
1 Reviews

Example 1.1

Let V = R4 and W = span(e1 + e2 + e3 + e4). Find a basis of V/W .

Proof. Just pick e1, e2, e3 and we claim this is a basis. Well, note dim W = 1, dim V = 4,
so dim(V/W ) = 3. Thus we just need to show e1+W, e2+W and e3+W spans, and we
have a theorem which says if dim V = n then {v1, ..., vn} spans iff {v1, ..., vn} linearly
independent. But then this is obvious, as {e1, e2, e3, e4} spans V/W but e4 + W =
−e1 − e2 − e3 +W . Thus we are done.

Example 1.2

Let A be the matrix




0 1 0
0 0 1
0 0 0





Show A3 = 0.

Proof. Compute.

Example 1.3

Let

A=
�

2 3
0 2

�

Compute Am for m≥ 1.

Proof. Observe A = 2I + 3B where B =
�

0 1
0 0

�

. Observe B2 = 0 as one can compute

this. But then we also have (2I)(3B) = (3B)(2I), we can use binomial theorem to
conclude

(2I + 3B)m =
m
∑

i=0

�

m
i

�

(2I)m−i(3B)i

where only i = 0,1 would give (3B)i 6= 0. In other word,

(2I + 3B)m = 2mI +
�

m
1

�

2m−1I(3B) =
�

2m (3m) · 2m−1

0 2m

�
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Example 1.4

A matrix A is idempotent if A2 = A. Show n by n matrix A is idempotent if and
only if rank(A) + rank(I − A) = n.

Proof. First note that we can do elementary row/column opeartions on block matrices
as well. In particular, consider the block matrix

�

A 0
0 I − A

�

and we add the first row [A, 0] to the second row, and we get
�

A 0
A I − A

�

Now add the first column to the second column, we get
�

A A
A I

�

Next, multiply second row by −A and add to the first row, we get
�

A− A2 0
A I

�

Multiply second column by −A and add to the first column, we get
�

A− A2 0
0 I

�

This shows

rank
�

A 0
0 I − A

�

= rank
�

A− A2 0
0 I

�

Convenience yourself ranks are additive on block matrices, i.e. we get

rank(A) + rank(I − A) = rank(A− A2) + rank(In) = n

We are done.

Example 1.5

Let T : V → V be linear transformation with dim V = n. Prove that

rank(T n) = rank(T n+k)

for all k ≥ 1.
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Proof. If T is invertible then T m is invertible for all m≥ 1 and in particular rank(T m) =
n for all m≥ 1.

Thus now assume T is not invertible. In this case, rank(T )< n. But observe that

rank(T )≥ rank(T 2)≥ rank(T 3)≥ ...≥ rank(T n)≥ rank(T n+1)

This is n+1 integers less than n, and thus by Pigeonhole we get some m< n+1 such
that the ≥ is in fact =, i.e.

rank(T m) = rank(T m+1)⇒ im(T m) = im(T m+1)

But this implies rank(T m) = rank(T m+k) for all k ≥ 1. Indeed, observe

im(T m+1) = {T T m x : x ∈ V}
= {T x : x ∈ im(T m)}
= {T x : x ∈ Im(T m+1)}= im(T m+2)

and now use induction we are done.

2 Enrichment:Permutation 1

Definition 2.1

A permutation is a automorphism of sets between [n], i.e. σ ∈ Sn if σ : [n]→ [n]
is a bijection

Example 2.2

Bijection of sets is just a bijection of sets... For example, σ : [4]→ [4] defined by
σ(1) = 2, σ(2) = 4, σ(3) = 3 and σ(4) = 1 is a permutation.

We can also compose permutations, it is just composition of functions. . .

Example 2.3

Let σ be in the last example, and τ(1) = 2, τ(2) = 3, τ(3) = 4 and τ(4) = 1.
Then we see στ(1) = 3, στ(2) = 2, στ(3) = 1 and στ(4) = 4.

Construction 2.4

Let σ be any endofunction of [n], i.e. any function σ : [n]→ [n], we can asso-
ciate a directed graph to σ by define vertices as [n] and edges as (x ,σ(x)). In
particular, those two things are the “same”, i.e. one endofunction defines a unique
directed graph with out-number 1 and every directed graph with out-number 1
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defines an endofunction.

Here is an example:

•8 •9

•4

•1 •7

•6 •3

•2

•5

•10 •11

This directed graph clearly defines a endofunction. In fact, this endofunction is
2-to-1, i.e. σ−1(x) is always exactly two elements.

Since permutations are endofunctions, we get directed graphs out of it.

Let’s consider some basic properties of this kind of directed graph.

Definition 2.5

Let G be a directed graph, a (directed) cycle is a path which only first and last
vertices are equal.

Proposition 2.6

Let σ be a permutation, G be its associated directed graph. For x ∈ [n] define
O(x) = {σd(x) : d ≥ 0}. Then {(x ,σd(x)) : d ≥ 0} is a directed cycle.

Proof. First note O(x)must be a finite set sinceσ : [n]→ [n]. In particular, this means
{x ,σ(x),σ2(x), ...}must start to repeat at some point, Sayσm+1(x) ∈ {σi(x) : 0≤ i ≤
m} where m+ 1 is the minimal such element, then σm+1(x) = σk(x) with k < m+ 1.
Now σ is a permutation, thus the inverse exists, and we get σm+1−k(x) = x . This
forces k to be zero as m+ 1 has to be minimal, and hence we indeed get a cycle. It is
obvious this is a directed cycle.

4



Proposition 2.7

Let x , y ∈ [n], then O(x)∩O(y) = ; or O(x) = O(y).

Proof. Well, suppose z ∈ O(x)∩O(y), this means σk(x) = σm(y) = z. If k = m then
x = y = σ−k(z) and so O(x) = O(y) as desired. Now WLOG assume k < m, and so we
get x = σm−k(y) = σ−k(z). But then x ∈ O(y) and so O(x) ⊆ O(y) where both O(x)
and O(y) are cycles. But then there is only one possible sub-cycle in a cycle, which is
the cycle itself, i.e. O(x) must equal O(y).

Next, note it is impossible for permutations to have the following situation

•

• •

•

•

as σ is bijection means only one arrow goes in and out the same node.

This obversation plus the propositions shows the following theorem:

Theorem 2.8

The directed graph of σ is a disjoint union of directed cycles.

Well, why do we care? Observe directed cycles correspond to a permutation that
moves one set S ⊆ [n] around, and fix the rest. For example, τ(1) = 2, τ(2) = 3,
τ(3) = 4 and τ(4) = 1 is a cycle. In general, cycles are defined by (n1, n2, ..., nk)
where this notation means a permutation that sends n1 to n2, n2 to n3 and at the end
nk to n1, while fix all other elements.

Two cycles σ = (n1, ..., nk) and τ = (m1, ..., mp) are disjoint if the set {n1, ..., nk}
and {m1, ..., mp} are disjoint.

What we just proved is the following:

Theorem 2.9

Every permutation admits a disjoint cycle decomposition, and it is unique up to re-
oredering. In other word, every permutation is a set of cycles.

Now let’s just do some examples.
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Example 2.10

Consider σ : [4]→ [4] defined by σ(1) = 2, σ(2) = 4, σ(3) = 3 and σ(4) = 1.
THen this decompose as (124)(3).

Next, if τ = 48635127 where we used one-line notation, i.e. 4 = τ(1), 8 =
τ(2) and so on. Then τ= (1436)(287)(5).

If we still have time:

Example 2.11

Let σ be a 2n+1 permutation such that σ(1)> σ(2)< σ(3)> ...π(2n)< π2n+1.
Let tn be the number of such permutations (in particular if n is even then tn = 0).
Show that

T (x) :=
∑

n≥0

tn

n!
xn = tan(x)

Proof. Only a sketch proof.

Step 1: show that t2k+1 =
∑

1≤ j≤2k, j odd

�2 j
j

�

a ja2k− j. This is easy: we just delete
the 1 in our one-line notation sequence, and turn those two substrings into two new
permutations. This is not 1-to-1, and we must add the factor

�2 j
j

�

, which concludes
the proof.

Step 2: this recurrence implies we get

T ′(x) = T (x)2 + 1

and solve for it we get tan(x).
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