1 Reviews

Example 1.1

Let $V = \mathbb{R}^4$ and $W = \text{span}(e_1 + e_2 + e_3 + e_4)$. Find a basis of V/W.

Proof. Just pick e_1, e_2, e_3 and we claim this is a basis. Well, note dim W = 1, dim V = 4, so dim(V/W) = 3. Thus we just need to show $e_1 + W, e_2 + W$ and $e_3 + W$ spans, and we have a theorem which says if dim V = n then $\{v_1, ..., v_n\}$ spans iff $\{v_1, ..., v_n\}$ linearly independent. But then this is obvious, as $\{e_1, e_2, e_3, e_4\}$ spans V/W but $e_4 + W = -e_1 - e_2 - e_3 + W$. Thus we are done.

Examp	le 1.2
LAUIIP	10 1.2

Let A be the matrix	_	_		_
		0	1	0
		0	0	1
		0	1 0 0	0
	-	-		_

Show $A^3 = 0$.

Proof. Compute.

78-8 A

Example 1.3

Let

$$A = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$$

Compute A^m for $m \ge 1$.

Proof. Observe A = 2I + 3B where $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Observe $B^2 = 0$ as one can compute this. But then we also have (2I)(3B) = (3B)(2I), we can use binomial theorem to conclude

$$(2I+3B)^{m} = \sum_{i=0}^{m} {m \choose i} (2I)^{m-i} (3B)^{i}$$

where only i = 0, 1 would give $(3B)^i \neq 0$. In other word,

$$(2I+3B)^{m} = 2^{m}I + \binom{m}{1}2^{m-1}I(3B) = \begin{bmatrix} 2^{m} & (3m) \cdot 2^{m-1} \\ 0 & 2^{m} \end{bmatrix}$$

Example 1.4

A matrix *A* is idempotent if $A^2 = A$. Show *n* by *n* matrix *A* is idempotent if and only if rank(*A*) + rank(*I* - *A*) = *n*.

Proof. First note that we can do elementary row/column opeartions on block matrices as well. In particular, consider the block matrix

$$\begin{bmatrix} A & 0 \\ 0 & I - A \end{bmatrix}$$

and we add the first row [A, 0] to the second row, and we get

$$\begin{bmatrix} A & 0 \\ A & I - A \end{bmatrix}$$

Now add the first column to the second column, we get

$$\begin{bmatrix} A & A \\ A & I \end{bmatrix}$$

Next, multiply second row by -A and add to the first row, we get

$$\begin{bmatrix} A - A^2 & 0 \\ A & I \end{bmatrix}$$

Multiply second column by –A and add to the first column, we get

$$\begin{bmatrix} A - A^2 & 0 \\ 0 & I \end{bmatrix}$$

This shows

$$\operatorname{rank} \begin{bmatrix} A & 0 \\ 0 & I - A \end{bmatrix} = \operatorname{rank} \begin{bmatrix} A - A^2 & 0 \\ 0 & I \end{bmatrix}$$

Convenience yourself ranks are additive on block matrices, i.e. we get

$$\operatorname{rank}(A) + \operatorname{rank}(I - A) = \operatorname{rank}(A - A^2) + \operatorname{rank}(I_n) = n$$

We are done.

Example 1.5

Let $T: V \to V$ be linear transformation with dim V = n. Prove that

$$\operatorname{rank}(T^n) = \operatorname{rank}(T^{n+k})$$

for all $k \ge 1$.

Proof. If *T* is invertible then T^m is invertible for all $m \ge 1$ and in particular rank(T^m) = n for all $m \ge 1$.

Thus now assume T is not invertible. In this case, rank(T) < n. But observe that

$$\operatorname{rank}(T) \ge \operatorname{rank}(T^2) \ge \operatorname{rank}(T^3) \ge \dots \ge \operatorname{rank}(T^n) \ge \operatorname{rank}(T^{n+1})$$

This is n + 1 integers less than n, and thus by Pigeonhole we get some m < n + 1 such that the \geq is in fact =, i.e.

$$\operatorname{rank}(T^m) = \operatorname{rank}(T^{m+1}) \Rightarrow \operatorname{im}(T^m) = \operatorname{im}(T^{m+1})$$

But this implies $rank(T^m) = rank(T^{m+k})$ for all $k \ge 1$. Indeed, observe

$$im(T^{m+1}) = \{TT^m x : x \in V\}$$

= $\{Tx : x \in im(T^m)\}$
= $\{Tx : x \in Im(T^{m+1})\} = im(T^{m+2})$

and now use induction we are done.

L.

2 Permutation Matrices

Today our goal is the following: permutations too hard, we want linear algebra

Let σ be a *n*-permutation, then we can define

$$P_{\sigma} := \begin{bmatrix} e_{\sigma^{-1}(1)} \\ e_{\sigma^{-1}(2)} \\ \vdots \\ e_{\sigma^{-1}(n)} \end{bmatrix}$$

here e_i are the row standard basis of \mathbb{F}^n . For example, if $\sigma = (1, 2, 3)$ then we see

$$P_{\sigma} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Next, let $\sigma = (124)$, then

$$P_{\sigma} = \begin{bmatrix} e_4 \\ e_1 \\ e_3 \\ e_2 \end{bmatrix} = \begin{bmatrix} 3 \end{bmatrix}$$

In general, we have:

1. P_{σ} has one 1 in each row and in each column, all other entries are 0

- 2. The *i*th row of P_{σ} is $e_{\sigma^{-1}(i)}$ and the *i*th column is $e_{\sigma(1)}$
- 3. For any matrix *A*, $P_{\sigma}A$ moves the *i*th row of *A* to the $\sigma(i)$ th row.
- 4. For any matrix *B*, BP_{σ} moves the *i*th column of *B* to the $\sigma(i)$ th column

Next, we are just going to do some more detailed study of S_n .

Definition 2.1

A subgroup of S_n is a subset $G \subseteq S_n$ such that:

- 1. Id $\in G$
- 2. $\sigma \in G$ then $\sigma^{-1} \in G$
- 3. $\sigma, \tau \in G$ then $\sigma \circ \tau \in G$

Example 2.2

Let $G = \{(123), (123)^2, (123)^3\}$, then one can verify it forms a subgroup. Indeed, note $(123)^2 = (132)$ and $(123)^3 = \text{Id.}$ Thus $(123)^n = (123)^m$ where $0 \le m < 3$ and $n \equiv m \pmod{3}$.

Definition 2.3

Let *X* be a finite set and *G* a subgroup of S_n . We say *X* **admits** a *G*-action if there exists a set function $\alpha : G \times X \to X$ such that:

1. $\alpha(\mathrm{Id}, x) = x$ for all $x \in X$

2. $\alpha(g, \alpha(h, x)) = \alpha(gh, x)$

If this is the case, we say *X* is a (left) *G*-set.

From now on we write $g \cdot x$ to mean $\alpha(g, x)$.

Definition 2.4

Let X be a G-set, for $x \in X$, we define the *stabilizer* $Stab(x) = \{g \in G : gx = x\} \subseteq G$ and *orbit* $Orb(x) := \{gx : g \in G\} \subseteq X$.

Proposition 2.5

Let X be G-set, then Orb(x) = Orb(y) or $Orb(x) \cap Orb(y) = \emptyset$.

Proof. We will show $\operatorname{Orb}(x) \cap \operatorname{Orb}(y) \neq \emptyset$ then $\operatorname{Orb}(x) = \operatorname{Orb}(y)$. Take $z \in \operatorname{Orb}(x) \cap \operatorname{Orb}(y)$, then $z = g_1 x = g_2 y$ and so $x = g_1^{-1} g_2 y$ which shows $\operatorname{Orb}(x) \subseteq \operatorname{Orb}(y)$. But then $y = g_2^{-1} g_1 x$, so $\operatorname{Orb}(y) \subseteq \operatorname{Orb}(x)$.

Theorem 2.6

Let X be a G-set. Then

$$|\{\operatorname{Orb}(x) : x \in X\}| = \frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}(g)|$$

where $Fix(g) := \{x \in X : gx = x\}.$

Proof. Basic counting argument.

Example 2.7

Suppose we have *n* choices of colours to paint the four corners of a floor tile. How many different floor tiles can we make?

Proof. Let us label the corner of our tile by 1, 2, 3, 4 going clockwise. Then, two paintings are the same, iff we can rotate one colour configuration to get another. In other word, consider the subgroup $R := \{(1234), (1234)^2, (1234)^3, \text{Id}\}$. This acts on the set $\{1, 2, 3, 4\}$ just like the rotations. In other word, we get an *R*-action on the set of all possible colour configurations *X*. The question is exactly asking the number of orbits of *X* under action of *R*. But then by the above theorem, we see this is equal to

$$\frac{1}{|R|} \left(\operatorname{Fix}(\mathrm{Id}) + \operatorname{Fix}((1234)) + \operatorname{Fix}((1234)^2) \right) + \operatorname{Fix}((1234)^3) \right)$$

But $Fix(Id) = n^4$ because we can freely choose any colour on any of the four corners.

Next, Fix((1234)) = n because the colour of 1 must equal the colour of 2, and the colour of 2 must equal the colour of 3 and so on, i.e. we only get to choose one colour and we are done.

Then, $Fix((1234)^2) = n^2$ and $Fix((1234)^3) = n$.

Hence, we conclude we have

$$\frac{n^4 + n^2 + 2n}{4}$$

many possibilities.