1 Examples

Example 1.1

Let $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation obtained by rotate vector $v \theta$ radians counterclockwise, where $0 \leq \theta \leq 2 \pi$. Then:

1. find $[R]_{\mathcal{E}}$.
2. show that if $\theta \in(0,2 \pi)$ then there exists no non-zero vector v such that $R v=\lambda v$ for some $\lambda \in \mathbb{R}$.

For the first one, note

In other word, we see $(1,0) \mapsto v$ such that v has angle θ, i.e. by the definition of \cos and sin, we get

$$
v=(\cos (\theta), \sin (\theta))
$$

On the other hand, we see $(0,1) \mapsto u$ where u has angle $\pi / 2+\theta$, i.e.

$$
u=(\cos (\pi / 2+\theta), \sin (\pi / 2+\theta))
$$

Basic calculus now tells us

$$
u=(-\sin \theta, \cos \theta)
$$

Hence, we concluded

$$
[R]_{\mathcal{E}}=\left[\begin{array}{cc}
\cos (\theta) & -\sin \theta \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

To show (2), observe $\exists x \neq 0, A x=\lambda x$ if and only if $(A-\lambda I) x=0$ if and only if $\operatorname{ker}(A-\lambda I) \neq 0$ if and only if $A-\lambda I$ is not full rank. Hence it suffices to show $[R]_{\mathcal{E}}-\lambda I$ is full rank for any choice of λ.

Well, first we show

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

is invertible if and only if $a d-b c \neq 0$. To do this, let's find the formal inverse of the matrix A. That is, we are looking for

$$
B=\left[\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right]
$$

so

$$
A B=t I=B A
$$

where $t \neq 0$. Thus we get

$$
\left[\begin{array}{ll}
a x_{1}+b x_{2} & a x_{3}+b x_{4} \\
c x_{1}+d x_{3} & c x_{3}+d x_{4}
\end{array}\right]=\left[\begin{array}{ll}
t & 0 \\
0 & t
\end{array}\right]=\left[\begin{array}{ll}
a x_{1}+c x_{2} & b x_{1}+d x_{2} \\
a x_{3}+c x_{4} & b x_{3}+d x_{4}
\end{array}\right]
$$

Compare entries we are just solving for linear equations in terms of $x_{1}, x_{2}, x_{3}, x_{4}$, and at the end we conclude

$$
\left[\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right]=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Thus, if the inverse of A exists, it must equal B, and in particular forces $a d-b c$ to be non-zero. On the other hand, if $a d-b c$ is non-zero then B exists and hence A has inverse.

Hence, to show

$$
[R]_{\mathcal{E}}-\lambda I=\left[\begin{array}{cc}
\cos (\theta)-\lambda & -\sin \theta \\
\sin (\theta) & \cos (\theta)-\lambda
\end{array}\right]
$$

is of full rank, it suffices to consider

$$
\begin{aligned}
(\cos (\theta)-\lambda)^{2}+\sin ^{2}(\theta) & =\cos ^{2}(\theta)-2 \cos (\theta) \lambda+\lambda^{2}+\sin ^{2}(\theta) \\
& =\lambda^{2}-2 \cos (\theta) \lambda+1
\end{aligned}
$$

This has solution iff

$$
4 \cos ^{2}(\theta)-4=0 \Leftrightarrow \cos (\theta)=0
$$

but we assumed $\theta \in(0,2 \pi)$.

Fun Fact 1.2

A proper rigid transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a set map such that

$$
\|x-y\|=\|T(x)-T(y)\|
$$

for all $x, y \in \mathbb{R}^{2}$, and $T\left(e_{1}\right)$ is always at the right of $T\left(e_{2}\right)$ (this is called the handedness/orientation). Then, we can prove all such rigid transformation are of the form $f(x)=R x+v$ where R is a rotation matrix as above, and v is a fixed vector. In other word, all proper rigid transformation are defined by rotation plus translation.

Quiz Q1 1.3

In assignment 5, is the linear transformation in Problem 2 a proper rigid transformation?

Recall the map R is defined by reflection about the line $y=2 x$.

Example 1.4

Let f, g be polynomials, with $\operatorname{deg}(g)=m$ and $\operatorname{deg}(f)=n$, in $\mathbb{C}[x]$. Prove that $f(x)$ and $g(x)$ has common root implies $\operatorname{Res}(f, g)$ is zero.

The definition of $\operatorname{Res}(f, g)$ is

$$
\left|\begin{array}{cccccccc}
a_{n} & a_{n-1} & \ldots & a_{0} & & & & \\
& a_{n} & a_{n-1} & \ldots & a_{0} & & & \\
& & \ldots & \ldots & \ldots & \ldots & & \\
b_{m} & b_{m-1} & \ldots & b_{0} & a_{n} & a_{n-1} & \ldots & a_{0} \\
& b_{m} & b_{m-1} & \ldots & b_{0} & & & \\
& & \ldots & \ldots & \ldots & \ldots & & \\
& & & & b_{m} & b_{m-1} & \ldots & b_{0}
\end{array}\right|
$$

where we get m rows of $\left(a_{n}, \ldots, a_{0}\right)$ and n rows of $\left(b_{m}, \ldots, b_{0}\right)$. Here $f=a_{n} x^{n}+\ldots$ and $g=b_{m} x^{m}+\ldots$.

For example, if $f(x)=x^{4}+2 x^{3}+3 x^{2}+4 x+5$ and $g(x)=2 x^{3}+x^{2}+3 x+4$, then we have

$$
R(f, g)=\left|\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 0 & 0 \\
0 & 1 & 2 & 3 & 4 & 5 & 0 \\
0 & 0 & 1 & 2 & 3 & 4 & 5 \\
2 & 1 & 3 & 4 & 0 & 0 & 0 \\
0 & 2 & 1 & 3 & 4 & 0 & 0 \\
0 & 0 & 2 & 1 & 3 & 4 & 0 \\
0 & 0 & 0 & 2 & 1 & 3 & 4
\end{array}\right|
$$

Before we start, note if f or g are the zero polynomial then this is trivial.
First, let's suppose f, g has a common root, thus $f(x)=f_{1}(x) d(x)$ and $g(x)=$ $g_{1}(x) d(x)$ where $\operatorname{deg}(d(x)) \geq 1$. Thus we see

$$
g_{1}(x) f(x)=f_{1}(x) g(x)=d(x)
$$

Now set $g_{1}(x)=d_{m-1} x^{m-1}+\ldots+d_{0}$ and $f_{1}(x)=c_{n-1} x^{n-1}+\ldots+c_{0}$, we see

$$
g_{1}(x) f(x)=f_{1}(x) g(x) \Rightarrow a_{n} d_{m-1}=b_{m} c_{n-1}
$$

by compare the leading coefficient. Similarly, by compare the second term, we get

$$
a_{n-1} d_{m-1}+a_{n} d_{m-2}=b_{m-1} c_{n-1}+b_{m} c_{n-2}
$$

Its not hard to see, we get a system of linear equations

$$
\sum_{i+j=m+n-k} a_{i} d_{j}=\sum_{i+j=m+n-k} b_{i} c_{j}, \quad 1 \leq k \leq m+n-1
$$

Since f, g are not zero, we see f_{1}, g_{1} cannot be zero polynomials. Hence we immediately see $\left(d_{m-1}, \ldots, d_{0},-c_{n-1}, \ldots,-c_{0}\right)$ is a solution to the matrix of $\operatorname{Res}(f, g)$. In other word, it is not invertible, and thus $\operatorname{Res}(f, g)$ is zero as desired.

Fun Fact 1.5

This condition is if and only if.

Example 1.6

Let f_{1}, \ldots, f_{n} be $(n-1)$ times differentiable real functions on interval [$\left.a, b\right]$. Define the Wronskian by

$$
W(x)=\left|\begin{array}{cccc}
f_{1}(x) & f_{2}(x) & \ldots & f_{n}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & \ldots & f_{n}^{\prime}(x) \\
\ldots & \ldots & \ldots & \ldots \\
f_{1}^{(n-1)}(x) & f_{2}^{(n-1)}(x) & \ldots & f_{n}^{(n-1)}(x)
\end{array}\right|
$$

Prove f_{1}, \ldots, f_{n} are linearly independent over $C^{(n-1)}[a, b]$ as \mathbb{R}-vector space if there exists $x_{0} \in[a, b]$ so $W\left(x_{0}\right) \neq 0$.

Suppose

$$
\sum k_{i} f_{i}(x)=0
$$

for some $k_{i} \in \mathbb{R}$. Then take derivatives on both sides, we get

$$
\sum k_{i} f_{i}^{\prime}(x)=0
$$

Do this $n-1$ times, we get

$$
\left\{\begin{array}{l}
\sum k_{i} f_{i}(x)=0 \\
\sum k_{i} f_{i}^{\prime}(x)=0 \\
\sum k_{i} f_{i}^{(2)}(x)=0 \\
\vdots \\
\sum k_{i} f_{i}^{(n-1)}(x)=0
\end{array}\right.
$$

But then if we subsitute $x=x_{0}$ we see we get

$$
\left[\begin{array}{cccc}
f_{1}\left(x_{0}\right) & f_{2}\left(x_{0}\right) & \ldots & f_{n}\left(x_{0}\right) \\
f_{1}^{\prime}\left(x_{0}\right) & f_{2}^{\prime}\left(x_{0}\right) & \ldots & f_{n}^{\prime}\left(x_{0}\right) \\
\ldots & \ldots & \ldots & \ldots \\
f_{1}^{(n-1)}\left(x_{0}\right) & f_{2}^{(n-1)}\left(x_{0}\right) & \ldots & f_{n}^{(n-1)}\left(x_{n}\right)
\end{array}\right]\left[\begin{array}{c}
k_{1} \\
k_{2} \\
\vdots \\
k_{n}
\end{array}\right]=0
$$

In other word, $\left(k_{1}, \ldots, k_{n}\right)$ is in the kernel of the matrix on the left. But then $W\left(x_{0}\right)$ is the determinant of that matrix, and by assumption it is not zero. Thus we see (k_{1}, \ldots, k_{n}) has to be the zero vector. This concludes f_{1}, \ldots, f_{n} are linearly independent.

Quiz Q2 1.7

In the \mathbb{R}-vector space of functions from \mathbb{R} to \mathbb{R}, is the set $\left\{x^{2}, x \cdot|x|\right\}$ linearly independent?

Note they are linearly independent but its Wronskian is actually always zero.

Is the \mathbb{R}-vector space of functions from \mathbb{R} to \mathbb{R}, is the set

$$
\left\{\sin (x), \cos (x), e^{\cos (x)}-3 \sin (x)\right\}
$$

linearly independent?

Its Wronskian is

$$
\left|\begin{array}{ccc}
\sin (x) & \cos (x) & e^{\cos (x)}-3 \sin (x) \\
\cos (x) & -\sin (x) & \cos (x) e^{\cos (x)}-3 \cos (x) \\
-\sin (x) & -\cos (x) & -\sin (x) e^{\cos (x)}+\cos ^{2}(x) e^{\cos (x)}+3 \sin (x)
\end{array}\right|
$$

Now just pick $x=0$ and its determinant is non-zero, as we are computing

$$
\left|\begin{array}{ccc}
0 & 1 & e \\
1 & 0 & e-3 \\
0 & -1 & e
\end{array}\right|=-2 e
$$

Example 1.9

Prove $\operatorname{dim}_{\mathbb{Q}}(\mathbb{R})=\infty$

We begin with the following claim: $1, \sqrt[n]{3}, \sqrt[n]{3^{2}} \ldots, \sqrt[n]{3^{n-1}}$ are linearly independent over \mathbb{Q}. Indeed, suppose otherwise, then we can find a_{i} not all zero so

$$
a_{0}+a_{1} \sqrt[n]{3}+,,,+a_{n-1} \sqrt[n]{3}=0
$$

Thus let $f(x)=\sum_{i=1}^{n-1} a_{i} x^{i}$ and we see $f(\sqrt[n]{3})=0$, i.e. $\sqrt[n]{3}$ is a root of f. On the other hand, we see $g(x)=x^{n}-3$ also has $\sqrt[n]{3}$ as a real root. Hence, $f(x)$ and $g(x)$ as real polynomials we get f, g has a common factor $x-\sqrt[n]{3}$, i.e. f, g are not coprime. Now recall Eisenstein Criterion:

Theorem 1.10

Let $g(x)$ be polynomial with integer coefficients. Then $g(x)=\sum_{i=0}^{n} a_{i} x^{n}$ is irreducible if there exists prime p so:

1. p divides a_{i} for each $0 \leq i<n$
2. p does not divide a_{n}
3. p^{2} does not divide a_{0}

By this, we know $g(x)$ is irreducible over \mathbb{Q}, thus we must have $g(x) \mid f(x)$ in $\mathbb{Q}[x]$ as $g(x)$ is irreducible and f, g has common factors. This is a contradiction to the fact $\operatorname{deg}(g)=n$.

Now, suppose for a contradiction \mathbb{R} is finite dimensional \mathbb{Q}-vector space. Then say $\operatorname{dim}_{\mathbb{Q}}(\mathbb{R})=n$, which forces any $n+1$ many vectors to be linearly dependent. But then take $1, \sqrt[n+1]{3}, \ldots, \sqrt[n+1]{3^{n}}$, which makes the claim a contradiction.

2 Enrichment:Determinant

Today we are going to give an alternative definition of determinant. To begin with, recall we defined permutations as bijections of [n]. Next, we learned that permutation matrices permutes the row or columns of matrix A, if we multiple P_{σ} from the left or right. Moreover, $P_{\sigma} P_{\tau}=P_{\sigma \tau}$ and $P_{\sigma}^{-1}=P_{\sigma^{-1}}$.

Lemma 2.1

For all $\sigma \in S_{n}, \operatorname{det}\left(P_{\sigma}\right) \in\{1,-1\}$.

Proof. Each P_{σ} is obtained by row swaps of Id. But then those elementary row operations change det by a factor of -1 . Hence $\operatorname{det} P_{\sigma} \in\{-1,1\}$ as desired.

Definition 2.2

For $\sigma \in S_{n}$, we define:

1. The sign of σ as $\operatorname{sgn}(\sigma):=\operatorname{det}\left(P_{\sigma}\right)$
2. The parity of σ is even if $\operatorname{sgn}(\sigma)=1$, and odd otherwise.

How do we compute the sign of σ ? Well, from the proof above, we see we just need to figure out the number of row swaps. Thus, if we let $\sigma=c_{1} \ldots c_{t}$ where c_{i} are cycles, then each cycle clearly requires $\ell\left(c_{i}\right)-1$ many row-swaps. Hence

$$
\operatorname{sgn}(\sigma)=(-1)^{\sum\left(\ell\left(c_{i}\right)-1\right)}
$$

Alternatively, this can also be computed using what's called inversion number $N(\sigma)$. A pair (i, j) is called an inversion of σ if $1 \leq i<j \leq n$ and $\sigma(i)>\sigma(j)$. Then $\operatorname{sgn}(\sigma)=(-1)^{N(\sigma)}$.

Example 2.3

Consider the permutation $\sigma=48635127$. Then:

1. $\sigma=(1436)(287)(5)$ and hence $\operatorname{sgn}(\sigma)=(-1)^{3+2+0}$
2. You can try to list all the inversions. The answer is 17 and hence $\operatorname{sgn}(\sigma)=$ $(-1)^{17}$

Now, use linearity of det on the first row, we get

$$
\operatorname{det}(A)=\sum_{i=1}^{n} a_{1 i}\left[\begin{array}{c}
e_{i} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]
$$

But then we can expand each of those new matrices again on the second row, and so on. At the end of the day, we get

$$
\operatorname{det}(A)=\sum_{i_{1}, \ldots, i_{n}=1}^{n} a_{1 i_{1}} a_{2 i_{2}} \ldots a_{n i_{n}} \operatorname{det}\left[\begin{array}{c}
e_{i_{1}} \\
\vdots \\
e_{i_{n}}
\end{array}\right]
$$

but then if $i_{1} \ldots i_{n}$ is not a permutation, then we have matrix with two row equal, and hence det is zero. Therefore, we only need to consider permutations, i.e.

$$
\operatorname{det}(A)=\sum_{\sigma \in S_{n}} a_{1 \sigma(1) \ldots} \ldots a_{n \sigma(n)} \operatorname{det}\left[\begin{array}{c}
e_{\sigma(1)} \\
\vdots \\
e_{\sigma(n)}
\end{array}\right]=\sum_{\sigma \in S_{n}} \operatorname{sgn}\left(\sigma^{-1}\right) \prod_{i=1}^{n} a_{i \sigma(i)}
$$

It is not hard to see this is the same as

$$
\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{1 \sigma(1)} \ldots a_{n \sigma(n)}
$$

Thus we obtained the permutation definition of determinants.

3 Definition Of Determinant

I will include the definition of determinant here, just in case its not covered yet.

Definition 3.1

We define the determinant recursively det : $M_{n \times n}(\mathbb{F}) \rightarrow \mathbb{F}$ as follows:

1. If $A=(a)$ then $\operatorname{det}(A)=a$
2. If $A=\left(a_{i j}\right)$ then

$$
\operatorname{det}(A)=a_{11} \operatorname{det}\left(A_{11}\right)-a_{21} \operatorname{det}\left(A_{21}\right)+\ldots=\sum_{i=1}^{n}(-1)^{i+1} a_{i 1} \cdot \operatorname{det}\left(A_{i 1}\right)
$$

where $A_{i j}$ is A delete i th row and j th column.

The following aresome basic properties of det:

Theorem 3.2

Determinant has the following properties:

1. $\operatorname{det}(A)=-\operatorname{det}(B)$ if B is obtained by swap i and $i+1$ th row of A
2. $\operatorname{det}(A)=\operatorname{det}\left(A_{1}\right)+\operatorname{det}\left(A_{2}\right)$ if $A=(\ldots, u+v, \ldots)$ and $A_{1}=(\ldots, u, \ldots)$ and $A_{2}=(\ldots, v, \ldots)$.
3. $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
4. $\operatorname{det}(A) \neq 0$ iff A is invertible
