
1 Examples

Example 1.1

Let

A=





2 −2 2
−2 −1 4
2 4 −1





Find the eigenvalues and eigenvectors of A.

To begin with, consider

det





2−λ 2 −2
2 −1−λ −4
−2 −4 −1−λ



=

�

�

�

�

�

�

2−λ 2 −2
2 −1−λ −4
0 −5−λ −5−λ

�

�

�

�

�

�

= (2−λ)
�

�

�

�

−1−λ −4
−5−λ −5−λ

�

�

�

�

− 2

�

�

�

�

2 −2
−5−λ −1−λ

�

�

�

�

= (2−λ)(−(3−λ)(5+λ))− 2(−2− 2λ− 10− 2λ)

= −(λ+ 6)(λ− 3)2

Now let’s find eigenvectors for λ= 3. In this case we are solving

(A− 3I)





x1

x2

x3



= 0

Note

A− 3I =





−1 −2 2
−2 −4 4
2 4 −4





A basic row reduction gives




−1 −2 2
0 0 0
0 0 0





and thus the kernel has dimension 2, and a basis is given by

v1 =





−2
1
0



 , v2 =





2
0
1





Thus, span(v1, v2)\0 gives the collection of eigenvectors for λ= 3. We will leave as an
exercise to find eigenvectors for λ= −6.
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Example 1.2

Let V = K[x]n be the space of polynomials in x of max degree n. Find the char-
acteristics polynomial for derivative.

A basis of V is 1, x , ..., xn, and in this case d
d x has matrix representation













0 1 0 .... 0
0 0 2 ... 0
...

...
...

. . .
...

0 0 0 ... n− 1
0 0 0 ... 0













Thus

det(D−λI) = det













−λ 1 0 .... 0
0 −λ 2 ... 0
...

...
...

. . .
...

0 0 0 ... n− 1
0 0 0 ... −λ













= (−λ)n

Example 1.3

Let f (x) = xn + an−1 xn−1 + ...+ a1 x + a0 be irreducible Q polynomial, n> 0. Let
ω0 be a root of f in the complex number. Now view C as Q-vector space. Define

F :Q[x]→ C
g(x) 7→ g(ω0)

1. Is F a Q-linear map? If yes, find a basis of Im F
2. Let A(z) = ω0z for all z ∈ Im F . Is A : Im F → Im F a linear map? If yes,

what is a matrix representation of A in your basis in (1)?
3. Is A diagonalizable over Q?
4. Now view A as matrix over C, is it diagonalizable?

(1): Take g1, g2 ∈Q[x], then its not hard to see

F(g1 + cg2) = (g1 + cg2)(ω0) = g1(ω0) + cg2(ω0)

Thus F is Q-linear.

Next we find a basis of Im F . Pick u ∈ Im F , then there exists g ∈Q[x] so g(ω0) =
u. Now perform long division with g(x), f (x) we get

g(x) = h(x) f (x) + r(x)

where deg(r)< deg( f ) = n. Suppose r(x) = c0 + c1 x + ...+ cn−1 xn−1, then we see we
get

g(ω0) = 0= h(ω0) f (ω0) + r(ω0)
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But since ω0 is a root of f in complex, we get f (ω0) = 0 and thus

u= c0 + c1ω0 + ...+ cn−1ω
n−1
0

In other word, {1,ω0, ...,ωn−1
0 } spans Im F . It remains to show linearly independent.

To that end, suppose for a contradiction we can find k0, ..., kn−1 so

k0 + k1ω0 + ...+ kn−1ω
n−1
0 = 0

Then we get a polynomial q(x) =
∑n−1

i=0 ki x
i with q(ω0) = 0 = f (ω0). Thus over the

complex numbers q and f shares a common factor (x −ω0). In other word, f and q
are not coprime over C, and hence they cannot be coprime over Q. Hence we either
have f | q or q | f , but f is irreducible, so we must have f | q. This is a contradiction
by degree consideration. This shows {1, ...,ωn−1

0 } is linearly independent.

(2): Observe A(1) =ω0, A(ω0) =ω2
0,...,A(ωn−2

0 ) =ωn−1
0 and

A(ωn−1) =ωn
0 = −a0 − a1ω0 − ...− an−1ω

n−1
0

Thus A(z) ∈ Im(F) if z ∈ Im(F). This verifies A : Im F → Im F . We leave as an exercise
to show it is linear.

The matrix representation of A is clearly given by
















0 0 0 ... 0 −a0

1 0 0 ... 0 −a1

0 1 0 ... 0 −a2

0 0 1 ... 0 −a3
...

...
...

. . .
...

...
0 0 0 ... 0 −an−1

















(3): To see if this is diagonalizable, we need to find its characteristics polynomial.
We claim det(A−λI) = (−1)n f (λ). To prove this, we proceed by induction.

For n= 2 we get
�

�

�

�

−λ −a0

1 −a1 −λ

�

�

�

�

= λ2 + a1λ+ a0 = f (λ)

Suppose induction holds, then we consider n by n determinant
















−λ 0 0 ... 0 −a0

1 −λ 0 ... 0 −a1

0 1 −λ ... 0 −a2

0 0 1 ... 0 −a3
...

...
...

. . .
...

...
0 0 0 ... 0 −λ− an−1

















Now expand this by the first row, we get

−λ ·

�

�

�

�

�

�

�

�

�

�

−λ 0 ... 0 −a1

1 −λ ... 0 −a2

0 1 ... 0 −a3
...

...
. . .

...
...

0 0 ... 0 −λ− an−1

�

�

�

�

�

�

�

�

�

�

+ (−1)n+1(−a0)

�

�

�

�

�

�

�

�

1 −λ ... 0
0 1 ... 0
...

...
. . .

...
0 0 ... 1

�

�

�

�

�

�

�

�
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But then the left term by induction hypothesis is

−λ · (−1)n−1(λn−1 + an−1λ
n−2 + ...+ a2λ+ a1) + (−1)n+2a0

This is just
(−1)n f (λ)

as desired.

However, by assumption f is irreducible over Q, thus det(A−λI) = (−1)n f (λ) has
no root over Q, thus A has no eigenvalues over Q, thus cannot be diagonalizable over
Q.

(4): Since f is irreducible over Q, f has no repeated roots over C. Thus all eigen-
values of f are distinct, and hence it must be diagonalizable.

To see this, consider

Lemma 1.4

Let λ1,λ2 be distinct eigenvalues of A. Let v1 be eigenvector of λ1 and v2 eigenvector
of λ2, then v1, v2 are linearly independent.

Proof. Indeed, note Avi = λi vi. Thus suppose av1 + bv2 = 0, then

A(av1 + bv2) = 0= aλ1v1 + bλ2v2

Since λi are distinct, WLOG we can assume λ1 6= 0. Then we get

λ1(av1 + bv2) = 0= aλ1v1 + bλ1v2

Now subtract the two equations we get

0= aλ1v1 + bλ1v2 − (aλ1v1 + bλ2v2) = b(λ1 −λ2)v2

But v2 is not the zero vector, λ1 −λ2 6= 0, and thus b = 0. Now repeat this argument
for a, we conclude a = b = 0. Thus they are linearly independent.

Corollary 1.4.1

Let A be n by n matrix with n distinct eigenvalues. Then A is diagonalizable.

Proof. Each λi has at least one non-zero eigenvector. Say v1, .., vn, but then they are
linearly independent by the above result. Since dim of V is n, this means v1, ..., vn is a
basis and thus A is diagonalizable.
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2 Enrichment: Linear Code

Suppose you and your friend wants to order takeout.

You decided to go for 15 hot wings, and when you order it, what happens in se-
cret is that your phone translate this into binary code, which is 01111 (amount other
things, of course), and send it to the restaurant.

But what happens in real life is that information get lost all the time (a simpler
example would be radio signals, which can be affected by other sources of electro-
magnetic waves), and hence it is possible that somehow your binary code get messed
up and became 11111. Now you get 31 hot wings on your plate.

This is very bad, because you are paying double the amount.

Hence, it is only natural to want to design a protocol of transmitting data so that
not only we are getting the message, we want to be able to check if this message has
been altered (for natural reason) or not.

For the purpose of exposition, let’s assume the message we are trying to send is
only 4 bits. In other word, we are looking at 4-tuple (a1, a2, a3, a4) with ai ∈ {0,1}. In
other word, this 4-tuple lies in Z4

2.

In real life, if your friend texted you the string

amachronistic

It will not be too hard for you to figure out what they meant is

anachronistic

(p.s. it means chronologically misplaced).

Thus, longer the word, easier the task to deduce the correct message, assuming
the error rate is small.

Hence, it is natural to devise the protocol so that we contain extra information.
Thus, for a message (a1, a2, a3, a4), let’s append three more elements c1, c2, c3, so that
it becomes a vector in Z7

2, where







c1 = a1 + a2 + a3

c2 = a2 + a2 + a4

c3 = a1 + a3 + a4

This induces linear map
σ : Z4

2→ Z
7
2

which is clearly injective.

This map σ is called a encoding, and C := Imσ is called a code, and an element
of C := Imσ is called a codeword.
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The first four elements in v ∈ Imσ contains the actual information, and the last
three elements are just for checking correctness.

Let’s study σ. Clearly the defining equation for c1, c2, c3 is given by





c1

c2

c3



=





1 1 1 0
1 1 0 1
1 0 1 1











a1

a2

a3

a4







Denote this matrix by A, then we see v ∈ Imσ if and only if

v ∈ ker H

where

H =





1 1 1 0 −1 0 0
1 1 0 1 0 −1 0
1 0 1 1 0 0 −1





This shows the code C is a vector subspace of Z7
2.

Now, suppose we received a text v ∈ Z7
2, and we want to know if it is correct or

not, then we just need to compute Hv. If Hv 6= 0, then we know for sure that v must
being incorrect.

In this case, we know something is wrong, but is it possible for us to correct this
code so that we recover the original message?

Since we always assume the channel we are sending message is always reasonable,
in the sense that we allow errors, but the chance of getting a bunch of bits altered is
very low (e.g. so 1111 becomes 0000 is very low).

Thus the natural way to correct this code is to find a codeword w ∈ C , so that the
number of bits differ between v and w is minimal.

Definition 2.1

Let v, w ∈ Zn
2, define Hamming distance h(v, w) as the number of 1’s in v − w,

i.e. it is the number of places where vi is not equal wi.

Thus, if we get message v, and Hv 6= 0, then what we do is to find w ∈ C so that
d(v, w) is minimal.

At the current stage, the computation is fine, but if we want to transmit larger data,
we are not fine. Hence we do a little bit more analysis.

Assume the original message is a, the received message is c and b ∈ C minimalise
d(b, c). Then define

e = c − a

as the error vector and we see

He = H(c − a) = Hc −Ha = Hc
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For a vector v ∈ Z7
2, we call Hv the check vector. Then we see the error vector e and c

has the same check vector.

More generally, a, b has the same check vector iff Ha = H b iff H(a − b) = 0 iff
a− b ∈ C iff a+ C = b+ C , i.e. a = b in Z7

2/C .

In other word, a and b has the same check vector if and only if they are the same
element in the quotient vector space Z7

2/C . In particular, e+ C = c + C , and thus the
most likely correct code must be the smallest (smallest value of d(x , 0)) vector in the
equivalence class c + C .

Thus, we shall translate received code c as c − e where e is the smallest vector in
the equivalence class c + C .

Let’s see an example in action.

Suppose we are encoding Z2
2, with check matrix

H =
�

1 1 1 0
0 1 0 1

�

Then dim C = 2, which contains four vectors (0, 0,0, 0), (1, 0,1, 0), (0,1, 1,1) and
(1,1, 0,1). Thus the quotient space Z4

2/C is also of dimension 2, which says we have
22 equivalence classes. They are given by

0000 1010 0111 1101
1000 0010 1111 0101
0100 1110 0011 1001
0001 1011 0110 1100

Each row is an equivalence class, and now we just find the check matrix for the smallest
vector in each of the equivalence class. This gives

0000 1010 0111 1101
�

0
0

�

1000 0010 1111 0101
�

1
0

�

0100 1110 0011 1001
�

1
1

�

0001 1011 0110 1100
�

0
1

�

Thus, now if we received the message c = 1110, then we compute Hc =
�

1
1

�

. This

tells us 1110 lies in the row with check vector
�

1
1

�

. Once we find 1110 in the table,

we just take the vector in the toppest row in the same column as 1110 as our output
“corrected” vector.

3 Quiz Questions
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Example 3.1

Compute the following n by n determinant:
�

�

�

�

�

�

�

�

�

�

�

�

1 1 1 ... 1
a1 a2 a3 ... an

a2
1 a2

2 a2
3 ... a2

n
a3

1 a3
2 a3

3 ... a3
n

...
...

...
. . .

...
an−1

1 an−1
2 an−1

3 ... an−1
n

�

�

�

�

�

�

�

�

�

�

�

�

The options are:

1.
n−1
∏

i=1

(ai+1 − ai)

2.
∑

1≤i< j≤n

(a j − ai)

3.
∏

1≤i< j≤n

(a j − ai)

4.
∑

σ∈Sn

n
∏

i=1

(ai − aσ(i))

Solution. Use induction to show

det Vn =
∏

1≤ j<i≤n

(ai − a j)

Clearly it holds for n= 2. Thus we assume it holds for n− 1. Then

det Vn =

�

�

�

�

�

�

�

�

�

�

1 1 ... 1
0 a2 − a1 ... an − a1

0 a2
2 − a1a2 ... a2

n − a1an

0
...

. . .
...

0 an−1
2 − an−2

2 a1 ... an−1
n − an−2

n−1a1

�

�

�

�

�

�

�

�

�

�

where we add −a1 times (n− 1)th row to the nth row, then add −1 times (n− 2)th
row to the n− 1th row and so on. Now expand the first column we get

det Vn =

�

�

�

�

�

�

a2 − a1 ... an − a1
...

. . .
...

an−1
2 − a1an−2

2 ... an−1
n − an−2

n−1a1

�

�

�

�

�

�

=

�

�

�

�

�

�

�

�

(a2 − a1)1 ... (an − a1)1
(a2 − a1)a2 ... (an − a1)an

...
. . .

...
(a2 − a1)an−2

2 ... (an − a1)an−2
n

�

�

�

�

�

�

�

�
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Now pull out the a2 − a1 on the first column, a3 − a1 on the second and so on, we get
our induction hold.

Example 3.2

Compute the following n by n determinant where a 6= b and a, b 6= 0:
�

�

�

�

�

�

�

�

�

�

a+ b ab 0 0 ... 0 0
1 a+ b ab 0 ... 0 0
0 1 a+ b ab ... 0 0
...

...
...

...
. . .

...
...

0 0 0 0 ... 1 a+ b

�

�

�

�

�

�

�

�

�

�

The options are

1.
an+1 − bn+1

a− b
2.

an + (n− 1)ab+ bn

3.
(a+ b)n − (n− 1)ab

4.
an + bn − an−1 − bn−1

a− b

Proof. We use induction to show

Dn =
an+1 − bn+1

a− b

Indeed, expand Dn by the first column we get

Dn = (a+ b)Dn−1 + (−1)1+2ab · 1 · Dn−2

Thus
Dn − aDn−1 = b(Dn−1 − aDn−2)

Thus, we get {Dn − aDn−1}n≥2 is a geometric series with ratio b. Thus we get closed
formula

Dn − aDn−1 = (D2 − aD1)b
n−2

where an easy computation shows

D2− aD1 = b2

and thus
Dn − aDn−1 = bn
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Now use
Dn = (a+ b)Dn−1 − abDn−2

again to get
Dn − bDn−1 = a(Dn−1 − bDn−2)

we conclude
Dn − bDn−1 = an

Solve the system
¨

Dn − aDn−1 = bn

Dn − bDn−1 = an

we conclude

Dn =
an+1 − bn+1

a− b

�

�

�

�

2 1
0 3

�

�

�

�
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