1 Reviews

Example 1.1

Let $V=\mathbb{R}^{4}$ and $W=\operatorname{span}\left(e_{1}+e_{2}+e_{3}+e_{4}\right)$. Find a basis of V / W.

Proof. Just pick e_{1}, e_{2}, e_{3} and we claim this is a basis. Well, note $\operatorname{dim} W=1, \operatorname{dim} V=4$, so $\operatorname{dim}(V / W)=3$. Thus we just need to show $e_{1}+W, e_{2}+W$ and $e_{3}+W$ spans, and we have a theorem which says if $\operatorname{dim} V=n$ then $\left\{v_{1}, \ldots, v_{n}\right\}$ spans iff $\left\{v_{1}, \ldots, v_{n}\right\}$ linearly independent. But then this is obvious, as $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ spans V / W but $e_{4}+W=$ $-e_{1}-e_{2}-e_{3}+W$. Thus we are done.

Example 1.2

Let A be the matrix

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Show $A^{3}=0$.

Proof. Compute.

Example 1.3
Let

$$
A=\left[\begin{array}{ll}
2 & 3 \\
0 & 2
\end{array}\right]
$$

Compute A^{m} for $m \geq 1$.

Proof. Observe $A=2 I+3 B$ where $B=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. Observe $B^{2}=0$ as one can compute this. But then we also have $(2 I)(3 B)=(3 B)(2 I)$, we can use binomial theorem to conclude

$$
(2 I+3 B)^{m}=\sum_{i=0}^{m}\binom{m}{i}(2 I)^{m-i}(3 B)^{i}
$$

where only $i=0,1$ would give $(3 B)^{i} \neq 0$. In other word,

$$
(2 I+3 B)^{m}=2^{m} I+\binom{m}{1} 2^{m-1} I(3 B)=\left[\begin{array}{cc}
2^{m} & (3 m) \cdot 2^{m-1} \\
0 & 2^{m}
\end{array}\right]
$$

Example 1.4

A matrix A is idempotent if $A^{2}=A$. Show n by n matrix A is idempotent if and only if $\operatorname{rank}(A)+\operatorname{rank}(I-A)=n$.

Proof. First note that we can do elementary row/column opeartions on block matrices as well. In particular, consider the block matrix

$$
\left[\begin{array}{cc}
A & 0 \\
0 & I-A
\end{array}\right]
$$

and we add the first row $[A, 0]$ to the second row, and we get

$$
\left[\begin{array}{cc}
A & 0 \\
A & I-A
\end{array}\right]
$$

Now add the first column to the second column, we get

$$
\left[\begin{array}{cc}
A & A \\
A & I
\end{array}\right]
$$

Next, multiply second row by $-A$ and add to the first row, we get

$$
\left[\begin{array}{cc}
A-A^{2} & 0 \\
A & I
\end{array}\right]
$$

Multiply second column by $-A$ and add to the first column, we get

$$
\left[\begin{array}{cc}
A-A^{2} & 0 \\
0 & I
\end{array}\right]
$$

This shows

$$
\operatorname{rank}\left[\begin{array}{cc}
A & 0 \\
0 & I-A
\end{array}\right]=\operatorname{rank}\left[\begin{array}{cc}
A-A^{2} & 0 \\
0 & I
\end{array}\right]
$$

Convenience yourself ranks are additive on block matrices, i.e. we get

$$
\operatorname{rank}(A)+\operatorname{rank}(I-A)=\operatorname{rank}\left(A-A^{2}\right)+\operatorname{rank}\left(I_{n}\right)=n
$$

We are done.

Example 1.5

Let $T: V \rightarrow V$ be linear transformation with $\operatorname{dim} V=n$. Prove that

$$
\operatorname{rank}\left(T^{n}\right)=\operatorname{rank}\left(T^{n+k}\right)
$$

for all $k \geq 1$.

Proof. If T is invertible then T^{m} is invertible for all $m \geq 1$ and in particular $\operatorname{rank}\left(T^{m}\right)=$ n for all $m \geq 1$.

Thus now assume T is not invertible. In this case, $\operatorname{rank}(T)<n$. But observe that

$$
\operatorname{rank}(T) \geq \operatorname{rank}\left(T^{2}\right) \geq \operatorname{rank}\left(T^{3}\right) \geq \ldots \geq \operatorname{rank}\left(T^{n}\right) \geq \operatorname{rank}\left(T^{n+1}\right)
$$

This is $n+1$ integers less than n, and thus by Pigeonhole we get some $m<n+1$ such that the \geq is in fact $=$, i.e.

$$
\operatorname{rank}\left(T^{m}\right)=\operatorname{rank}\left(T^{m+1}\right) \Rightarrow \operatorname{im}\left(T^{m}\right)=\operatorname{im}\left(T^{m+1}\right)
$$

But this implies $\operatorname{rank}\left(T^{m}\right)=\operatorname{rank}\left(T^{m+k}\right)$ for all $k \geq 1$. Indeed, observe

$$
\begin{aligned}
\operatorname{im}\left(T^{m+1}\right) & =\left\{T T^{m} x: x \in V\right\} \\
& =\left\{T x: x \in \operatorname{im}\left(T^{m}\right)\right\} \\
& =\left\{T x: x \in \operatorname{Im}\left(T^{m+1}\right)\right\}=\operatorname{im}\left(T^{m+2}\right)
\end{aligned}
$$

and now use induction we are done.

2 Permutation Matrices

Today our goal is the following: permutations too hard, we want linear algebra
Let σ be a n-permutation, then we can define

$$
P_{\sigma}:=\left[\begin{array}{c}
e_{\sigma^{-1}(1)} \\
e_{\sigma^{-1}(2)} \\
\vdots \\
e_{\sigma^{-1}(n)}
\end{array}\right]
$$

here e_{i} are the row standard basis of \mathbb{F}^{n}. For example, if $\sigma=(1,2,3)$ then we see

$$
P_{\sigma}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Next, let $\sigma=(124)$, then

$$
P_{\sigma}=\left[\begin{array}{l}
e_{4} \\
e_{1} \\
e_{3} \\
e_{2}
\end{array}\right]=[3]
$$

In general, we have:

1. P_{σ} has one 1 in each row and in each column, all other entries are 0
2. The i th row of P_{σ} is $e_{\sigma^{-1}(i)}$ and the i th column is $e_{\sigma(1)}$
3. For any matrix $A, P_{\sigma} A$ moves the i th row of A to the $\sigma(i)$ th row.
4. For any matrix $B, B P_{\sigma}$ moves the i th column of B to the $\sigma(i)$ th column

Next, we are just going to do some more detailed study of S_{n}.

Definition 2.1

A subgroup of S_{n} is a subset $G \subseteq S_{n}$ such that:

1. Id $\in G$
2. $\sigma \in G$ then $\sigma^{-1} \in G$
3. $\sigma, \tau \in G$ then $\sigma \circ \tau \in G$

Example 2.2

Let $G=\left\{(123),(123)^{2},(123)^{3}\right\}$, then one can verify it forms a subgroup. Indeed, note $(123)^{2}=(132)$ and $(123)^{3}=$ Id. Thus $(123)^{n}=(123)^{m}$ where $0 \leq m<3$ and $n \equiv m(\bmod 3)$.

Definition 2.3

Let X be a finite set and G a subgroup of S_{n}. We say X admits $\boldsymbol{a} G$-action if there exists a set function $\alpha: G \times X \rightarrow X$ such that:

1. $\alpha(\operatorname{Id}, x)=x$ for all $x \in X$
2. $\alpha(g, \alpha(h, x))=\alpha(g h, x)$

If this is the case, we say X is a (left) G-set.

From now on we write $g \cdot x$ to mean $\alpha(g, x)$.

Definition 2.4

Let X be a G-set, for $x \in X$, we define the stabilizer $\operatorname{Stab}(x)=\{g \in G: g x=$ $x\} \subseteq G$ and orbit $\operatorname{Orb}(x):=\{g x: g \in G\} \subseteq X$.

Proposition 2.5

Let X be G-set, then $\operatorname{Orb}(x)=\operatorname{Orb}(y)$ or $\operatorname{Orb}(x) \cap \operatorname{Orb}(y)=\emptyset$.

Proof. We will show $\operatorname{Orb}(x) \cap \operatorname{Orb}(y) \neq \emptyset$ then $\operatorname{Orb}(x)=\operatorname{Orb}(y)$. Take $z \in \operatorname{Orb}(x) \cap$ $\operatorname{Orb}(y)$, then $z=g_{1} x=g_{2} y$ and so $x=g_{1}^{-1} g_{2} y$ which shows $\operatorname{Orb}(x) \subseteq \operatorname{Orb}(y)$. But then $y=g_{2}^{-1} g_{1} x$, $\operatorname{so} \operatorname{Orb}(y) \subseteq \operatorname{Orb}(x)$.

Theorem 2.6

Let X be a G-set. Then

$$
|\{\operatorname{Orb}(x): x \in X\}|=\frac{1}{|G|} \sum_{g \in G}|\operatorname{Fix}(g)|
$$

where $\operatorname{Fix}(g):=\{x \in X: g x=x\}$.

Proof. Basic counting argument.

Example 2.7

Suppose we have n choices of colours to paint the four corners of a floor tile. How many different floor tiles can we make?

Proof. Let us label the corner of our tile by 1, 2, 3, 4 going clockwise. Then, two paintings are the same, iff we can rotate one colour configuration to get another. In other word, consider the subgroup $R:=\left\{(1234),(1234)^{2},(1234)^{3}\right.$, Id $\}$. This acts on the set $\{1,2,3,4\}$ just like the rotations. In other word, we get an R-action on the set of all possible colour configurations X. The question is exactly asking the number of orbits of X under action of R. But then by the above theorem, we see this is equal to

$$
\left.\frac{1}{|R|}\left(\operatorname{Fix}(\operatorname{Id})+\operatorname{Fix}((1234))+\operatorname{Fix}\left((1234)^{2}\right)\right)+\operatorname{Fix}\left((1234)^{3}\right)\right)
$$

But Fix $(\mathrm{Id})=n^{4}$ because we can freely choose any colour on any of the four corners.

Next, $\operatorname{Fix}((1234))=n$ because the colour of 1 must equal the colour of 2 , and the colour of 2 must equal the colour of 3 and so on, i.e. we only get to choose one colour and we are done.

Then, $\operatorname{Fix}\left((1234)^{2}\right)=n^{2}$ and $\operatorname{Fix}\left((1234)^{3}\right)=n$.
Hence, we conclude we have

$$
\frac{n^{4}+n^{2}+2 n}{4}
$$

many possibilities.

