
1 Reviews

Example 1.1

Let V = R4 and W = span(e1 + e2 + e3 + e4). Find a basis of V/W .

Proof. Just pick e1, e2, e3 and we claim this is a basis. Well, note dim W = 1, dim V = 4,
so dim(V/W ) = 3. Thus we just need to show e1+W, e2+W and e3+W spans, and we
have a theorem which says if dim V = n then {v1, ..., vn} spans iff {v1, ..., vn} linearly
independent. But then this is obvious, as {e1, e2, e3, e4} spans V/W but e4 + W =
−e1 − e2 − e3 +W . Thus we are done.

Example 1.2

Let A be the matrix




0 1 0
0 0 1
0 0 0





Show A3 = 0.

Proof. Compute.

Example 1.3

Let

A=
�

2 3
0 2

�

Compute Am for m≥ 1.

Proof. Observe A = 2I + 3B where B =
�

0 1
0 0

�

. Observe B2 = 0 as one can compute

this. But then we also have (2I)(3B) = (3B)(2I), we can use binomial theorem to
conclude

(2I + 3B)m =
m
∑

i=0

�

m
i

�

(2I)m−i(3B)i

where only i = 0,1 would give (3B)i 6= 0. In other word,

(2I + 3B)m = 2mI +
�

m
1

�

2m−1I(3B) =
�

2m (3m) · 2m−1

0 2m

�
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Example 1.4

A matrix A is idempotent if A2 = A. Show n by n matrix A is idempotent if and
only if rank(A) + rank(I − A) = n.

Proof. First note that we can do elementary row/column opeartions on block matrices
as well. In particular, consider the block matrix

�

A 0
0 I − A

�

and we add the first row [A, 0] to the second row, and we get
�

A 0
A I − A

�

Now add the first column to the second column, we get
�

A A
A I

�

Next, multiply second row by −A and add to the first row, we get
�

A− A2 0
A I

�

Multiply second column by −A and add to the first column, we get
�

A− A2 0
0 I

�

This shows

rank
�

A 0
0 I − A

�

= rank
�

A− A2 0
0 I

�

Convenience yourself ranks are additive on block matrices, i.e. we get

rank(A) + rank(I − A) = rank(A− A2) + rank(In) = n

We are done.

Example 1.5

Let T : V → V be linear transformation with dim V = n. Prove that

rank(T n) = rank(T n+k)

for all k ≥ 1.
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Proof. If T is invertible then T m is invertible for all m≥ 1 and in particular rank(T m) =
n for all m≥ 1.

Thus now assume T is not invertible. In this case, rank(T )< n. But observe that

rank(T )≥ rank(T 2)≥ rank(T 3)≥ ...≥ rank(T n)≥ rank(T n+1)

This is n+1 integers less than n, and thus by Pigeonhole we get some m< n+1 such
that the ≥ is in fact =, i.e.

rank(T m) = rank(T m+1)⇒ im(T m) = im(T m+1)

But this implies rank(T m) = rank(T m+k) for all k ≥ 1. Indeed, observe

im(T m+1) = {T T m x : x ∈ V}
= {T x : x ∈ im(T m)}
= {T x : x ∈ Im(T m+1)}= im(T m+2)

and now use induction we are done.

2 Permutation Matrices

Today our goal is the following: permutations too hard, we want linear algebra

Let σ be a n-permutation, then we can define

Pσ :=









eσ−1(1)
eσ−1(2)

...
eσ−1(n)









here ei are the row standard basis of Fn. For example, if σ = (1,2, 3) then we see

Pσ =





0 0 1
1 0 0
0 1 0





Next, let σ = (124), then

Pσ =







e4

e1

e3

e2






=
�

3
�

In general, we have:

1. Pσ has one 1 in each row and in each column, all other entries are 0
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2. The ith row of Pσ is eσ−1(i) and the ith column is eσ(1)
3. For any matrix A, PσA moves the ith row of A to the σ(i)th row.
4. For any matrix B, BPσ moves the ith column of B to the σ(i)th column

Next, we are just going to do some more detailed study of Sn.

Definition 2.1

A subgroup of Sn is a subset G ⊆ Sn such that:

1. Id ∈ G
2. σ ∈ G then σ−1 ∈ G
3. σ,τ ∈ G then σ ◦τ ∈ G

Example 2.2

Let G = {(123), (123)2, (123)3}, then one can verify it forms a subgroup. Indeed,
note (123)2 = (132) and (123)3 = Id. Thus (123)n = (123)m where 0 ≤ m < 3
and n≡ m (mod 3).

Definition 2.3

Let X be a finite set and G a subgroup of Sn. We say X admits a G-action if there
exists a set function α : G × X → X such that:

1. α(Id, x) = x for all x ∈ X
2. α(g,α(h, x)) = α(gh, x)

If this is the case, we say X is a (left) G-set.

From now on we write g · x to mean α(g, x).

Definition 2.4

Let X be a G-set, for x ∈ X , we define the stabilizer Stab(x) = {g ∈ G : g x =
x} ⊆ G and orbit Orb(x) := {g x : g ∈ G} ⊆ X .

Proposition 2.5

Let X be G-set, then Orb(x) = Orb(y) or Orb(x)∩Orb(y) = ;.

Proof. We will show Orb(x) ∩Orb(y) 6= ; then Orb(x) = Orb(y). Take z ∈ Orb(x) ∩
Orb(y), then z = g1 x = g2 y and so x = g−1

1 g2 y which shows Orb(x) ⊆ Orb(y). But
then y = g−1

2 g1 x , so Orb(y) ⊆ Orb(x).
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Theorem 2.6

Let X be a G-set. Then

|{Orb(x) : x ∈ X }|=
1
|G|

∑

g∈G

|Fix(g)|

where Fix(g) := {x ∈ X : g x = x}.

Proof. Basic counting argument.

Example 2.7

Suppose we have n choices of colours to paint the four corners of a floor tile. How
many different floor tiles can we make?

Proof. Let us label the corner of our tile by 1,2, 3,4 going clockwise. Then, two paint-
ings are the same, iff we can rotate one colour configuration to get another. In other
word, consider the subgroup R := {(1234), (1234)2, (1234)3, Id}. This acts on the set
{1,2, 3,4} just like the rotations. In other word, we get an R-action on the set of all
possible colour configurations X . The question is exactly asking the number of orbits
of X under action of R. But then by the above theorem, we see this is equal to

1
|R|
�

Fix(Id) + Fix((1234)) + Fix((1234)2)) + Fix((1234)3)
�

But Fix(Id) = n4 because we can freely choose any colour on any of the four cor-
ners.

Next, Fix((1234)) = n because the colour of 1 must equal the colour of 2, and the
colour of 2 must equal the colour of 3 and so on, i.e. we only get to choose one colour
and we are done.

Then, Fix((1234)2) = n2 and Fix((1234)3) = n.

Hence, we conclude we have

n4 + n2 + 2n
4

many possibilities.
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