
1 Your First Day Of Co-op

Today we will talk about designs. Before we formally introduce the question we will
try to answer today, let’s consider some examples.

Example 1.1

Let’s recall the game (that I never played before) called “Spot It”. Here is the rule:

1. We have b many cards, on each card k many distinct symbols coming from
a set of v many symbols in total.

2. Any two cards always only share one common symbol.
3. The goal of the game is to be the first one to find out the common symbol.

Now, say you are hired as a co-op student for a card game, and you boss turns
to you and say, “we want to make a "spot it" game with the following rules”:

1. b many cards, on each card there is k many distinct symbols, with a total
of b = v many symbols.

2. each symbol must appear in exactly r many cards.
3. each pair of symbols must appear in exactly λ card.

Here is an example (this is called the Fano plane) with b = v = 7, k = 3, r = 3
and λ= 1:

Here the dots means symbols, lines means cards, dots on the line means that
symbol is in that card.

Your boss says, “your task is very simple, design a similar game as above, but
with bigger parameters, in particular, I want r = 7 and λ= 1”.

Is this possible?
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Here is another example.

Example 1.2

Suppose you are hired to taste wines, say v different kind of wines.

If you drink too many wines in one day, you lose the ability to distinguish
them, as they all just become taste the same. Say you can only taste k kind of
wines each day.

The goal is to figure out a way to compare each pair of wines exactly once.

Here is one example of such design: say v = 7, k = 3, and the wines are
labelled P = {0,1, 2, ..., 6}. Then on day i, we taste:

1. 0,1, 3
2. 1,2, 4
3. 2,3, 5
4. 3,4, 6
5. 4,5, 0
6. 5,6, 1
7. 6,0, 2

By doing this, we ended up with comparing each pair of wines exactly once (e.g.
we have done comparing 3 and 5 on day 3).

Remark 1.3: Observations

• This is very systematic, as day 2 is just all the numbers in day 1 plus 1 mod
7 and so on.

• From this design, we can get many other designs, simply add 1 to all the
numbers above, and mod 7. So day 1 becomes tasting 1,2, 4 and so on.

• We cannot pick any three elements and get such a design, for example if
day 1 is {0,1, 2} then in day 2 we are overlapping in tasting.

• In short, what we are doing is just given a finite set P, we find some collec-
tion of subsets of P, subject to certain regularity conditions.

What do I mean by regularity conditions? Observe:

1. each of the day (we call them blocks) has 3 points from P
2. each point in P is in 3 blocks
3. each pair of points is in exactly one block

Now let’s turn this into a definition:

Definition 1.4

A design is a pair (V,B) such that:
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1. V is a finite set, where the elements of V are called points
2. B is a multiset of subsets of V called blocks

Definition 1.5

A design is simple if B is a set, i.e. no repeated blocks.

Definition 1.6

Let t ∈ N, then a t-design is a design in which all blocks have the same size,
and there exists a constant λt so every t-tuple of distinct points lies in exactly λt

blocks.

In particular, we see the wine tasting example is both a 1-design and 2-design of
the set P = {0,1, 2, ..., 6}= Z/7Z.

Definition 1.7

A BIBD (short for balanced incomplete block design) is a design (V,B) which is
both a 1-design and 2-design.

Remark 1.8: Parameters Of BIBD

We have five parameters for BIBD, namely (v, b, r, k,λ):

1. v = |V | is the number of points
2. b = |B| is the number of blocks (note b = λ0)
3. r = λ1 is the number such that every point is in r many blocks
4. k = |α| is the size of blocks
5. λ= λ2 is the number such that each pair of points is in λ many blocks

In short, we will often write (v, k,λ)-design instead of (v, b, r, k,λ), and call v, k,λ the
primary parameters, and b, r the secondary parameters.

Question 1.9

Now your coop question turns into the following: Can we find a BIBD with λ= 1,
v = b and r −λ= 6?

Definition 1.10

A BIBD is symmetric if v = b.

Okay, so we want to study designs. We note we will introduce a lot of black boxes.
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2 Basic Designs

Proposition 2.1

Let V be BIBD design with parameters (v, b, r, k,λ). Then:

1. v
k =

b
r

2. v(v−1)
k(k−1) =

b
λ

3. v−1
k−1 =

r
λ

Proof. We only show (3). Let x ∈ V and consider the set S of pairs (y,α) where
y ∈ V\{x} and α is a block contains x , y . We can count this set in two ways:

1. If rx is the number of blocks containing x , then we get a pair for each such block
α, and each element of α other than x . Thus we have |S|= rx(k− 1)

2. If y ∈ V\{x}, then we have λ blocks containing both x and y , so |S|= (v−1)λ.

But then we see
rx(k− 1) = (v − 1)λ⇒ rx =

v − 1
k− 1

λ

But then r = rx as V is BIBD.

Using this, for our problem we immediately conclude the following:

v
k
=

b
r
⇒ 1

k
=

1
r
⇒ k = r = 7

Next, we see

v − 1
k− 1

=
r
λ
⇒ v − 1= (k− 1) · r

λ
= 42⇒ v = b = 43

Thus, at this point, we already know what the configuration must be, for our BIBD
design, i.e. it must be a (43, 43,7, 7,1)-design.

How do we show it exists or not?

3 Interlude: Linear Algebra

This is a linear algebra course, so of course we will use linear algebra to our aid!

Here is how you translate a design into a linear algebra problem:
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Definition 3.1

Let (V,B) be a design with V = {x1, ..., xv} and B = {α1, ...,αb}, the incidence
matrix of this design is a v × b matrix M = (mi j)i, j given by

mi j =

¨
1 if x i ∈ A j

0 otherwise

Example 3.2

The Fano plane

has incidence matrix 


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1




Definition 3.3

Let F be a field, A, B be two n by n F-matrices. We say A, B are congruent over F
if we can find invertible n by n F-matrix P suc hthat

PT AP = B

In this case we write A≈F B.

Example 3.4

Over Q, we have the following:

1. Id2 ≈Q 5 Id2

2. Id2 6≈Q 3 Id2
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Here is why: for 5 Id2, we just use

P =
�
2 −1
1 2

�

For 3 Id2, set

P =
�
a b
c d

�

Then we see PT Id2 P = 3 Id2 implies a2 + b2 = 3. There are no rational solution
to this and hence it is impossible.

Next, we need bring out some very big guns, that we definitely does not have time
to prove in the tutorial, but the proof is included in the appendix.

To save space, we will write In for the identity matrix, and Jn for the n by n matrix
with all entries equal 1.

Proposition 3.5

If a symmetric (v, k,λ)-design exists, then Iv ≈Q n · Iv +λ · Jv.

Proof. Appendix.

Theorem 3.6: Witt Cancellation

Let A= diag(A1, A2) and B = diag(B1, B2) be n by n symmetric matrices with diag-
onal block matrices. Suppose A≈Q B and A1 ≈Q B1 and A1, A2 are invertible, then
A2 ≈Q B2.

Here symmetric matrix means A= AT .

Proof. Appendix

Theorem 3.7

For all n≥ 1, I4 ≈Q nI4

Proof. Appendix
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4 Finale

Now, we are ready to answer your first day co-op question!

Lemma 4.1

If a symmetric (v, k,λ)-design exists, then
�

Iv 0
0 −λ

�
≈Q n ·

�
Iv 0
0 λ

�

Proof. If such design exists, then by Proposition 3.5 we get Iv ≈Q nIv +λJv. But then
if we let

P =

�
Iv

λ
k
~1v

~1T
v k

�

we get �
nIv +λJv 0

0 −λ
�
≈Q n

�
Iv 0
0 −λ

�

Here ~1n is the column vector filled with 1 of length n. This concludes the proof as we
also have �

Iv 0
0 −λ

�
≈Q

�
nIv +λJv 0

0 −λ
�

Theorem 4.2: Bruck-Ryser-Chowla

Suppose a symmetric (v, k,λ)-design exists. Let n= k−λ, then:

1. If v is even, then n := k−λ must be a square
2. If v ≡ 1 (mod 4), then the equation n = a2 − λb2 has a rational solution
(a, b) ∈Q2

3. If v ≡ 3 (mod 4), then the equation n= a2 +λb2 has a solution (a, b) ∈Q2

Proof. DONT PROVE POINT 1 SINCE THEY DONT KNOW DETERMINANTS!!!!!

(1): There exists P ∈ Mn(Q) invertible such that

PT
�

Iv 0
0 −λ

�
P = n

�
Iv 0
0 −λ

�

Now take determinants, we see det(P)2 ·(−λ) = nv(−λn). Thus we see det(P)2 = nb+1

where v is odd. Since nv+1 is a square with v + 1 odd, we must have n is a square.

(2): Start with the equation
�

Iv 0
0 −λ

�
≈Q n

�
Iv 0
0 −λ

�
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We use Witt Cancellation Theorem 3.6 to cancel out as many I4 with nI4 as possible.
Since v ≡ 1 (mod 4), this left us with equation

�
1 0
0 −λ

�
≈Q

�
n 0
0 −nλ

�

This is the same as we can find invertible 4 by 4 matrix

P =
�
a b
c d

�

such that �
a b
c d

��
1 0
0 −λ

��
a c
b d

�
=
�
n 0
0 −nλ

�

Compare the (1, 1)-entry of this equation we obtain our rational solution a2−λb2 = n
as desired.

(3): Similar. But this time, since v ≡ 3 (mod 4), we need to patch our diagonal
matrices. Namely, we start with

�
Iv 0
0 −λ

�
≈Q n

�
Iv 0
0 −λ

�

Then by adding a diagonal diag(1, n) at the end, we obtain the following equation



Iv

−λ
1

n


≈Q




nIv

−λn
1

n




Now, for the matrix on the left, we can swap the location of 1 and −λ and still get
congruent relation, and on the right we can swap the location of n and −λn and get
a congruent relation. Thus we get




Iv+1

−λ
n


≈Q




nIv+1

−λn
1




Now use Witt Cancellation we get
�−λ 0

0 n

�
≈Q

�−λn 0
0 1

�

Apply the definition of congruence, we obtain the desired equation and find a rational
solution as desired.

Theorem 4.3

There does not exists a symmetric (43, 7,1)-design.
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Proof. For the sake of contradiction, say there exists such a design. Then we see v =
43 and so v ≡ 3 (mod 4). By the above theorem, we must have a rational solution
(a, b) ∈ Q2 to the equation 6 = a2 + b2. But this is ballock, says our number theorist
friends, by the following theorem.

Theorem 4.4

Let n be a positive integer. Then the equation x2 + y2 = n has solution in Z iff
n= m2p1...pl with m ∈ Z and pi distinct primes and pi 6≡ 3 (mod 4).
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1 Appendix

Proposition 1.1

(V,B) is an (v, b, r, k,λ)-BIBD iff its incidence matrix N satisfies the following con-
ditions:

1. N1b = r1v, where 1b is the column vector of size b contains all 1, and 1r is
the column vector of size 4 contains all 1.

2. 1T
v N = k1T

b where 1T
v is transpose.

3. NN T = (r −λ) Idv+λλJv where Jm is the m×m matrix contains all 1.

Proof.

N1b =




∑b
j=1 N1 j

...∑b
j=1 Nv j




and so N1b = r1v iff
∑b

j=1 Ni j = r for all i = 1, ..., v iff x i lies in exactly r blocks for all
i.

Similarly, 1T
v N = k1T

b iff each block has k points.

Finally, consider NN T . We see (NN T )ii is equal

b∑
j=1

Ni jN
T
i j =

b∑
j=1

N 2
i j =

b∑
j=1

Ni j

So (NN T )ii = r for all i iff the first condition holds.

For i 6= j, we see

(NN T )i j =
b∑

l=1

(Nil)(N
T )l j =

k∑
l=1

Nil N jl

where in the last sum, it is equal 1 iff x i and x j are both in αl . Hence, the last sum is
the number of blocks containing both x i and x j. Thus (NN T )i j = λ iff every pair of
distinct points lies in λ many blocks.

Thus (1) to (3) are equivalent to the three conditions defining a BIBD.

Lemma 1.2

The incidence matrix N of a symmetric design is normal (i.e. NN T = N T N).
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