
1 Examples

Example 1.1

Let R : R2→ R2 be the linear transformation obtained by rotate vector v θ radians
counterclockwise, where 0≤ θ ≤ 2π. Then:

1. find [R]E .
2. show that if θ ∈ (0, 2π) then there exists no non-zero vector v such that

Rv = λv for some λ ∈ R.

For the first one, note

In other word, we see (1, 0) 7→ v such that v has angle θ , i.e. by the definition of cos
and sin, we get

v = (cos(θ ), sin(θ ))

On the other hand, we see (0,1) 7→ u where u has angle π/2+ θ , i.e.

u= (cos(π/2+ θ ), sin(π/2+ θ ))

Basic calculus now tells us
u= (− sinθ , cosθ )

Hence, we concluded

[R]E =
�

cos(θ ) − sinθ
sin(θ ) cos(θ )

�

To show (2), observe ∃x 6= 0, Ax = λx if and only if (A− λI)x = 0 if and only if
ker(A−λI) 6= 0 if and only if A−λI is not full rank. Hence it suffices to show [R]E−λI
is full rank for any choice of λ.

Well, first we show

A=
�

a b
c d

�
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is invertible if and only if ad − bc 6= 0. To do this, let’s find the formal inverse of the
matrix A. That is, we are looking for

B =
�

x1 x2

x3 x4

�

so
AB = t I = BA

where t 6= 0. Thus we get
�

ax1 + bx2 ax3 + bx4

cx1 + d x3 cx3 + d x4

�

=
�

t 0
0 t

�

=
�

ax1 + cx2 bx1 + d x2

ax3 + cx4 bx3 + d x4

�

Compare entries we are just solving for linear equations in terms of x1, x2, x3, x4, and
at the end we conclude

�

x1 x2

x3 x4

�

=
1

ad − bc

�

d −b
−c a

�

Thus, if the inverse of A exists, it must equal B, and in particular forces ad − bc to be
non-zero. On the other hand, if ad − bc is non-zero then B exists and hence A has
inverse.

Hence, to show

[R]E −λI =
�

cos(θ )−λ − sinθ
sin(θ ) cos(θ )−λ

�

is of full rank, it suffices to consider

(cos(θ )−λ)2 + sin2(θ ) = cos2(θ )− 2cos(θ )λ+λ2 + sin2(θ )

= λ2 − 2cos(θ )λ+ 1

This has solution iff
4 cos2(θ )− 4= 0⇔ cos(θ ) = 0

but we assumed θ ∈ (0, 2π).

Fun Fact 1.2

A proper rigid transformation T : R2→ R2 is a set map such that

‖x − y‖= ‖T (x)− T (y)‖

for all x , y ∈ R2, and T (e1) is always at the right of T (e2) (this is called the
handedness/orientation). Then, we can prove all such rigid transformation are
of the form f (x) = Rx + v where R is a rotation matrix as above, and v is a fixed
vector. In other word, all proper rigid transformation are defined by rotation plus
translation.

Quiz Q1 1.3

In assignment 5, is the linear transformation in Problem 2 a proper rigid trans-
formation?
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Recall the map R is defined by reflection about the line y = 2x .

Example 1.4

Let f , g be polynomials, with deg(g) = m and deg( f ) = n, in C[x]. Prove that
f (x) and g(x) has common root implies Res( f , g) is zero.

The definition of Res( f , g) is
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

an an−1 ... a0

an an−1 ... a0

... ... ... ...
an an−1 ... a0

bm bm−1 ... b0

bm bm−1 ... b0

... ... ... ...
bm bm−1 ... b0

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

where we get m rows of (an, ..., a0) and n rows of (bm, ..., b0). Here f = an xn+ ... and
g = bm xm + ....

For example, if f (x) = x4+2x3+3x2+4x +5 and g(x) = 2x3+ x2+3x +4, then
we have

R( f , g) =

�

�

�

�

�

�

�

�

�

�

�

�

�

1 2 3 4 5 0 0
0 1 2 3 4 5 0
0 0 1 2 3 4 5
2 1 3 4 0 0 0
0 2 1 3 4 0 0
0 0 2 1 3 4 0
0 0 0 2 1 3 4

�

�

�

�

�

�

�

�

�

�

�

�

�

Before we start, note if f or g are the zero polynomial then this is trivial.

First, let’s suppose f , g has a common root, thus f (x) = f1(x)d(x) and g(x) =
g1(x)d(x) where deg(d(x))≥ 1. Thus we see

g1(x) f (x) = f1(x)g(x) = d(x)

Now set g1(x) = dm−1 xm−1 + ...+ d0 and f1(x) = cn−1 xn−1 + ...+ c0, we see

g1(x) f (x) = f1(x)g(x)⇒ andm−1 = bmcn−1

by compare the leading coefficient. Similarly, by compare the second term, we get

an−1dm−1 + andm−2 = bm−1cn−1 + bmcn−2

Its not hard to see, we get a system of linear equations
∑

i+ j=m+n−k

aid j =
∑

i+ j=m+n−k

bic j, 1≤ k ≤ m+ n− 1

Since f , g are not zero, we see f1, g1 cannot be zero polynomials. Hence we immedi-
ately see (dm−1, ..., d0,−cn−1, ...,−c0) is a solution to the matrix of Res( f , g). In other
word, it is not invertible, and thus Res( f , g) is zero as desired.
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Fun Fact 1.5

This condition is if and only if.

Example 1.6

Let f1, ..., fn be (n−1) times differentiable real functions on interval [a, b]. Define
the Wronskian by

W (x) =

�

�

�

�

�

�

�

�

f1(x) f2(x) ... fn(x)
f ′1(x) f ′2(x) ... f ′n(x)

... ... ... ...
f (n−1)
1 (x) f (n−1)

2 (x) ... f (n−1)
n (x)

�

�

�

�

�

�

�

�

Prove f1, ..., fn are linearly independent over C (n−1)[a, b] asR-vector space if there
exists x0 ∈ [a, b] so W (x0) 6= 0.

Suppose
∑

ki fi(x) = 0

for some ki ∈ R. Then take derivatives on both sides, we get
∑

ki f
′

i (x) = 0

Do this n− 1 times, we get


























∑

ki fi(x) = 0
∑

ki f
′

i (x) = 0
∑

ki f
(2)

i (x) = 0
...
∑

ki f
(n−1)

i (x) = 0

But then if we subsitute x = x0 we see we get






f1(x0) f2(x0) ... fn(x0)
f ′1(x0) f ′2(x0) ... f ′n(x0)

... ... ... ...
f (n−1)
1 (x0) f (n−1)

2 (x0) ... f (n−1)
n (xn)















k1

k2
...

kn









= 0

In other word, (k1, ..., kn) is in the kernel of the matrix on the left. But then W (x0) is the
determinant of that matrix, and by assumption it is not zero. Thus we see (k1, ..., kn)
has to be the zero vector. This concludes f1, ..., fn are linearly independent.

Quiz Q2 1.7

In the R-vector space of functions from R to R, is the set {x2, x · |x |} linearly
independent?

Note they are linearly independent but its Wronskian is actually always zero.
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Quiz Q3 1.8

Is the R-vector space of functions from R to R, is the set

{sin(x), cos(x), ecos(x) − 3 sin(x)}

linearly independent?

Its Wronskian is
�

�

�

�

�

�

sin(x) cos(x) ecos(x) − 3sin(x)
cos(x) − sin(x) cos(x)ecos(x) − 3cos(x)
− sin(x) − cos(x) − sin(x)ecos(x) + cos2(x)ecos(x) + 3sin(x)

�

�

�

�

�

�

Now just pick x = 0 and its determinant is non-zero, as we are computing
�

�

�

�

�

�

0 1 e
1 0 e− 3
0 −1 e

�

�

�

�

�

�

= −2e

Example 1.9

Prove dimQ(R) =∞

We begin with the following claim: 1, np3,
np

32...,
np

3n−1 are linearly independent
over Q. Indeed, suppose otherwise, then we can find ai not all zero so

a0 + a1
np

3+, , ,+an−1
np

3= 0

Thus let f (x) =
∑n−1

i=1 ai x
i and we see f ( np3) = 0, i.e. np3 is a root of f . On the other

hand, we see g(x) = xn − 3 also has np3 as a real root. Hence, f (x) and g(x) as real
polynomials we get f , g has a common factor x − np3, i.e. f , g are not coprime. Now
recall Eisenstein Criterion:

Theorem 1.10

Let g(x) be polynomial with integer coefficients. Then g(x) =
∑n

i=0 ai x
n is irre-

ducible if there exists prime p so:

1. p divides ai for each 0≤ i < n
2. p does not divide an

3. p2 does not divide a0

By this, we know g(x) is irreducible over Q, thus we must have g(x) | f (x) in Q[x]
as g(x) is irreducible and f , g has common factors. This is a contradiction to the fact
deg(g) = n.

Now, suppose for a contradiction R is finite dimensional Q-vector space. Then say
dimQ(R) = n, which forces any n+1 many vectors to be linearly dependent. But then
take 1, n+1p3, ..., n+1p3n, which makes the claim a contradiction.
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2 Enrichment:Determinant

Today we are going to give an alternative definition of determinant. To begin with,
recall we defined permutations as bijections of [n]. Next, we learned that permutation
matrices permutes the row or columns of matrix A, if we multiple Pσ from the left or
right. Moreover, PσPτ = Pστ and P−1

σ
= Pσ−1 .

Lemma 2.1

For all σ ∈ Sn, det(Pσ) ∈ {1,−1}.

Proof. Each Pσ is obtained by row swaps of Id. But then those elementary row opera-
tions change det by a factor of −1. Hence det Pσ ∈ {−1,1} as desired.

Definition 2.2

For σ ∈ Sn, we define:

1. The sign of σ as sgn(σ) := det(Pσ)
2. The parity of σ is even if sgn(σ) = 1, and odd otherwise.

How do we compute the sign of σ? Well, from the proof above, we see we just
need to figure out the number of row swaps. Thus, if we let σ = c1...ct where ci are
cycles, then each cycle clearly requires `(ci)− 1 many row-swaps. Hence

sgn(σ) = (−1)
∑

(`(ci)−1)

Alternatively, this can also be computed using what’s called inversion number N(σ).
A pair (i, j) is called an inversion of σ if 1 ≤ i < j ≤ n and σ(i) > σ( j). Then
sgn(σ) = (−1)N(σ).

Example 2.3

Consider the permutation σ = 48635127. Then:

1. σ = (1436)(287)(5) and hence sgn(σ) = (−1)3+2+0

2. You can try to list all the inversions. The answer is 17 and hence sgn(σ) =
(−1)17

Now, use linearity of det on the first row, we get

det(A) =
n
∑

i=1

a1i









ei

a2
...

an








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But then we can expand each of those new matrices again on the second row, and so
on. At the end of the day, we get

det(A) =
n
∑

i1,...,in=1

a1i1 a2i2 ...anin det





ei1
...

ein





but then if i1...in is not a permutation, then we have matrix with two row equal, and
hence det is zero. Therefore, we only need to consider permutations, i.e.

det(A) =
∑

σ∈Sn

a1σ(1)...anσ(n) det





eσ(1)
...

eσ(n)



=
∑

σ∈Sn

sgn(σ−1)
n
∏

i=1

aiσ(i)

It is not hard to see this is the same as
∑

σ∈Sn

sgn(σ)a1σ(1)...anσ(n)

Thus we obtained the permutation definition of determinants.

3 Definition Of Determinant

I will include the definition of determinant here, just in case its not covered yet.

Definition 3.1

We define the determinant recursively det : Mn×n(F)→ F as follows:

1. If A= (a) then det(A) = a
2. If A= (ai j) then

det(A) = a11 det(A11)− a21 det(A21) + ...=
n
∑

i=1

(−1)i+1ai1 · det(Ai1)

where Ai j is A delete ith row and jth column.

The following aresome basic properties of det:

Theorem 3.2

Determinant has the following properties:

1. det(A) = −det(B) if B is obtained by swap i and i + 1th row of A
2. det(A) = det(A1) + det(A2) if A = (..., u + v, ...) and A1 = (..., u, ...) and

A2 = (..., v, ...).
3. det(AB) = det(A)det(B)
4. det(A) 6= 0 iff A is invertible
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