Let V. =R*and W = span(e; + e, + e; + ¢,). Find a basis of V/W.

Proof. Just pick eq, e,, e5 and we claim this is a basis. Well, note dimW =1, dimV =4,
so dim(V /W) = 3. Thus we just need to show e; + W, e,+W and e;+ W spans, and we
have a theorem which says if dimV = n then {v,,...,v,} spans iff {v,,...,v,} linearly
independent. But then this is obvious, as {e;,e,,es,e,} spans V/W but e, + W =
—e, — e, —e3 + W. Thus we are done.

@
Let A be the matrix
010
0 01
0 0O
Show A% = 0.
Proof. Compute.
Let
2 3
2=[o 3]

Compute A™ for m > 1.

01
Proof. Observe A = 2] + 3B where B = [ 0 O]' Observe B2 = 0 as one can compute

this. But then we also have (2I)(3B) = (3B)(2I), we can use binomial theorem to

conclude
m

(20 +3B)" =Y (T)(zr)m—i(smi

i=0

where only i = 0, 1 would give (3B)’ # 0. In other word,

o= (S [} O]



A matrix A is idempotent if A> = A. Show n by n matrix A is idempotent if and
only if rank(A) + rank(I —A) = n.

Proof. First note that we can do elementary row/column opeartions on block matrices
as well. In particular, consider the block matrix

o 124]

and we add the first row [A, 0] to the second row, and we get

A 1

Now add the first column to the second column, we get

4 7]

Next, multiply second row by —A and add to the first row, we get

A—A* 0
A I

Multiply second column by —A and add to the first column, we get
A—A* 0O
0 I
—A? O]

A 0 A
rank[O I_A]—rank[ 0 I

Convenience yourself ranks are additive on block matrices, i.e. we get

This shows

rank(A) + rank(I —A) = rank(A—A?) + rank(I,) = n

We are done.

Let T : V — V be linear transformation with dimV = n. Prove that
rank(T") = rank(T")

forall k > 1.



Proof. If T is invertible then T™ is invertible for all m > 1 and in particular rank(T™) =
n for allm > 1.

Thus now assume T is not invertible. In this case, rank(T) < n. But observe that
rank(T) > rank(T?) > rank(T?) > ... > rank(T") > rank(T"*')

This is n+ 1 integers less than n, and thus by Pigeonhole we get some m < n+ 1 such
that the > is in fact =, i.e.

rank(T™) = rank(T™!) = im(T™) = im(T™™)
But this implies rank(T™) = rank(T™**) for all k > 1. Indeed, observe

im(T™") ={TT"x:x €V}
={Tx:x €im(T™)}
={Tx:x € Im(T™")} =im(T™"?)

and now use induction we are done.

Today our goal is the following: permutations too hard, we want linear algebra

Let o be a n-permutation, then we can define

60—1(1)

b, = eail(z)

(e}
€o-1(n)

here e; are the row standard basis of F". For example, if o = (1, 2,3) then we see

0 01
P,=[1 0 0
010
Next, let o = (124), then
e,
— & =
p,=|%]=[5]
| €5

In general, we have:

1. P, has one 1 in each row and in each column, all other entries are 0
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2. The ith row of P, is e,-1(; and the ith column is e, ;)
3. For any matrix A, P,A moves the ith row of A to the o(i)th row.
4. For any matrix B, BP, moves the ith column of B to the o (i)th column

Next, we are just going to do some more detailed study of S,,.

A subgroup of S, is a subset G C S,, such that:

1. IdeG
2. ceGthenoteG
3.0, T€GthencoT€G

Let G = {(123),(123)?%,(123)3}, then one can verify it forms a subgroup. Indeed,
note (123)? = (132) and (123)3 = Id. Thus (123)" = (123)™ where 0 < m < 3
and n =m (mod 3).

Let X be a finite set and G a subgroup of S,,. We say X admits a G-action if there
exists a set function a : G x X — X such that:

1. a(ld,x)=xforall x €X
2. a(g,a(h,x)) = a(gh,x)

If this is the case, we say X is a (left) G-set.

From now on we write g - x to mean a(g, x).

Let X be a G-set, for x € X, we define the stabilizer Stab(x) = {g € G : gx =
x} € G and orbit Orb(x) :={gx: g€ G} € X.

Let X be G-set, then Orb(x) = Orb(y) or Orb(x) N Orb(y) = 0.

Proof. We will show Orb(x) N Orb(y) # @ then Orb(x) = Orb(y). Take z € Orb(x) N
Orb(y), then z = g;x = g,y and so x = gl_lgzy which shows Orb(x) € Orb(y). But
then y = g, g,x, so Orb(y) C Orb(x).

&



Let X be a G-set. Then
1 .
[{Orb(x) : x € X}| = EZ|1=1x(g)|
geG

where Fix(g) :={x € X : gx = x}.

Proof. Basic counting argument.

Suppose we have n choices of colours to paint the four corners of a floor tile. How
many different floor tiles can we make?

Proof. Let us label the corner of our tile by 1, 2, 3,4 going clockwise. Then, two paint-
ings are the same, iff we can rotate one colour configuration to get another. In other
word, consider the subgroup R := {(1234), (1234)?,(1234)3,1d}. This acts on the set
{1,2,3,4} just like the rotations. In other word, we get an R-action on the set of all
possible colour configurations X. The question is exactly asking the number of orbits
of X under action of R. But then by the above theorem, we see this is equal to

%' (Fix(1d) + Fix((1234)) + Fix((1234)?)) + Fix((1234)*))

But Fix(Id) = n* because we can freely choose any colour on any of the four cor-
ners.

Next, Fix((1234)) = n because the colour of 1 must equal the colour of 2, and the
colour of 2 must equal the colour of 3 and so on, i.e. we only get to choose one colour
and we are done.

Then, Fix((1234)?) = n? and Fix((1234)%) = n.
Hence, we conclude we have

n*+n%+2n
4

many possibilities.
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