1 Reviews

Example 1.1

Let $V=\mathbb{R}^{4}$ and $W=\operatorname{span}\left(e_{1}+e_{2}+e_{3}+e_{4}\right)$. Find a basis of V / W.

Proof. Just pick e_{1}, e_{2}, e_{3} and we claim this is a basis. Well, note $\operatorname{dim} W=1, \operatorname{dim} V=4$, so $\operatorname{dim}(V / W)=3$. Thus we just need to show $e_{1}+W, e_{2}+W$ and $e_{3}+W$ spans, and we have a theorem which says if $\operatorname{dim} V=n$ then $\left\{v_{1}, \ldots, v_{n}\right\}$ spans iff $\left\{v_{1}, \ldots, v_{n}\right\}$ linearly independent. But then this is obvious, as $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ spans V / W but $e_{4}+W=$ $-e_{1}-e_{2}-e_{3}+W$. Thus we are done.

Example 1.2

Let A be the matrix

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Show $A^{3}=0$.

Proof. Compute.

Example 1.3
Let

$$
A=\left[\begin{array}{ll}
2 & 3 \\
0 & 2
\end{array}\right]
$$

Compute A^{m} for $m \geq 1$.

Proof. Observe $A=2 I+3 B$ where $B=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. Observe $B^{2}=0$ as one can compute this. But then we also have $(2 I)(3 B)=(3 B)(2 I)$, we can use binomial theorem to conclude

$$
(2 I+3 B)^{m}=\sum_{i=0}^{m}\binom{m}{i}(2 I)^{m-i}(3 B)^{i}
$$

where only $i=0,1$ would give $(3 B)^{i} \neq 0$. In other word,

$$
(2 I+3 B)^{m}=2^{m} I+\binom{m}{1} 2^{m-1} I(3 B)=\left[\begin{array}{cc}
2^{m} & (3 m) \cdot 2^{m-1} \\
0 & 2^{m}
\end{array}\right]
$$

Example 1.4

A matrix A is idempotent if $A^{2}=A$. Show n by n matrix A is idempotent if and only if $\operatorname{rank}(A)+\operatorname{rank}(I-A)=n$.

Proof. First note that we can do elementary row/column opeartions on block matrices as well. In particular, consider the block matrix

$$
\left[\begin{array}{cc}
A & 0 \\
0 & I-A
\end{array}\right]
$$

and we add the first row $[A, 0]$ to the second row, and we get

$$
\left[\begin{array}{cc}
A & 0 \\
A & I-A
\end{array}\right]
$$

Now add the first column to the second column, we get

$$
\left[\begin{array}{cc}
A & A \\
A & I
\end{array}\right]
$$

Next, multiply second row by $-A$ and add to the first row, we get

$$
\left[\begin{array}{cc}
A-A^{2} & 0 \\
A & I
\end{array}\right]
$$

Multiply second column by $-A$ and add to the first column, we get

$$
\left[\begin{array}{cc}
A-A^{2} & 0 \\
0 & I
\end{array}\right]
$$

This shows

$$
\operatorname{rank}\left[\begin{array}{cc}
A & 0 \\
0 & I-A
\end{array}\right]=\operatorname{rank}\left[\begin{array}{cc}
A-A^{2} & 0 \\
0 & I
\end{array}\right]
$$

Convenience yourself ranks are additive on block matrices, i.e. we get

$$
\operatorname{rank}(A)+\operatorname{rank}(I-A)=\operatorname{rank}\left(A-A^{2}\right)+\operatorname{rank}\left(I_{n}\right)=n
$$

We are done.

Example 1.5

Let $T: V \rightarrow V$ be linear transformation with $\operatorname{dim} V=n$. Prove that

$$
\operatorname{rank}\left(T^{n}\right)=\operatorname{rank}\left(T^{n+k}\right)
$$

for all $k \geq 1$.

Proof. If T is invertible then T^{m} is invertible for all $m \geq 1$ and in particular $\operatorname{rank}\left(T^{m}\right)=$ n for all $m \geq 1$.

Thus now assume T is not invertible. In this case, $\operatorname{rank}(T)<n$. But observe that

$$
\operatorname{rank}(T) \geq \operatorname{rank}\left(T^{2}\right) \geq \operatorname{rank}\left(T^{3}\right) \geq \ldots \geq \operatorname{rank}\left(T^{n}\right) \geq \operatorname{rank}\left(T^{n+1}\right)
$$

This is $n+1$ integers less than n, and thus by Pigeonhole we get some $m<n+1$ such that the \geq is in fact $=$, i.e.

$$
\operatorname{rank}\left(T^{m}\right)=\operatorname{rank}\left(T^{m+1}\right) \Rightarrow \operatorname{im}\left(T^{m}\right)=\operatorname{im}\left(T^{m+1}\right)
$$

But this implies $\operatorname{rank}\left(T^{m}\right)=\operatorname{rank}\left(T^{m+k}\right)$ for all $k \geq 1$. Indeed, observe

$$
\begin{aligned}
\operatorname{im}\left(T^{m+1}\right) & =\left\{T T^{m} x: x \in V\right\} \\
& =\left\{T x: x \in \operatorname{im}\left(T^{m}\right)\right\} \\
& =\left\{T x: x \in \operatorname{Im}\left(T^{m+1}\right)\right\}=\operatorname{im}\left(T^{m+2}\right)
\end{aligned}
$$

and now use induction we are done.

2 Enrichment:Permutation 1

Definition 2.1

A permutation is a automorphism of sets between [n], i.e. $\sigma \in S_{n}$ if $\sigma:[n] \rightarrow[n]$ is a bijection

Example 2.2

Bijection of sets is just a bijection of sets... For example, $\sigma:[4] \rightarrow$ [4] defined by $\sigma(1)=2, \sigma(2)=4, \sigma(3)=3$ and $\sigma(4)=1$ is a permutation.

We can also compose permutations, it is just composition of functions...

Example 2.3

Let σ be in the last example, and $\tau(1)=2, \tau(2)=3, \tau(3)=4$ and $\tau(4)=1$. Then we see $\sigma \tau(1)=3, \sigma \tau(2)=2, \sigma \tau(3)=1$ and $\sigma \tau(4)=4$.

Construction 2.4

Let σ be any endofunction of [n], i.e. any function $\sigma:[n] \rightarrow[n]$, we can associate a directed graph to σ by define vertices as [n] and edges as $(x, \sigma(x)$). In particular, those two things are the "same", i.e. one endofunction defines a unique directed graph with out-number 1 and every directed graph with out-number 1
defines an endofunction.
Here is an example:

This directed graph clearly defines a endofunction. In fact, this endofunction is 2-to-1, i.e. $\sigma^{-1}(x)$ is always exactly two elements.

Since permutations are endofunctions, we get directed graphs out of it.
Let's consider some basic properties of this kind of directed graph.

Definition 2.5

Let G be a directed graph, a (directed) cycle is a path which only first and last vertices are equal.

Proposition 2.6

Let σ be a permutation, G be its associated directed graph. For $x \in[n]$ define $O(x)=\left\{\sigma^{d}(x): d \geq 0\right\}$. Then $\left\{\left(x, \sigma^{d}(x)\right): d \geq 0\right\}$ is a directed cycle.

Proof. First note $O(x)$ must be a finite set since $\sigma:[n] \rightarrow[n]$. In particular, this means $\left\{x, \sigma(x), \sigma^{2}(x), \ldots\right\}$ must start to repeat at some point, Say $\sigma^{m+1}(x) \in\left\{\sigma^{i}(x): 0 \leq i \leq\right.$ $m\}$ where $m+1$ is the minimal such element, then $\sigma^{m+1}(x)=\sigma^{k}(x)$ with $k<m+1$. Now σ is a permutation, thus the inverse exists, and we get $\sigma^{m+1-k}(x)=x$. This forces k to be zero as $m+1$ has to be minimal, and hence we indeed get a cycle. It is obvious this is a directed cycle.

Let $x, y \in[n]$, then $O(x) \cap O(y)=\emptyset$ or $O(x)=O(y)$.

Proof. Well, suppose $z \in O(x) \cap O(y)$, this means $\sigma^{k}(x)=\sigma^{m}(y)=z$. If $k=m$ then $x=y=\sigma^{-k}(z)$ and so $O(x)=O(y)$ as desired. Now WLOG assume $k<m$, and so we get $x=\sigma^{m-k}(y)=\sigma^{-k}(z)$. But then $x \in O(y)$ and so $O(x) \subseteq O(y)$ where both $O(x)$ and $O(y)$ are cycles. But then there is only one possible sub-cycle in a cycle, which is the cycle itself, i.e. $O(x)$ must equal $O(y)$.

Next, note it is impossible for permutations to have the following situation

as σ is bijection means only one arrow goes in and out the same node.
This obversation plus the propositions shows the following theorem:

Theorem 2.8

The directed graph of σ is a disjoint union of directed cycles.

Well, why do we care? Observe directed cycles correspond to a permutation that moves one set $S \subseteq[n]$ around, and fix the rest. For example, $\tau(1)=2, \tau(2)=3$, $\tau(3)=4$ and $\tau(4)=1$ is a cycle. In general, cycles are defined by $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ where this notation means a permutation that sends n_{1} to n_{2}, n_{2} to n_{3} and at the end n_{k} to n_{1}, while fix all other elements.

Two cycles $\sigma=\left(n_{1}, \ldots, n_{k}\right)$ and $\tau=\left(m_{1}, \ldots, m_{p}\right)$ are disjoint if the set $\left\{n_{1}, \ldots, n_{k}\right\}$ and $\left\{m_{1}, \ldots, m_{p}\right\}$ are disjoint.

What we just proved is the following:

Theorem 2.9

Every permutation admits a disjoint cycle decomposition, and it is unique up to reoredering. In other word, every permutation is a set of cycles.

Now let's just do some examples.

Example 2.10

Consider $\sigma:[4] \rightarrow[4]$ defined by $\sigma(1)=2, \sigma(2)=4, \sigma(3)=3$ and $\sigma(4)=1$. THen this decompose as (124)(3).

Next, if $\tau=48635127$ where we used one-line notation, i.e. $4=\tau(1), 8=$ $\tau(2)$ and so on. Then $\tau=(1436)(287)(5)$.

If we still have time:

Example 2.11

Let σ be a $2 n+1$ permutation such that $\sigma(1)>\sigma(2)<\sigma(3)>\ldots \pi(2 n)<\pi_{2 n+1}$. Let t_{n} be the number of such permutations (in particular if n is even then $t_{n}=0$). Show that

$$
T(x):=\sum_{n \geq 0} \frac{t_{n}}{n!} x^{n}=\tan (x)
$$

Proof. Only a sketch proof.
Step 1: show that $t_{2 k+1}=\sum_{1 \leq j \leq 2 k, j \text { odd }}\binom{2 j}{j} a_{j} a_{2 k-j}$. This is easy: we just delete the 1 in our one-line notation sequence, and turn those two substrings into two new permutations. This is not 1-to-1, and we must add the factor $\binom{2 j}{j}$, which concludes the proof.

Step 2: this recurrence implies we get

$$
T^{\prime}(x)=T(x)^{2}+1
$$

and solve for it we get $\tan (x)$.

