{\mathbf{u}}$ has k distinct complex roots.
Define

$$
C_{\mathbf{u}}:=\left[\begin{array}{ccccccc}
a_{1} & a_{2} & a_{3} & a_{4} & \ldots & a_{k-1} & a_{k} \\
1 & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 1 & 0
\end{array}\right]
$$

Proof: Simple Case

We first deal with $f_{\mathbf{u}}(x)=\left(x-\gamma_{1}\right) \ldots\left(x-\gamma_{k}\right)$, i.e. $f_{\mathbf{u}}$ has k distinct complex roots.
Define

$$
C_{\mathbf{u}}:=\left[\begin{array}{ccccccc}
a_{1} & a_{2} & a_{3} & a_{4} & \ldots & a_{k-1} & a_{k} \\
1 & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 1 & 0
\end{array}\right]
$$

Then we see

$$
\left[\begin{array}{c}
u_{n+k} \\
u_{n+k-1} \\
\vdots \\
u_{n+1}
\end{array}\right]=C_{\mathbf{u}}\left[\begin{array}{c}
u_{n+k-1} \\
\vdots \\
u_{n}
\end{array}\right]
$$

Proof: Simple Case

We claim $\operatorname{det}\left(\lambda I-C_{\mathbf{u}}\right)=f_{\mathbf{u}}(\lambda)$

Proof: Simple Case

We claim $\operatorname{det}\left(\lambda I-C_{\mathbf{u}}\right)=f_{\mathbf{u}}(\lambda)$ (the proof is left as an exercise).

Proof: Simple Case

We claim $\operatorname{det}\left(\lambda I-C_{\mathbf{u}}\right)=f_{\mathbf{u}}(\lambda)$ (the proof is left as an exercise). Thus we see $C_{\mathbf{u}}$ has k distinct eigenvalues, i.e. C_{u} is diagonalizable.

Proof: Simple Case

We claim $\operatorname{det}\left(\lambda I-C_{\mathbf{u}}\right)=f_{\mathbf{u}}(\lambda)$ (the proof is left as an exercise). Thus we see $C_{\mathbf{u}}$ has k distinct eigenvalues, i.e. $C_{\mathbf{u}}$ is diagonalizable. Hence the power of $C_{\mathbf{u}}$ is very easy to compute, and thus

$$
\left[\begin{array}{c}
u_{n} \\
u_{n-1} \\
\vdots \\
u_{n-k+1}
\end{array}\right]=P D^{n} P^{-1}\left[\begin{array}{c}
u_{k-1} \\
\vdots \\
u_{0}
\end{array}\right]
$$

where D is diagonal matrix with eigenvalues

Proof: Simple Case

We claim $\operatorname{det}\left(\lambda I-C_{\mathbf{u}}\right)=f_{\mathbf{u}}(\lambda)$ (the proof is left as an exercise). Thus we see $C_{\mathbf{u}}$ has k distinct eigenvalues, i.e. $C_{\mathbf{u}}$ is diagonalizable. Hence the power of $C_{\mathbf{u}}$ is very easy to compute, and thus

$$
\left[\begin{array}{c}
u_{n} \\
u_{n-1} \\
\vdots \\
u_{n-k+1}
\end{array}\right]=P D^{n} P^{-1}\left[\begin{array}{c}
u_{k-1} \\
\vdots \\
u_{0}
\end{array}\right]
$$

where D is diagonal matrix with eigenvalues
This concludes our proof as we can extract the u_{n} coefficient from the above expression.

Proof: Simple Case

We claim $\operatorname{det}\left(\lambda I-C_{\mathbf{u}}\right)=f_{\mathbf{u}}(\lambda)$ (the proof is left as an exercise). Thus we see $C_{\mathbf{u}}$ has k distinct eigenvalues, i.e. $C_{\mathbf{u}}$ is diagonalizable. Hence the power of $C_{\mathbf{u}}$ is very easy to compute, and thus

$$
\left[\begin{array}{c}
u_{n} \\
u_{n-1} \\
\vdots \\
u_{n-k+1}
\end{array}\right]=P D^{n} P^{-1}\left[\begin{array}{c}
u_{k-1} \\
\vdots \\
u_{0}
\end{array}\right]
$$

where D is diagonal matrix with eigenvalues
This concludes our proof as we can extract the u_{n} coefficient from the above expression.

Remark

Since P, D are all matrices, we see in this case p_{i} in our theorem are all constant polynomials.

Example

Take our favorite sequence $F_{n}=F_{n-1}+F_{n-2}$ with $F_{0}=F_{1}=1$. Then

$$
C_{F}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

Example

Take our favorite sequence $F_{n}=F_{n-1}+F_{n-2}$ with $F_{0}=F_{1}=1$. Then

$$
C_{F}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

The diagonalization is given by

$$
C_{F}=\left[\begin{array}{cc}
1+\sqrt{5} & 1-\sqrt{5} \\
2 & 2
\end{array}\right]\left[\begin{array}{cc}
\phi_{1} & 0 \\
0 & \phi_{2}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2 \sqrt{5}} & -\frac{1-\sqrt{5}}{4 \sqrt{5}} \\
-\frac{1}{2 \sqrt{5}} & \frac{1+\sqrt{5}}{4 \sqrt{5}}
\end{array}\right]
$$

where $\phi_{i}=\frac{1+(-1)^{i} \sqrt{5}}{2}$

Example

Take our favorite sequence $F_{n}=F_{n-1}+F_{n-2}$ with $F_{0}=F_{1}=1$. Then

$$
C_{F}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

The diagonalization is given by

$$
C_{F}=\left[\begin{array}{cc}
1+\sqrt{5} & 1-\sqrt{5} \\
2 & 2
\end{array}\right]\left[\begin{array}{cc}
\phi_{1} & 0 \\
0 & \phi_{2}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2 \sqrt{5}} & -\frac{1-\sqrt{5}}{4 \sqrt{5}} \\
-\frac{1}{2 \sqrt{5}} & \frac{1+\sqrt{5}}{4 \sqrt{5}}
\end{array}\right]
$$

where $\phi_{i}=\frac{1+(-1)^{i} \sqrt{5}}{2}$ Hence

$$
F_{n}=\frac{1}{\sqrt{5}} \phi_{2}^{n}-\frac{1}{\sqrt{5}} \phi_{1}^{n}
$$

Proof: General Case

In this case diagonalization is no longer helpful, as in this case one can actually show $C_{\mathbf{u}}$ is diagonalizable iff $f_{\mathbf{u}}$ has k distinct roots.

Proof: General Case

In this case diagonalization is no longer helpful, as in this case one can actually show $C_{\mathbf{u}}$ is diagonalizable iff $f_{\mathbf{u}}$ has k distinct roots. Instead, we use generating function technique:

Proof: General Case

In this case diagonalization is no longer helpful, as in this case one can actually show $C_{\mathbf{u}}$ is diagonalizable iff $f_{\mathbf{u}}$ has k distinct roots. Instead, we use generating function technique:
(1) Set $U(x)=\sum_{n \geq 0} u_{n} x^{n}$

Proof: General Case

In this case diagonalization is no longer helpful, as in this case one can actually show $C_{\mathbf{u}}$ is diagonalizable iff $f_{\mathbf{u}}$ has k distinct roots. Instead, we use generating function technique:
(1) Set $U(x)=\sum_{n \geq 0} u_{n} x^{n}$

- Assume $n \geq k$, then we see

$$
\left\{\begin{array}{l}
U(x)=\ldots+u_{n} x^{n} \\
x U(x)=\ldots+u_{n-1} x^{n} \\
x^{2} U(x)=\ldots+u_{n-2} x^{n} \\
\vdots
\end{array}\right.
$$

Proof: General Case

- Thus we see

$$
\left(1-a_{1} x-a_{1} x^{2}-\ldots-a_{k} x^{k}\right) U(x)=\ldots+\left(u_{n}-a_{1} u_{n-1}-\ldots\right) x^{n}+\ldots
$$

- In other word, the RHS cannot contain terms with degree higher than $k-1$. Denote this by $G(x)$.
O Thus

$$
\left(x^{k} f_{\mathbf{u}}(1 / x)\right) U(x)=G(x) \Rightarrow U(x)=\frac{G(x)}{x^{k} f_{\mathbf{u}}(1 / x)}
$$

- Therefore, u_{n} is exactly the nth coefficient of the Taylor expansion of $G(x) /\left(x^{k} f_{\mathbf{u}}(1 / x)\right)$ around $x=0$, but one can verify that this gives the desired closed form

Examples

Example

- If $u_{n}=2 u_{n-1}-u_{n-2}$ and $u_{0}=3, u_{1}=1$, then $f_{u}(x)=(x-1)^{2}$ and

$$
u_{n}=p_{1}(n) \cdot 1+p_{2}(n) \cdot 1, \quad p_{1}(n)=3, p_{2}(n)=-2 n
$$

- If $u_{n}=2 u_{n-1}+u_{n-2}$ with $\left(u_{0}, u_{1}\right)=(3,1)$ then

$$
u_{n}=\frac{1}{2}\left((3+\sqrt{2}) \gamma_{1}^{n}-(\sqrt{2}-3) \gamma_{2}^{n}\right)
$$

with $\gamma_{1}=1-\sqrt{2}$ and $\gamma_{2}=1+\sqrt{2}$.

Simple Linear Recursion

As we have seen above, if $f_{\mathbf{u}}(x)$ has k distinct roots then the proof becomes much easier.

Simple Linear Recursion

As we have seen above, if $f_{\mathbf{u}}(x)$ has k distinct roots then the proof becomes much easier.
Hence we give them a name

Simple Linear Recursion

As we have seen above, if $f_{\mathbf{u}}(x)$ has k distinct roots then the proof becomes much easier.
Hence we give them a name
Definition 3
A LRS \mathbf{u} is simple if $f_{\mathbf{u}}$ has distinct roots.

Simple Linear Recursion

As we have seen above, if $f_{\mathbf{u}}(x)$ has k distinct roots then the proof becomes much easier.
Hence we give them a name
Definition 3
A LRS \mathbf{u} is simple if $f_{\mathbf{u}}$ has distinct roots.

Theorem 4

Ultimate positivity problem for simple LRS is decidable

Simple Linear Recursion

As we have seen above, if $f_{\mathbf{u}}(x)$ has k distinct roots then the proof becomes much easier.
Hence we give them a name
Definition 3
A LRS \mathbf{u} is simple if $f_{\mathbf{u}}$ has distinct roots.

Theorem 4

Ultimate positivity problem for simple LRS is decidable
Next, we will try to give a basic idea of how to prove a statement like this

Algebraic Numbers

Definition 5

A complex number α is algebraic if it is a root of some $f \in \mathbb{Z}[x]$.

Algebraic Numbers

Definition 5

A complex number α is algebraic if it is a root of some $f \in \mathbb{Z}[x]$.

Example 6

The number $\phi=\frac{1+\sqrt{5}}{2}$ is algebraic as $f(x)=x^{2}-x-1$ vanishes ϕ. On the other hand π is not algebraic (this is non-trivial).

Algebraic Numbers

Definition 5

A complex number α is algebraic if it is a root of some $f \in \mathbb{Z}[x]$.

Example 6

The number $\phi=\frac{1+\sqrt{5}}{2}$ is algebraic as $f(x)=x^{2}-x-1$ vanishes ϕ. On the other hand π is not algebraic (this is non-trivial).

Definition 7

Let α be algebraic, then:

Algebraic Numbers

Definition 5

A complex number α is algebraic if it is a root of some $f \in \mathbb{Z}[x]$.

Example 6

The number $\phi=\frac{1+\sqrt{5}}{2}$ is algebraic as $f(x)=x^{2}-x-1$ vanishes ϕ. On the other hand π is not algebraic (this is non-trivial).

Definition 7

Let α be algebraic, then:

- the minimal polynomial of α is the minimal degree polynomial $p_{\alpha} \in \mathbb{Z}[x]$ such that $\phi_{\alpha}(\alpha)=0$

Algebraic Numbers

Definition 5

A complex number α is algebraic if it is a root of some $f \in \mathbb{Z}[x]$.

The number $\phi=\frac{1+\sqrt{5}}{2}$ is algebraic as $f(x)=x^{2}-x-1$ vanishes ϕ. On the other hand π is not algebraic (this is non-trivial).

Definition 7

Let α be algebraic, then:

- the minimal polynomial of α is the minimal degree polynomial $p_{\alpha} \in \mathbb{Z}[x]$ such that $\phi_{\alpha}(\alpha)=0$
- α is algebraic integer if p_{α} is monic polynomial

Algebraic Numbers

Definition 5

A complex number α is algebraic if it is a root of some $f \in \mathbb{Z}[x]$.

The number $\phi=\frac{1+\sqrt{5}}{2}$ is algebraic as $f(x)=x^{2}-x-1$ vanishes ϕ. On the other hand π is not algebraic (this is non-trivial).

Definition 7

Let α be algebraic, then:

- the minimal polynomial of α is the minimal degree polynomial $p_{\alpha} \in \mathbb{Z}[x]$ such that $\phi_{\alpha}(\alpha)=0$
- α is algebraic integer if p_{α} is monic polynomial

O the collection of algebraic integers is denoted by \mathcal{O}

Number Fields

Definition 8

A number field K is a field K such that $\mathbb{Q} \subseteq K$ and K is finite dimensional vector space over \mathbb{Q}. The ring of integers for K is defined by $\mathcal{O}_{K}:=\mathcal{O} \cap K$.

Number Fields

Definition 8

A number field K is a field K such that $\mathbb{Q} \subseteq K$ and K is finite dimensional vector space over \mathbb{Q}. The ring of integers for K is defined by $\mathcal{O}_{K}:=\mathcal{O} \cap K$.

Example 9

Consider the \mathbb{Q}-vector space $R=\mathbb{Q}[x]$ and quotient space $K:=R / I$ where I is the subspace spanned by vector $\left\{\left(x^{2}-5\right) \cdot f: f \in R\right\}$. In other word,

$$
I=\left\{f \in R:\left(x^{2}-5\right) \mid f\right\}
$$

Then K is a number field, and it can be written as $\mathbb{Q}(\sqrt{5})$, i.e. K is isomorphic to the vector space spanned by two elements, 1 and $\sqrt{5}$ by the isomorphism $1 \mapsto 1$ and $x \mapsto \sqrt{5}$.

Ideals

Definition 10

A subset $I \subseteq \mathcal{O}_{K}$ is an ideal if $a \in \mathcal{O}_{K}$ and $b \in I$ then $a b \in I$, and $a, b \in I$ implies $a+b \in I$

Ideals

Definition 10

A subset $I \subseteq \mathcal{O}_{K}$ is an ideal if $a \in \mathcal{O}_{K}$ and $b \in I$ then $a b \in I$, and $a, b \in I$ implies $a+b \in I$

Definition 11

Let P be an ideal of \mathcal{O}_{K}, then P is prime if $a b \in P$ then $a \in P$ or $b \in P$

Ideals

Definition 10

A subset $I \subseteq \mathcal{O}_{K}$ is an ideal if $a \in \mathcal{O}_{K}$ and $b \in I$ then $a b \in I$, and $a, b \in I$ implies $a+b \in I$

Definition 11

Let P be an ideal of \mathcal{O}_{K}, then P is prime if $a b \in P$ then $a \in P$ or $b \in P$

Example 12

Consider the number field $K=\mathbb{Q}(\sqrt{-5})=\mathbb{Q}[x] /\left(x^{2}+5\right)$. One can show $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{-5}]$ in this case, and the ideal 2 is not prime. To see this, note $2=(1+\sqrt{-5})(1-\sqrt{-5})$ while none of those two elements lies in the ideal

$$
\text { (2) }:=\{2 a+2 b \sqrt{-5}: a, b \in \mathbb{Z}\}
$$

Ideals

Example 13

Let $K=\mathbb{Q}(\sqrt{-5})$ and consider the ideal (2). Then we get

$$
(2)=(1+\sqrt{-5}, 2)^{2}
$$

where $(1+\sqrt{-5}, 2)$ is a prime ideal.

Ideals

Example 13

Let $K=\mathbb{Q}(\sqrt{-5})$ and consider the ideal (2). Then we get

$$
(2)=(1+\sqrt{-5}, 2)^{2}
$$

where $(1+\sqrt{-5}, 2)$ is a prime ideal.

Theorem 14

Every ideal $I \subseteq K$ admits a unique prime factorization, i.e. there exists prime ideals P_{i} so $I=\prod P_{i}^{k_{i}}$.

Ideals

Example 13

Let $K=\mathbb{Q}(\sqrt{-5})$ and consider the ideal (2). Then we get

$$
(2)=(1+\sqrt{-5}, 2)^{2}
$$

where $(1+\sqrt{-5}, 2)$ is a prime ideal.

Theorem 14

Every ideal $I \subseteq K$ admits a unique prime factorization, i.e. there exists prime ideals P_{i} so $I=\prod P_{i}^{k_{i}}$.

Remark

Note here product of ideals $I J$ is defined by

$$
I J:=\{a b: a \in I, b \in J\}
$$

S-Units

Definition 15

Let K be a number field, and S a finite set of prime ideals in \mathcal{O}_{K}. Then $\alpha \in \mathcal{O}_{K}$ is a S-unit if the principal ideal (α) is a product of prime ideals in S.

S-Units

Definition 15

Let K be a number field, and S a finite set of prime ideals in \mathcal{O}_{K}. Then $\alpha \in \mathcal{O}_{K}$ is a S-unit if the principal ideal (α) is a product of prime ideals in S.

S-Units

Definition 15

Let K be a number field, and S a finite set of prime ideals in \mathcal{O}_{K}. Then $\alpha \in \mathcal{O}_{K}$ is a S-unit if the principal ideal (α) is a product of prime ideals in S.

Theorem 16

Let K be a number field, m positive integer, S a finite set of primes in \mathcal{O}_{K}. Then for every $\epsilon>0$ there exists constant C, depending on m, K, S and ϵ, such that, for any S-units x_{1}, \ldots, x_{m} with no proper subsum equal 0 , we have

$$
\left|x_{1}+\ldots+x_{m}\right| \geq C X Y^{-\epsilon}
$$

where X, Y are computable constants only depending on K and x_{i}.

S-Units

Theorem 15

Let K be a number field, m positive integer, S a finite set of primes in \mathcal{O}_{K}. Then for every $\epsilon>0$ there exists constant C, depending on m, K, S and ϵ, such that, for any S-units x_{1}, \ldots, x_{m} with no proper subsum equal 0 , we have

$$
\left|x_{1}+\ldots+x_{m}\right| \geq C X Y^{-\epsilon}
$$

where X, Y are computable constants only depending on K and x_{i}.

Remark

The proof of the above theorem uses a very vast generalization of what's called Roth's theorem, which is a field medal result. For a pointer, Roth's theorem admits a vast generalization called Schmidt's subspace theorem, and this theorem uses the p-adic version of subspace theorem.

Result

Definition 16

A LRS is non-degenerate if it does not have two distinct characteristic roots whose quotient is a root of unity.

Result

Definition 16

A LRS is non-degenerate if it does not have two distinct characteristic roots whose quotient is a root of unity.

Theorem 17

Let \mathbf{u} be non-degenerate and simple. Then, there exists a function $F: \mathbb{T}^{s} \rightarrow \mathbb{R}$, depending on \mathbf{u}, so that \mathbf{u} is ultimately positive iff $F(\mathbf{z}) \geq 0$ for all $\mathbf{z} \in T(\mathbf{a}) \subseteq \mathbb{T}^{s}$.

Result

Definition 16

A LRS is non-degenerate if it does not have two distinct characteristic roots whose quotient is a root of unity.

Theorem 17

Let \mathbf{u} be non-degenerate and simple. Then, there exists a function $F: \mathbb{T}^{s} \rightarrow \mathbb{R}$, depending on \mathbf{u}, so that \mathbf{u} is ultimately positive iff $F(\mathbf{z}) \geq 0$ for all $\mathbf{z} \in T(\mathbf{a}) \subseteq \mathbb{T}^{s}$.

Here $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$ and \mathbb{T}^{s} is s copy of \mathbb{T}

Definitions

Suppose \mathbf{u} is simple and non-degenerate, with dominant roots

$$
\rho, \gamma_{1}, \ldots, \gamma_{s}, \overline{\gamma_{1}}, \ldots, \overline{\gamma_{s}}
$$

where ρ is real and positive.

Definitions

Suppose \mathbf{u} is simple and non-degenerate, with dominant roots

$$
\rho, \gamma_{1}, \ldots, \gamma_{s}, \overline{\gamma_{1}}, \ldots, \overline{\gamma_{s}}
$$

where ρ is real and positive.

Remark

We can assume \mathbf{u} has dominant real positive root, as otherwise it was shown that it is not ultimately positive.

Definitions

Suppose \mathbf{u} is simple and non-degenerate, with dominant roots

$$
\rho, \gamma_{1}, \ldots, \gamma_{s}, \overline{\gamma_{1}}, \ldots, \overline{\gamma_{s}}
$$

where ρ is real and positive.

Remark

We can assume \mathbf{u} has dominant real positive root, as otherwise it was shown that it is not ultimately positive.

Then,

$$
u_{n}=b \rho^{n}+\sum_{i=1}^{s} c_{i} \gamma_{i}^{n}+{\overline{c_{i} \gamma_{i}}}^{n}+r(n)
$$

where $r(n)$ is relatively small.

Definitions

Now set $\lambda_{i}=\gamma_{i} / \rho$, then

$$
u_{n}=\rho^{n} F\left(\lambda_{1}^{n}, \ldots, \lambda_{s}^{n}\right)+r(n)
$$

where

$$
F\left(z_{1}, \ldots, z_{s}\right)=b+c_{1} z_{1}+\ldots+c_{s} z_{s}+\overline{c_{1} z_{1}}+\ldots+\overline{c_{s} z_{s}}
$$

Definitions

Now set $\lambda_{i}=\gamma_{i} / \rho$, then

$$
u_{n}=\rho^{n} F\left(\lambda_{1}^{n}, \ldots, \lambda_{s}^{n}\right)+r(n)
$$

where

$$
F\left(z_{1}, \ldots, z_{s}\right)=b+c_{1} z_{1}+\ldots+c_{s} z_{s}+\overline{c_{1} z_{1}}+\ldots+\overline{c_{s} z_{s}}
$$

Definition

Let $\mathbf{a}=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ as above, we define

$$
L(\mathbf{a}):=\left\{\left(v_{1}, \ldots, v_{s}\right) \in \mathbb{Z}^{s}: a_{1}^{v_{1}} \ldots a_{s}^{v_{s}}=1\right\} \subseteq\left(\mathbb{Z}^{s},+\right)
$$

$$
T(\mathbf{a}):=\left\{\left(\mu_{1}, \ldots, \mu_{s}\right) \in \mathbb{T}^{s}: \mu_{1}^{v_{1}} \ldots \mu_{s}^{v_{s}}=1 \text { for all } \mathbf{v} \in L(\mathbf{a})\right\}
$$

Definitions

Now set $\lambda_{i}=\gamma_{i} / \rho$, then

$$
u_{n}=\rho^{n} F\left(\lambda_{1}^{n}, \ldots, \lambda_{s}^{n}\right)+r(n)
$$

where

$$
F\left(z_{1}, \ldots, z_{s}\right)=b+c_{1} z_{1}+\ldots+c_{s} z_{s}+\overline{c_{1} z_{1}}+\ldots+\overline{c_{s} z_{s}}
$$

Definition

Let $\mathbf{a}=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ as above, we define

$$
\begin{gathered}
L(\mathbf{a}):=\left\{\left(v_{1}, \ldots, v_{s}\right) \in \mathbb{Z}^{s}: a_{1}^{v_{1}} \ldots a_{s}^{v_{s}}=1\right\} \subseteq\left(\mathbb{Z}^{s},+\right) \\
T(\mathbf{a}):=\left\{\left(\mu_{1}, \ldots, \mu_{s}\right) \in \mathbb{T}^{s}: \mu_{1}^{v_{1}} \ldots \mu_{s}^{v_{s}}=1 \text { for all } \mathbf{v} \in L(\mathbf{a})\right\}
\end{gathered}
$$

This completes our main criterion for ultimate positivity when \mathbf{u} is simple and non-degenerate

Sketch Proof

Recall our main criterion:

Sketch Proof

Recall our main criterion:

Theorem 18

Let u be non-degenerate and simple. Then, there exists a function $F: \mathbb{T}^{s} \rightarrow \mathbb{R}$, depending on \mathbf{u}, so that \mathbf{u} is ultimately positive iff $F(\mathbf{z}) \geq 0$ for all $\mathbf{z} \in T(\mathbf{a}) \subseteq \mathbb{T}^{s}$.

Sketch Proof

Recall our main criterion:

Theorem 18

Let \mathbf{u} be non-degenerate and simple. Then, there exists a function $F: \mathbb{T}^{s} \rightarrow \mathbb{R}$, depending on \mathbf{u}, so that \mathbf{u} is ultimately positive iff $F(\mathbf{z}) \geq 0$ for all $\mathbf{z} \in T(\mathbf{a}) \subseteq \mathbb{T}^{s}$.

Now we proceed on give a sketch proof

Sketch Proof

Let $\rho, \gamma_{1}, \ldots, \gamma_{s}, \overline{\gamma_{1}}, \ldots, \overline{\gamma_{s}}$ be the dominant roots of $f_{\mathbf{u}}$. Then we get

$$
u_{n}=b \rho^{n}+\sum c_{i} \gamma_{i}^{n}+\overline{c_{i} \gamma_{i}^{n}}+r(n)
$$

where $r(n)=o\left(\rho^{n(1-\epsilon)}\right)$ for some $\epsilon>0$

Sketch Proof

Let $\rho, \gamma_{1}, \ldots, \gamma_{s}, \overline{\gamma_{1}}, \ldots, \overline{\gamma_{s}}$ be the dominant roots of $f_{\mathbf{u}}$. Then we get

$$
u_{n}=b \rho^{n}+\sum c_{i} \gamma_{i}^{n}+\overline{c_{i} \gamma_{i}^{n}}+r(n)
$$

where $r(n)=o\left(\rho^{n(1-\epsilon)}\right)$ for some $\epsilon>0$
Let K / \mathbb{Q} be the number field generated by all the characteristic roots of \mathbf{u}, and S the set of prime ideal divisors of the dominant characteristic roots.

Sketch Proof

By construction

$$
b \rho^{n}+\sum c_{i} \gamma_{i}^{n}+\overline{c_{i} \gamma_{i}^{n}}
$$

is a sum of S-units. Thus apply the theorem on S-units:

Sketch Proof

By construction

$$
b \rho^{n}+\sum c_{i} \gamma_{i}^{n}+\overline{c_{i} \gamma_{i}^{n}}
$$

is a sum of S-units. Thus apply the theorem on S-units:

Theorem 19

Let K be a number field, m positive integer, S a finite set of primes in \mathcal{O}_{K}. Then for every $\epsilon>0$ there exists constant C, depending on m, K, S and ϵ, such that, for any S-units x_{1}, \ldots, x_{m} with no proper subsum equal 0 , we have

$$
\left|x_{1}+\ldots+x_{m}\right| \geq C X Y^{-\epsilon}
$$

where X, Y are computable constants only depending on K and x_{i}.

Sketch Proof

Theorem 19

Let K be a number field, m positive integer, S a finite set of primes in \mathcal{O}_{K}. Then for every $\epsilon>0$ there exists constant C, depending on m, K, S and ϵ, such that, for any S-units x_{1}, \ldots, x_{m} with no proper subsum equal 0 , we have

$$
\left|x_{1}+\ldots+x_{m}\right| \geq C X Y^{-\epsilon}
$$

where X, Y are computable constants only depending on K and x_{i}.
Here $X=C_{1} \rho^{n}, Y=C_{2} \rho^{n}$ for some constant $C_{1}, C_{2}>0$. Thus for all $\epsilon>0$ there exists constant C so

$$
\left|b \rho^{n}+\sum c_{i} \gamma_{i}^{n}+\overline{c_{i} \gamma_{i}^{n}}\right| \geq C \rho^{n(1-\epsilon)}
$$

for all but finitely many n

Sketch Proof

Now just pick the ϵ so $r(n)=o\left(\rho^{n(1-\epsilon)}\right)$, we conclude the sum of dominant roots indeed dominant the whole sum for all but finitely many n.

Sketch Proof

Now just pick the ϵ so $r(n)=o\left(\rho^{n(1-\epsilon)}\right)$, we conclude the sum of dominant roots indeed dominant the whole sum for all but finitely many n.
Thus u_{n} ultimately positive iff

$$
b \rho^{n}+\sum c_{i} \gamma_{i}^{n}+\overline{c_{i} \gamma_{i}^{n}}
$$

ultimately positive.

Sketch Proof

Now just pick the ϵ so $r(n)=o\left(\rho^{n(1-\epsilon)}\right)$, we conclude the sum of dominant roots indeed dominant the whole sum for all but finitely many n.
Thus u_{n} ultimately positive iff

$$
b \rho^{n}+\sum c_{i} \gamma_{i}^{n}+\overline{c_{i} \gamma_{i}^{n}}
$$

ultimately positive.
But then $b \rho^{n}+\sum c_{i} \gamma_{i}^{n}+\overline{c_{i} \gamma_{i}^{n}}$ can be re-write as $\rho^{n} F\left(\lambda_{1}^{n}, \ldots, \lambda_{s}^{n}\right)$, where the positivity of F can be checked on the torus, which is a computable task.

General Case

To get from non-degenerate to general case, there exists a finite subcover of general \mathbf{u} consists of non-degenerate subsequences, and this whole process is computable.

General Case

To get from non-degenerate to general case, there exists a finite subcover of general \mathbf{u} consists of non-degenerate subsequences, and this whole process is computable. Hence we get general algorithm as follows:

General Case

To get from non-degenerate to general case, there exists a finite subcover of general \mathbf{u} consists of non-degenerate subsequences, and this whole process is computable.
Hence we get general algorithm as follows:

- Find subsequences \mathbf{u}_{i} for $1 \leq i \leq M$ such that the union of \mathbf{u}_{i} is equal \mathbf{u}, where all \mathbf{u}_{i} are non-degenerate

General Case

To get from non-degenerate to general case, there exists a finite subcover of general \mathbf{u} consists of non-degenerate subsequences, and this whole process is computable.
Hence we get general algorithm as follows:

- Find subsequences \mathbf{u}_{i} for $1 \leq i \leq M$ such that the union of \mathbf{u}_{i} is equal \mathbf{u}, where all \mathbf{u}_{i} are non-degenerate
- Verify those \mathbf{u}_{i} individually using the criterion above

Example 1

Suppose

$$
u_{n}=\frac{3}{2} u_{n-1}+\frac{3}{2} u_{n-2}-u_{n-3}
$$

Then

$$
f_{u}=(x-2)(x+1)\left(x-\frac{1}{2}\right)
$$

Example 1

Suppose

$$
u_{n}=\frac{3}{2} u_{n-1}+\frac{3}{2} u_{n-2}-u_{n-3}
$$

Then

$$
f_{u}=(x-2)(x+1)\left(x-\frac{1}{2}\right)
$$

Hence

$$
\begin{aligned}
u_{n}= & 2^{n}\left(\frac{8}{9} u_{2}+\frac{4}{9} u_{1}-\frac{4}{9} u_{0}\right) \\
& +(-1)^{n}\left(\frac{2}{9} u_{2}-\frac{5}{9} u_{1}+\frac{2}{9} u_{0}\right) \\
& +\frac{-\frac{1}{9} u_{2}+\frac{1}{9} u_{1}+\frac{2}{9} u_{0}}{2^{n}}
\end{aligned}
$$

Example 1

Thus

$$
F(z)=b=\frac{8}{9} u_{2}+\frac{4}{9} u_{1}-\frac{4}{9} u_{0}
$$

Example 1

Thus

$$
F(z)=b=\frac{8}{9} u_{2}+\frac{4}{9} u_{1}-\frac{4}{9} u_{0}
$$

Conclusion

$u_{n}=\frac{3}{2} u_{n-1}+\frac{3}{2} u_{n-2}-u_{n-3}$ is ultimately positive if and only if $\left(u_{2}, u_{1}, u_{0}\right)$ lies in a half-space defined by $(8 / 9,4 / 9,-4 / 9)$.

Example 2

Consider

$$
u_{n}=(2 \sqrt{5}+3) u_{n-1}-3(2 \sqrt{5}+3) u_{n-2}-27 u_{n-3}
$$

Example 2

Consider

$$
u_{n}=(2 \sqrt{5}+3) u_{n-1}-3(2 \sqrt{5}+3) u_{n-2}-27 u_{n-3}
$$

Then

$$
\begin{aligned}
f_{\mathbf{u}} & =x^{3}-(2 \sqrt{5}+3) x^{2}+3(2 \sqrt{5}+3) x-27 \\
& =(x-3)\left(x-\gamma_{1}\right)\left(x-\gamma_{2}\right)
\end{aligned}
$$

where γ_{1}, γ_{2} are conjugate to each other.

Example 2

The exact closed form for u_{n} is way too complicated, thus we switch to numerical methods. Observe this does not affect our analysis because:

Example 2

The exact closed form for u_{n} is way too complicated, thus we switch to numerical methods. Observe this does not affect our analysis because:

- the numerical instability is mostly coming from the error due to exponents

Example 2

The exact closed form for u_{n} is way too complicated, thus we switch to numerical methods. Observe this does not affect our analysis because:

- the numerical instability is mostly coming from the error due to exponents
- to compute $F(\mathbf{z})$ we do not need the exponents!

Example 2

After some computation, we obtain

$$
\begin{aligned}
F(z) \approx & 18 u_{0}-9 u_{1}+2 u_{2} \\
& +\left(-(9-3 i) u_{0}+(4-4 i) u_{1}-(0.5-1 i) u_{2}\right) z \\
& +\left(-(9+3 i) u_{0}+(4+4 i) u_{1}-(0.5+1 i) u_{2}\right) \bar{z}
\end{aligned}
$$

Example 2

After some computation, we obtain

$$
\begin{aligned}
F(z) \approx & 18 u_{0}-9 u_{1}+2 u_{2} \\
& +\left(-(9-3 i) u_{0}+(4-4 i) u_{1}-(0.5-1 i) u_{2}\right) z \\
& +\left(-(9+3 i) u_{0}+(4+4 i) u_{1}-(0.5+1 i) u_{2}\right) \bar{z}
\end{aligned}
$$

Now,

$$
\lambda_{1}=\gamma_{1} / \rho=\frac{1}{3} \sqrt{5}-\frac{2 i}{3}
$$

Example 2

After some computation, we obtain

$$
\begin{aligned}
F(z) \approx & 18 u_{0}-9 u_{1}+2 u_{2} \\
& +\left(-(9-3 i) u_{0}+(4-4 i) u_{1}-(0.5-1 i) u_{2}\right) z \\
& +\left(-(9+3 i) u_{0}+(4+4 i) u_{1}-(0.5+1 i) u_{2}\right) \bar{z}
\end{aligned}
$$

Now,

$$
\lambda_{1}=\gamma_{1} / \rho=\frac{1}{3} \sqrt{5}-\frac{2 i}{3}
$$

Thus,

$$
L\left(\lambda_{1}\right)=\left\{v \in \mathbb{Z}:\left(\lambda_{1}\right)^{k}=1\right\}=\{0\}
$$

Example 2

After some computation, we obtain

$$
\begin{aligned}
F(z) \approx & 18 u_{0}-9 u_{1}+2 u_{2} \\
& +\left(-(9-3 i) u_{0}+(4-4 i) u_{1}-(0.5-1 i) u_{2}\right) z \\
& +\left(-(9+3 i) u_{0}+(4+4 i) u_{1}-(0.5+1 i) u_{2}\right) \bar{z}
\end{aligned}
$$

Now,

$$
\lambda_{1}=\gamma_{1} / \rho=\frac{1}{3} \sqrt{5}-\frac{2 i}{3}
$$

Thus,

$$
L\left(\lambda_{1}\right)=\left\{v \in \mathbb{Z}:\left(\lambda_{1}\right)^{k}=1\right\}=\{0\}
$$

So

$$
T\left(\lambda_{1}\right)=\left\{z \in \mathbb{C}:|z|=1, z^{0}=1\right\}=\mathbb{T}
$$

Example 2

Therefore, to see if \mathbf{u} is ultimately positive or not, we just need to find the values of u_{0}, u_{1}, u_{2} such that

$$
\min (F(\cos (t)+i \sin (t)): 0 \leq t \leq 2 \pi) \geq 0
$$

Example 2

Therefore, to see if \mathbf{u} is ultimately positive or not, we just need to find the values of u_{0}, u_{1}, u_{2} such that

$$
\min (F(\cos (t)+i \sin (t)): 0 \leq t \leq 2 \pi) \geq 0
$$

In other word, we are minimizing

$$
\begin{aligned}
F(t)= & \left(9 u_{1}-1 u_{2}-18 u_{0}\right) \cos (t) \\
& +\left(8 u_{1}-2 u_{2}-7 u_{0}\right) \sin (t) \\
& -9 u_{1}+2 u_{2}+18 u_{0} \\
= & A \cos (t)+B \sin (t)+C
\end{aligned}
$$

Example 2

We just give some plots:

Here (x, y)-axes are $\left(u_{1}, u_{2}\right)$.

Example 2

Here (x, y)-axes are $\left(u_{0}, u_{2}\right)$.

Example 2

Here (x, y)-axes are $\left(u_{1}, u_{2}\right)$.

