
1 Appendix

Proposition 1.1

(V,B) is an (v, b, r, k,λ)-BIBD iff its incidence matrix N satisfies the following con-
ditions:

1. N1b = r1v, where 1b is the column vector of size b contains all 1, and 1r is
the column vector of size 4 contains all 1.

2. 1T
v N = k1T

b where 1T
v is transpose.

3. NN T = (r −λ) Idv+λλJv where Jm is the m×m matrix contains all 1.

Proof.

N1b =







∑b
j=1 N1 j

...
∑b

j=1 Nv j







and so N1b = r1v iff
∑b

j=1 Ni j = r for all i = 1, ..., v iff x i lies in exactly r blocks for all
i.

Similarly, 1T
v N = k1T

b iff each block has k points.

Finally, consider NN T . We see (NN T )ii is equal

b
∑

j=1

Ni jN
T
i j =

b
∑

j=1

N 2
i j =

b
∑

j=1

Ni j

So (NN T )ii = r for all i iff the first condition holds.

For i 6= j, we see

(NN T )i j =
b
∑

l=1

(Nil)(N
T )l j =

k
∑

l=1

Nil N jl

where in the last sum, it is equal 1 iff x i and x j are both in αl . Hence, the last sum is
the number of blocks containing both x i and x j. Thus (NN T )i j = λ iff every pair of
distinct points lies in λ many blocks.

Thus (1) to (3) are equivalent to the three conditions defining a BIBD.

Lemma 1.2

The incidence matrix N of a symmetric design is normal (i.e. NN T = N T N).
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Proof. We have NJ = JN where we set J = Jv. Indeed, we see NJ = N1v1
T
v = r1v1

T
v =

rJ and on the other hand JN = 1v1
T
v N = k1v1

T
v = kJ = rJ .

Now consider

NNN T = N((r −λ)I +λJ)
= ((r −λ)J +λI)N
= N(N T N)

Now multiply both side by N−1 we conclude NN T = N T N as desired.

Recall the order of a design is n = r − λ. Now suppose the design is symmetric,
then

n= r −λ= k−λ
and hence the above lemma tells us

NN T = N T N = nI +λJ

Proposition 1.3

If a symmetric (v, k,λ)-design exists, then Iv ≈Q nIv +λJv where n= k−λ.

Proof. We know N ∈ Mn×n(Q) is invertible and

N T IvN = N T N = nIv +λJv

Here is some basic properties of congruence.

Proposition 1.4

1. ≈Q is an equivalence relation.
2. If we have A= Diag(A1, ..., As) is a matrix with block matrices on the diagonal,

then A≈Q Diag(Aσ(1), ..., Aσ(s)) with σ ∈ Ss.
3. If A≈Q B and B = BT then A= AT .
4. If A≈Q Bi for i = 1, ..., s, then Diag(A1, ..., As)≈Q Diag(B1, ..., Bs).

Proof. Exercise!

The notion of congruence is also related to bilinear forms.
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Definition 1.5

Let V be a vector space over Q, a bilinear form on V is a map α : V × V → Q
such that:

1. α(x + t y, z) = α(x , z) + tα(y, z)
2. α(x , y + tz) = α(x , y) + tα(x , z)

for all x , y ∈ V and t ∈Q.

Definition 1.6

A bilinear form on V is symmetric form if α(x , y) = α(y, x) for all x , y ∈ V .

Definition 1.7

If (x1, ..., xn) is a basis of V and α be a bilinear form, then the Gram matrix of α
is the n× n matrix with Ai j = α(x i, x j). We write A= [α]x1,...,xn

.

Proposition 1.8

A≈Q B iff there exists a bilinear form α such that A= [α]x1,...,xn
and B = [α]y1,...,yn

for some bases x1, ..., xn and y1, ..., yn.

Proposition 1.9

A≈Q B iff there exists a bilinear form α such that A= [α]x1,...,xn
and B = [α]y1,...,yn

for some bases x1, ..., xn and y1, ..., yn.

Proof. (⇒): Suppose PT AP = B with P invertible. Let α :Qn×Qn→Q be the bilinear
form given by α(x , y) = x T Ay . Let e1, ..., en be the standard basis, then A= [α]e1,...,en

.
Since P is invertible, Pe1, ..., Pen is also a basis for Qn.

We claim B = [α]Pe1,...,Pen
. To see this, we note

α(Pei, Pe j) = (Pei)
T A(Pe j) = eT

i Be j = Bi j

Thus we proved the desired claim.

(⇐): Suppose A = [α]x1,...,xn
and B = [α]y1,...,yn

for some bilinear form. Thus we
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get change of basis matrix P so yi =
∑n

k=1 Pki xk. But then we see

Bi j = α(yi, y j)

=
n
∑

k=1

n
∑

l=1

Pki Pl jα(xk, x l)

=
n
∑

k=1

n
∑

l=1

Pki Pl jAkl

=
n
∑

k=1

n
∑

l=1

(PT )ikAkl Pl j

= (PT AP)i j

Proposition 1.10

The Gram matrix of α is symmetric iff α is a symmetric form.

Since the matrices we are interested in are symmetric, we will only consider sym-
metric forms.

Theorem 1.11: Diagonal Theorem

Let α : V × V →Q be symmetric. Then there exists a basis x1, ..., xn for V such that
[α]x1,...,xn

is diagonal.

We note, if α : V × V → Q is symmetric form and W ⊆ V a subspace, then we get
a symmetric form αW : W ×W →Q by restricting the domain of α.

Proof. By induction on dim V .

If dim V = 1 then any basis diagonalizes α. Assume dim V = n and the result holds
for dim< n.

Case 1: Suppose α(x , x) = 0 for all x ∈ V . Then

α(x , y) =
1
2
· (α(x + y, x + y)−α(x , x)−α(y, y)) = 0

for all x , y ∈ V . Thus for any basis x1, ..., xn for V , [α]x1,...,xn
= 0 is the zero matrix.

Case 2: If α(x , x) 6= 0 for some x ∈ V . Consider W = {w ∈ V : α(x , w) = 0} =
ker(α(x , ·)). We see α(x , ·) is a rank 1 linear map (rank ≤ 1 since dimQ= 1, rank> 0
since x /∈ ker(α(x , ·))). Thus dim W = n − 1. By induction hypothesis we can find
basis y1, ..., yn−1 so [αW ]y1,...,yn−1

is diagonal. Since x ∈ W , we see x , y1, ..., yn−1 is a
basis for V .
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We claim [α]x ,y1,...,yn−1
is diagonal. Indeed, for all j > 1, D1 j = Dj1 = α(x , y j−1) = 0

since y j−1 ∈W . We also have

Di j = Dji = α(yi−1, y j−1) = 0

for i < j.

Corollary 1.11.1

Every symmetric matrix is congruent to a diagonal matrix.

Definition 1.12

Let α : V × V → Q be symmetric form. An invertible linear map T : V → V is an
isometry of α if α(x , y) = α(T x , T y) for all x , y ∈ V .

Theorem 1.13: Isometry Theorem

If x , y ∈ V such that α(x , x) = α(y, y) 6= 0. Then there exists isometry T : V → V
such that T x = y.

Proof. Exercise

Theorem 1.14: Witt Cancellation

Let A = Diag(A1, A2), B = Diag(B1, B2) be n× n symmetric matrices with diagonal
block matrices. Suppose A ≈Q B and A1 ≈Q B1 and A1, B1 are invertible. Then
A2 ≈Q B2.

Proof. By the diagonal theorem we can find D so A1 ≈Q B1 ≈Q D. Thus we see we get

�

D 0
0 A2

�

≈Q
�

A1 0
0 A2

�

≈Q
�

B1 0
0 B2

�

≈Q
�

D 0
0 B2

�

Thus it suffices to consider the following special case.

Special case: let c ∈Q, c 6= 0. If

�

c 0
0 A2

�

≈
�

c 0
0 B2

�
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then A2 ≈Q B2.

To prove this special case, let α be a symmetric form on vector space V on Q such
that it has two bases x , w1, ..., wn−1 and y, z1, ..., zn−1 such that

[α]x ,w1,...,wn−1
=
�

c 0
0 A2

�

[α]y,z1,...,zn−1
=
�

c 0
0 B2

�

Note that α(x , x) = α(y, y) 6= 0. By t he isometry theorem we can find an isometry
T : V → V such that T x = y .

Let W = {z ∈ V : α(y, z) = 0} = ker(α(y, ·)). As we saw in the diagonal theorem,
dim W = n− 1.

We claim z1, ..., zn−1 is a basis for W . Indeed, we have

α(y, zi) =
�

c 0
0 B2

�

1,i+1

= 0

and hence zi ∈ W . Furthermore, z1, ..., zn−1 are linearly independent. Finally, it has
the right size, hence it must be a basis as desired. This concludes the claim.

Similarly, we have Tw1, ..., Twn−1 is also a basis for W . Indeed, α(y, Twi) = α(T x , Twi) =
α(x , wi) = 0.

Finally, we see B2 = [α|W ]z1,...,zn−1
and A2 = [α|W ]Tw1,...,Twn−1

. Hence they are con-
gruent as desired.

Now that we have a cancellation theorem we need something to cancel.

Theorem 1.15

For every positive integer n, Id4 ≈Q n Id4.

To prove this, we need more algebra.

First, we consider new ways to define complex numbers. In particular, complex
numbers can be thought as 2× 2 real matrices of the form

�

a −b
b a

�

Then:

1. The set of such matrices is closed under +,−, · and inverse.
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2. This R-algebra is isomorphic to C under

a+ bi↔
�

a −b
b a

�

In particular, we define the quaternion in a similar manner.

Definition 1.16

A (matrix) quaternion is a 4× 4 matrix of the form

A=







a −b −c −d
b a d −c
c −d a b
d c −b a







Definition 1.17

The modulus of a quaternion given by a, b, c, d is defined as |A| :=
p

a2 + b2 + c2 + d2.

We use H to denote the set of all quaternions.

Proposition 1.18

H is a R-vector space. Moreover, let A, B ∈H.

1. AB ∈H
2. AT ∈H
3. If A 6= 0 then A is invertible and A−1 ∈H
4. In particular, AT = A= AAT = |A|2I4 if A 6= 0. Hence A−1 = 1

|A|2 AT .
5. |AB|= |A| · |B|
6. |A|= 0 iff A= 0.

Well, however, we need to note, AB 6= BA in general.

Definition 1.19

We say A∈H is called Hurwitz quaternion if either:

1. Ai j ∈ Z for all i, j, or
2. Ai j ∈ Z[

1
2] for all i, j (note Z[1

2] = Z+
1
2 = {a+

1
2 : a ∈ Z}).

This above condition for Hurwitz quaternion is the same as 2A has all integer en-
tries with the same parity.

We use A to denote the set of all Hurwitz quaternions.
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Proposition 1.20

If A, B ∈ A, then:

1. A+ B ∈ A.
2. mA∈ A for all m ∈ Z.
3. AT ∈ A.
4. AB ∈ A.
5. If A−1 ∈ A then |A|= 1.
6. |A|2 ∈ Z≥0 (i.e. a2 + b2 + c2 + d2 ∈ Z).
7. If X ∈H, then there exists [X ] ∈ A such that |X − [X ]|< 1.

We will prove we can find P ∈ A such that PT I4P = nI4.

To prove PT I4P = nI4, we use extended Euclidean algorithm for integers.

To recall that, we do an example. Suppose we want to compute gcd(81,30), we
get

21= 81− 2 · 30

9= 30− 21

3= 21− 2 · 9

and
0= 9− 3 · 3

This gives a sequence 81, 30,21, 9,3, 0 and hence the gcd is the last non-zero entory,
i.e. 3. This is one application of Euclidean algorithm.

We can also use Euclidean algorithm to express the gcd in terms of two original
numbers, i.e. we get 3= 3 · 81− 8 · 30.

Lemma 1.21: Left GCD for Hurwitz Quaternions

Let A0, A1 ∈ A and A0 6= 0. Then there exist a Hurwitz quaternion G ∈ A such that:

1. G−1A0 ∈ A, G−1A1 ∈ A
2. G = A0X0 + A1X1 for some X0, X1 ∈ A.

In this case, G is said to be a left-GCD of A0 and A1.

Proof. Construct a sequence A0, A1, A2, ... as follows: for k ≥ 0, let

Ak+2 := Ak − Ak+1[A
−1
k+1Ak]

where [A−1
k+1Ak] is rounding opeartion. This is the same as

Ak+2 = Ak+1(A
−1
k+1Ak − [A−1

k+1Ak])

We can do this as long as Ak+1 6= 0. This is clearly a Hurwitz quaternion and hence
all Ak are Hurwitz quaternions. The second equation about Ak+2 shows |Ak+1| < |Ak|.
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Since this is strictly decreasing, we see this sequence must stop at one point. Then,
the proof is the same as the proof of Euclidean algorithm for integers.

Lemma 1.22

For every prime p, there exists integer m, 1≤ m≤ p and integers x , y such that

1+ x2 + y2 = mp

Proof. Assume p is odd. Consider

02, 12, ..., (
p− 1

2
)2

and

−1− 02,−1− 12, ...,−1− (
p− 1

2
)2

There are p+ 1 numbers between these two sequences. Hence two of these numbers
must be equal mod p. In particular, these two numbers cannot come from the same
sequence. Indeed, they cannot both come from the first sequence because x2 ≡ y2

(mod p) and hence x ≡ y (mod p) or x ≡ −y (mod p). Similarly they cannot both
come from the second. Hence, we get x2 ≡ −1− y2 (mod p). But note 0 ≤ x ≤ p−1

2

and 0≤ y ≤ p−1
2 , hence we conclude

1+ x2 + y2 < p2⇒ 1+ x2 + y2 = mp

with m< p.

Lemma 1.23

For every prime p, there exists a Hurwitz quaternion Gr ∈ A such that |Gp|=
p

p.

Proof. Let x , y, m be as previous lemma. Let

A0 =







1 ...
x ...
y ...
0






∈ A

and let A1 = pI4 ∈ A. Then |A0| =
p

1+ x2 + y2 = pmp with 1 ≤ m ≤ p and
|A1| = p = pp · p. If p = 2 then m = 1 so Gp = A0. If p is odd, then let Gp be the left
GCD of A0 and A1.
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Since Gp ∈ A, we get G−1
p Ai ∈ A for i = 0, 1 and hence

|Gp|2 · |G−1
p A0|2 = |A0|2 = mp

This means |Gp|2 | mp. Moreover

|Gp|2 · |G−1
p A1|2 = |A1|2 = p2

and so |Gp|2 divides p2.

Since |Gp|2 ∈ Z we deduce that |Gp|2 = 1 or |Gp|2 = p. To rule out the first case, we
see |Gp|2 = 1 means |Gp|= 1 and hence G−1

p ∈ A by properties of Hurwitz quaternions.
Write Gp = A0X1 + A1 + X1 with X i ∈ A. Then we get

AT
0 = AT

0 GpG−1
p

= AT
0(A0X0 + A1X1)G

−1
p

= AT
0A0X0G−1

p + AT
0A1X1G−1

p

= mpX0G−1
p + pAT

0 X1G−1
p

= p · (...)

which implies AT
0 ∈ pA, which is a contradiction as AT

0 contains x , y and it is not a
multiple of p. Hence |Gp|2 = p as desired.

Theorem 1.24

If n is a positive integer, then I4 ≈Q nI4.

Proof. Write n= p1...pl with pi prime. Let p = Gp1
...Gpl

∈ A, then |p|=
∏

|Gpi
|=
p

n.
Hence PT I4P = |P|2I4 = nI4 as desired.
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