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Linear Recursion

Tell me if the terms of u, = up_1 + up_» eventually > 0 for initial
values:

Q U():Ul:l
Q uo:—l,u1:1

This is pretty easy, right?

Tell me what initial values of ug, u1, up makes the recursion
uz = %uz + %ul — ug eventually > 07

Not so easy now, isn't it?

What about u3 = (2v/5 + 3)us — 3(2v/5 + 3)u; — 27ug?
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Definition

Let u = {un}n>0 be a linear recurrence sequence (LRS) defined by

Uptk = AlUptk—1 + ... + Akl

We say u is:
Q positive if u, >0 foralln>0
Q ultimately positive if AN so u, > 0 for all n > N
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Questions To Keep In Mind

At first glance, there are four types of questions we can ask:
O Can we decide u contains a 0 or not?
O Can we decide u contains infinitely many 0 or not?
O Can we decide u is positive?

@ Can we decide u is ultimately positive or not?
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Introduction Closed Form Formula

State of the Art

So far, the following is what we know:
Q question 1 is still open (for about 90 to 100 years)
o this is called the Skolem's problem

Q question 2 is solved

O question 3 and 4 are still open for large depth
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Aside

Linear recursive model arises very naturally from different areas of
science.
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Introduction Closed Form Formula

Aside

Linear recursive model arises very naturally from different areas of
science.

Q In biology we have what's called L-system, which was
originated from simulating the development of multicellular
organisms

Q In echonomics we have stability problem of supply and
demand equilibria

Q In computer science we have verification of lienar automata

We want to know whether those sequences will be ultimately
positive or not because some models would not have real-life
meaning if the values are negative
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Introduction Closed Form Formula

Definitions

Fix linear recurrence sequence (LRS) u = {u;}i>o with relation

Uptk = a1Upyk—1 + ... + akug (Eq. 1.1)

The characteristic polynomial of u is

fu(x) == xK—apxk v — . —a_1x— ak

Q The roots of f,(x) are called characteristic roots of u

O The dominant roots of u are the roots with maximum
modulus.
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Introduction Closed Form Formula

Theorem

Let u be a LRS, then

up = pr(n7 + ... + pr(n)vi

where p;(x) € C[x] are polynomials, and ~; are the characteristic
roots.
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Proof: Simple Case

We first deal with f,(x) = (x —y1)...(x — 7). i.e. fy has k distinct
complex roots.
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Proof: Simple Case

We first deal with f,(x) = (x —y1)...(x — 7). i.e. fy has k distinct
complex roots.

Define
ay a az aa ak—1 dk
1 0 0 O 0 0
C, = 0O 1 0 O 0 0
0 0 0 O 1 0
Then we see
Unik
Uptk—1
Upak—
+.k 1 _c, f
Un
Un41
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We claim det(A — G,) = fy(\) (the proof is left as an exercise).

Thus we see C, has k distinct eigenvalues, i.e. G, is diagonalizable.

Hence the power of C, is very easy to compute, and thus

Un
u Uk—1
" | = pppt
uo
Up—k+1

where D is diagonal matrix with eigenvalues
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We claim det(A — G,) = fy(\) (the proof is left as an exercise).
Thus we see C, has k distinct eigenvalues, i.e. G, is diagonalizable.
Hence the power of C, is very easy to compute, and thus

Un
Un—1

Uk—1
= pPD"P?
to
Upn—k+1

where D is diagonal matrix with eigenvalues
This concludes our proof as we can extract the u, coefficient from
the above expression.
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Proof: Simple Case

We claim det(A — G,) = fy(\) (the proof is left as an exercise).
Thus we see C, has k distinct eigenvalues, i.e. G, is diagonalizable.
Hence the power of C, is very easy to compute, and thus

Un

Uk—1
Up—1

= pPD"P?
to
Up—k+1
where D is diagonal matrix with eigenvalues

This concludes our proof as we can extract the u, coefficient from
the above expression.

Since P, D are all matrices, we see in this case p; in our theorem
are all constant polynomials.
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Example

Take our favorite sequence F, = F,_1 + F,_» with f[p = F; = 1.

Then
11

CF:L 0

The diagonalization is given by

o _[1+vE 1-vB[on 0|2z R
F=1 2 2 0 | | L 1+v6
2v/5 4+/5
where ¢; = 71+(_21)i‘/§
Hence

1 n 1 n
Fn= \75% - %%
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Proof: General Case

In this case diagonalization is no longer helpful, as in this case one
can actually show C, is diagonalizable iff , has k distinct roots.
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Introduction Closed Form Formula

Proof: General Case

In this case diagonalization is no longer helpful, as in this case one
can actually show C, is diagonalizable iff , has k distinct roots.
Instead, we use generating function technique:

Q Set U(x) = 3,50 unx"

Q Assume n > k, then we see

U(x) = ... + upx"
xU(x) = ... + up_1x"
x2U(x) = ... + tp_ox"
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Introduction Closed Form Formula

Proof: General Case

O Thus we see

(1—alx—alx2—...—akxk)U(x) = ...+ (up—arup—1—..)x"+...

Q In other word, the RHS cannot contain terms with degree
higher than k — 1. Denote this by G(x).

O Thus

(461U = 60 = U = ey

Q Therefore, u, is exactly the nth coefficient of the Taylor
expansion of G(x)/(x*fy(1/x)) around x = 0, but one can
verify that this gives the desired closed form
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Introduction Closed Form Formula

Examples

O Ifuy =2up—1 — up—o and ug = 3, u; = 1, then
fu(x) = (x — 1)? and

up=pi(n) -1+ p2(n)-1, p1(n) =3,p2(n) = —2n

Q If up =2up_1 + up—p with (up,u1) = (3,1) then
1 n n
Up = 5((3 + V2] — (V2 - 3)73)

with vy =1—+v2 and 12 =1 + V2.

When Is Linear Recursion Non-negative
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Definition Number Theory Non-Degenerate General

Simple Linear Recursion

As we have seen above, if f,(x) has k distinct roots then the proof
becomes much easier.

When Is Linear Recursion Non-negative 15 /37



Definition Number Theory Non-Degenerate General

Simple Linear Recursion

As we have seen above, if f,(x) has k distinct roots then the proof
becomes much easier.
Hence we give them a name

When Is Linear Recursion Non-negative 15 /37



Definition Number Theory Non-Degenerate General

Simple Linear Recursion

As we have seen above, if f,(x) has k distinct roots then the proof
becomes much easier.

Hence we give them a name

A LRS u is simple if f, has distinct roots. J

When Is Linear Recursion Non-negative 15 /37



Definition Number Theory Non-Degenerate General

Simple Linear Recursion

As we have seen above, if f,(x) has k distinct roots then the proof
becomes much easier.
Hence we give them a name

A LRS u is simple if f, has distinct roots. J

Ultimate positivity problem for simple LRS is decidable J

When Is Linear Recursion Non-negative 15 /37



Definition Number Theory Non-Degenerate General

Simple Linear Recursion

As we have seen above, if f,(x) has k distinct roots then the proof
becomes much easier.
Hence we give them a name

A LRS u is simple if f, has distinct roots. }

Ultimate positivity problem for simple LRS is decidable J

Next, we will try to give a basic idea of how to prove a statement
like this
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The number ¢ = 1+T‘£ is algebraic as f(x) = x> — x — 1 vanishes
¢. On the other hand 7 is not algebraic (this is non-trivial).
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Algebraic Numbers

A complex number « is algebraic if it is a root of some f € Z[x].

The number ¢ = ”2—‘/5 is algebraic as f(x) = x> — x — 1 vanishes
¢. On the other hand 7 is not algebraic (this is non-trivial).

Let « be algebraic, then:

Q the minimal polynomial of « is the minimal degree
polynomial p, € Z[x] such that ¢,(a) =0
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Definition Number Theory Non-Degenerate General

Algebraic Numbers

A complex number « is algebraic if it is a root of some f € Z[x].

The number ¢ = ”2—‘/5 is algebraic as f(x) = x> — x — 1 vanishes
¢. On the other hand 7 is not algebraic (this is non-trivial).

Let « be algebraic, then:

Q the minimal polynomial of « is the minimal degree
polynomial p, € Z[x] such that ¢,(a) =0

Q « is algebraic integer if p, is monic polynomial

Q the collection of algebraic integers is denoted by O
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Definition Number Theory Non-Degenerate General

Number Fields

A number field K is a field K such that Q C K and K is finite
dimensional vector space over Q. The ring of integers for K is
defined by Ok := O N K.
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Definition Number Theory Non-Degenerate General

Number Fields

A number field K is a field K such that Q C K and K is finite
dimensional vector space over Q. The ring of integers for K is
defined by Ok := O N K.

Consider the Q-vector space R = Q[x] and quotient space
K := R/l where [ is the subspace spanned by vector
{(x2 —5)-f:f € R}. In other word,

I={feR:(x*-5)]|f}

Then K is a number field, and it can be written as Q(v/5), i.e. K
is isomorphic to the vector space spanned by two elements, 1 and
/5 by the isomorphism 1+ 1 and x — /5.
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A subset | C Ok is an ideal if a € Ok and b € | then ab € [, and
a,be limpliesa+bel
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Definition Number Theory Non-Degenerate General

Ideals

A subset | C Ok is an ideal if a € Ok and b € [ then ab € [/, and
a,be limpliesa+bel

Let P be an ideal of Ok, then P is prime if ab € P then a € P or
beP

v

Consider the number field K = Q(v/—5) = Q[x]/(x?> +5). One
can show Ok = Z[v/—5] in this case, and the ideal 2 is not prime.
To see this, note 2 = (1 + v/—5)(1 — v/—5) while none of those
two elements lies in the ideal

(2) :={2a+2bvV—-5:a,bcZ}
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Definition Number Theory Non-Degenerate General

Ideals

Let K = Q(+v/—5) and consider the ideal (2). Then we get
(2) = (1+V-52)

where (14 1/—5,2) is a prime ideal.
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Ideals

Let K = Q(+v/—5) and consider the ideal (2). Then we get
(2) = (1+V-52)

where (14 1/—5,2) is a prime ideal.

Every ideal | C K admits a unique prime factorization, i.e. there
exists prime ideals P; so | =[] P,-k" .
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Definition Number Theory Non-Degenerate General

Ideals

Let K = Q(+v/—5) and consider the ideal (2). Then we get
(2) = (1+V-52)

where (14 1/—5,2) is a prime ideal.

Every ideal | C K admits a unique prime factorization, i.e. there
exists prime ideals P; so | =[] P,-k" .

Note here product of ideals /J is defined by

IJ:={ab:aecl,be J}
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Definition Number Theory Non-Degenerate General

S-Units

Let K be a number field, and S a finite set of prime ideals in Ok.
Then a € Ok is a S-unit if the principal ideal («) is a product of
prime ideals in S.
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Definition Number Theory Non-Degenerate General

S-Units

Let K be a number field, and S a finite set of prime ideals in Ok.
Then a € Ok is a S-unit if the principal ideal («) is a product of
prime ideals in S.

Let K be a number field, m positive integer, S a finite set of
primes in Ok. Then for every € > 0 there exists constant C,
depending on m, K, S and ¢, such that, for any S-units x1, ..., Xm
with no proper subsum equal 0, we have

|x1 4 ... + Xm| > CXY ™€

where X, Y are computable constants only depending on K and x;.
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Definition Number Theory Non-Degenerate General

S-Units

Let K be a number field, m positive integer, S a finite set of
primes in Ok. Then for every € > 0 there exists constant C,
depending on m, K, S and ¢, such that, for any S-units x1, ..., Xm
with no proper subsum equal 0, we have

|x1 + ... + Xm| > CXY ™€

where X, Y are computable constants only depending on K and x;.

The proof of the above theorem uses a very vast generalization of
what's called Roth's theorem, which is a field medal result. For a
pointer, Roth's theorem admits a vast generalization called
Schmidt's subspace theorem, and this theorem uses the p-adic
version of subspace theorem.
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Definition Number Theory Non-Degenerate General

Result

A LRS is non-degenerate if it does not have two distinct
characteristic roots whose quotient is a root of unity.
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Result

A LRS is non-degenerate if it does not have two distinct
characteristic roots whose quotient is a root of unity.

Let u be non-degenerate and simple. Then, there exists a function
F : T — R, depending on u, so that u is ultimately positive iff
F(z) >0 for allz € T(a) C T".
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Definition Number Theory Non-Degenerate General

Result

A LRS is non-degenerate if it does not have two distinct
characteristic roots whose quotient is a root of unity.

Let u be non-degenerate and simple. Then, there exists a function
F : T — R, depending on u, so that u is ultimately positive iff
F(z) >0 for allz € T(a) C T".

Here T={z € C: |z| =1} and T® is s copy of T
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Definition Number Theory Non-Degenerate General

Definitions

Suppose u is simple and non-degenerate, with dominant roots

p? ’Yla "'7757%7 "'775

where p is real and positive.
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Definition Number Theory Non-Degenerate General

Definitions

Suppose u is simple and non-degenerate, with dominant roots

p? ’Yla "'7757%7 "'7’75

where p is real and positive.

We can assume u has dominant real positive root, as otherwise it
was shown that it is not ultimately positive.
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Definition Number Theory Non-Degenerate General

Definitions

Suppose u is simple and non-degenerate, with dominant roots

p? 717 "'7757%7 "'7’75

where p is real and positive.

We can assume u has dominant real positive root, as otherwise it
was shown that it is not ultimately positive.

Then,

S
up = bp" + > e + 7" + r(n)
i=1

where r(n) is relatively small.
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Definitions

Definition Number Theory Non-Degenerate General

Now set A\; = vi/p, then
Up = pnF( 5.17
where

F(z1,...,zs) = b+ c1z1 +.

vy Ad) + r(n)

et Cszs + C1z1 + ... + CsZs
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Definition Number Theory Non-Degenerate General

Definitions

Now set A\; = vi/p, then
up = p"F(A], ..., AD) + r(n)
where

F(z1,...,zs) = b+ c1z1 + ... + ¢szs + G121 + ... + CsZs

Let a = (A1,..., As) as above, we define
L(@) :={(vi,...,vs) €Z° : a;*...af =1} C (Z°,+)

T(a) :={(p1,--s pts) € T° : pi*.p =1 for all v € L(a)}
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Definition Number Theory Non-Degenerate General

Definitions

Now set A\; = vi/p, then
up = p"F(A], ..., AD) + r(n)
where

F(zi,....2s) = b+ c1z1 + ... + cszs + €121 + ... + CsZs

Let a = (A1,..., As) as above, we define

L(@) :={(vi,...,vs) €Z° : a;*...af =1} C (Z°,+)

T(a) :={(p1,--s pts) € T° : pi*.p =1 for all v € L(a)}

This completes our main criterion for ultimate positivity when u is
simple and non-degenerate

When Is Linear Recursion Non-negative 23/37



Definition Number Theory Non-Degenerate General

Sketch Proof

Recall our main criterion:

When Is Linear Recursion Non-negative 24 /37



Definition Number Theory Non-Degenerate General

Sketch Proof

Recall our main criterion:

Let u be non-degenerate and simple. Then, there exists a function
F : T° — R, depending on u, so that u is ultimately positive iff
F(z) >0 for allz € T(a) C T".
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Definition Number Theory Non-Degenerate General

Sketch Proof

Recall our main criterion:

Let u be non-degenerate and simple. Then, there exists a function
F : T° — R, depending on u, so that u is ultimately positive iff
F(z) >0 for allz € T(a) C T".

Now we proceed on give a sketch proof
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Definition Number Theory Non-Degenerate General

Sketch Proof

Let p,v1,---,Yss 71, ---, Vs be the dominant roots of f,. Then we get
un=bp" + > civf + el + r(n)

where r(n) = o(p"*~9) for some ¢ > 0
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Definition Number Theory Non-Degenerate General

Sketch Proof

Let p,v1,---,Yss 71, ---, Vs be the dominant roots of f,. Then we get
un=bp" + > civf + el + r(n)

where r(n) = o(p"(1=9)) for some ¢ > 0

Let K/Q be the number field generated by all the characteristic
roots of u, and S the set of prime ideal divisors of the dominant
characteristic roots.

When Is Linear Recursion Non-negative 25/37



Definition Number Theory Non-Degenerate General

Sketch Proof

By construction
bp" +> v+l

is a sum of S-units. Thus apply the theorem on S-units:
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Definition Number Theory Non-Degenerate General

Sketch Proof

By construction
bp" + > el + il

is a sum of S-units. Thus apply the theorem on S-units:

Let K be a number field, m positive integer, S a finite set of
primes in Ok. Then for every € > 0 there exists constant C,
depending on m, K, S and ¢, such that, for any S-units x1, ..., Xm
with no proper subsum equal 0, we have

|x1 4 ... + Xm| = CXY ™€

where X, Y are computable constants only depending on K and x;.
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Definition Number Theory Non-Degenerate General

Sketch Proof

Let K be a number field, m positive integer, S a finite set of
primes in Ok. Then for every € > 0 there exists constant C,
depending on m, K, S and €, such that, for any S-units x1, ..., Xm
with no proper subsum equal 0, we have

|x1 + ... + Xm| > CXY ™€

where X, Y are computable constants only depending on K and x;.

Here X = C1p", Y = Gp" for some constant C;, C; > 0. Thus for
all € > 0 there exists constant C so

’bpn +Y i +enf| = Cpntd

for all but finitely many n
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Definition Number Theory Non-Degenerate General

Sketch Proof

Now just pick the € so r(n) = o(p"(1=)), we conclude the sum of
dominant roots indeed dominant the whole sum for all but finitely
many n.

When Is Linear Recursion Non-negative 27/37



Definition Number Theory Non-Degenerate General

Sketch Proof

Now just pick the € so r(n) = o(p"(1=)), we conclude the sum of
dominant roots indeed dominant the whole sum for all but finitely

many n.
Thus u, ultimately positive iff

bp" + Y i + el

ultimately positive.
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Definition Number Theory Non-Degenerate General

Sketch Proof

Now just pick the € so r(n) = o(p"(1=)), we conclude the sum of
dominant roots indeed dominant the whole sum for all but finitely
many n.

Thus u, ultimately positive iff

bp" + Y i + el

ultimately positive.

But then bp™ + 3" civ!" 4+ ¢y can be re-write as p"F(A], ..., AD),
where the positivity of F can be checked on the torus, which is a
computable task.
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Definition Number Theory Non-Degenerate General

General Case

To get from non-degenerate to general case, there exists a finite
subcover of general u consists of non-degenerate subsequences,
and this whole process is computable.
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subcover of general u consists of non-degenerate subsequences,
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Definition Number Theory Non-Degenerate General

General Case

To get from non-degenerate to general case, there exists a finite
subcover of general u consists of non-degenerate subsequences,
and this whole process is computable.

Hence we get general algorithm as follows:

Q Find subsequences u; for 1 < i < M such that the union of u;
is equal u, where all u; are non-degenerate
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Definition Number Theory Non-Degenerate General

General Case

To get from non-degenerate to general case, there exists a finite
subcover of general u consists of non-degenerate subsequences,
and this whole process is computable.

Hence we get general algorithm as follows:

Q Find subsequences u; for 1 < i < M such that the union of u;
is equal u, where all u; are non-degenerate

Q Verify those u; individually using the criterion above

When Is Linear Recursion Non-negative 28/37



Example 1 Example 2

Example 1
Suppose
up = 3u + 3u —u
n — 2 n—1 2 n—2 n—3
Then

o= (= 20+ (x - )
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Example 1 Example 2

Example 1
Suppose
3, L3,
up = 2Un—1 2Un—2 Un—3
Then 1
o= (= 20+ 1)(x— 5)
Hence

8 4 4
un:2”<uz+u1—uo>

9 9 9
2 2
+(-1)" <9U2—3U1+9U0>
—%uz—l—%ul—l—%uo
on
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Example 1 Example 2

Example 1

Thus
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Example 1 Example 2

Example 1

Thus

u, = %u,,_l + %u,,_g — up—_3 is ultimately positive if and only if
(u2, u1, up) lies in a half-space defined by (8/9,4/9, —4/9).
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Example 1 Example 2

Example 2

Consider

up = (2V5 + 3)up—1 — 3(2V5 + 3)up_» — 27up_3
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Example 1 Example 2

Example 2

Consider
up = (2V5 4 3)up_1 — 3(2V5 + 3)up_2 — 27up_3
Then
fo=x— (2v5+3)x2+3(2V5 +3)x - 27
= (x =3)(x = m)(x —72)

where 71,72 are conjugate to each other.
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Example 1 Example 2

Example 2

The exact closed form for u, is way too complicated, thus we
switch to numerical methods. Observe this does not affect our
analysis because:
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Example 2

The exact closed form for u, is way too complicated, thus we
switch to numerical methods. Observe this does not affect our
analysis because:
Q the numerical instability is mostly coming from the error due
to exponents
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Example 1 Example 2

Example 2

The exact closed form for u, is way too complicated, thus we
switch to numerical methods. Observe this does not affect our
analysis because:

Q the numerical instability is mostly coming from the error due
to exponents

Q to compute F(z) we do not need the exponents!
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Example 1 Example 2

Example 2

After some computation, we obtain

F(Z) ~ 18ug — 9u1 + 2up
+ (—(9 —3i)up + (4 —4i)ug — (0.5 — 1i)wo)z
+(—(9+3i)up + (4 +4i)u; — (0.5 + 1i)up)z

When Is Linear Recursion Non-negative 33/37



Example 1 Example 2

Example 2

After some computation, we obtain
F(Z) ~ 18ug — 9u1 + 2up
+ (—(9 —3i)up + (4 —4i)ug — (0.5 — 1i)wo)z
+ (—(9 + 3/)UO + (4 + 4i)U1 — (0.5 + 1i)u2)?

Now,

1 2i
/\IZVI/Pzg\[—g
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Example 1 Example 2

Example 2

After some computation, we obtain
F(Z) ~ 18ug — 9u1 + 2up
+ (—(9 —3i)up + (4 —4i)ug — (0.5 — 1i)wo)z
+(—(9+3i)up + (4 + 4i)u; — (0.5 4+ 1/)wp)z

Now,

1 2i
—’}’1//)— g\[—g

Thus,
L(\) ={veZ: () =1} = {0}
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Example 1 Example 2

Example 2

After some computation, we obtain
F(z) ~ 18up — 9u1 + 2w

+ (—(9 —3i)up + (4 —4i)ug — (0.5 — 1i)wo)z
+(—(9+3i)up + (4 + 4i)uy — (0.5 4+ 1i)up)Z

Now, ) o
=m/p=35V6-3
Thus,
L) ={veZ: (W) =1} = {0}
So

T(\M)={z€C:|z|=1,2=1}=T

When Is Linear Recursion Non-negative 33/37



Example 1 Example 2

Example 2

Therefore, to see if u is ultimately positive or not, we just need to
find the values of wug, ui, up such that

min(F(cos(t) + isin(t)) : 0 <t <27) >0
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Example 1 Example 2

Example 2

Therefore, to see if u is ultimately positive or not, we just need to
find the values of wug, ui, up such that

min(F(cos(t) + isin(t)) : 0 <t <27) >0
In other word, we are minimizing

F(t) = (9u1 — 1uo — 18up) cos(t)
+ (8ur — 2up — Tup) sin(t)
—9uy 4+ 2ur 4 18uyg
= Acos(t) + Bsin(t) + C
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Example 1 Example 2

Example 2

We just give some plots:
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Here (x, y)-axes are (u1, u2).
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Example 1 Example 2

Example 2
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Here (x, y)-axes are (ug, uy).
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Example 1 Example 2

Example 2
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Here (x, y)-axes are (u1, uz).
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