MATH 146 Section 2 Enrichment

Dongshu Dai

University Of Waterloo

January 19, 2023

Application Of Matrices

Let's find the general formula for Fibonacci sequence.

Application Of Matrices

Let's find the general formula for Fibonacci sequence.

Definition 1

Let $F_0 = 0$, $F_1 = 1$ and define $F_n = F_{n-1} + F_{n-2}$. We call the sequence $\{F_n\}_{n\geq 0}$ as the Fibonacci sequence.

Application Of Matrices

Let's find the general formula for Fibonacci sequence.

Definition 1

Let $F_0 = 0$, $F_1 = 1$ and define $F_n = F_{n-1} + F_{n-2}$. We call the sequence $\{F_n\}_{n\geq 0}$ as the Fibonacci sequence.

Question

Can we find a function $f : \mathbb{N} \to \mathbb{N}$ so that $F_n = f(n)$?

Fibonacci Sequence

Observation

Fibonacci Sequence

Observation

• Since $F_n = F_{n-1} + F_{n-2}$ and $F_{n-1} = F_{n-1}$, we see F_n and F_{n-1} can be both written as linear combination of F_{n-1} and F_{n-2} .

Observation

- Since $F_n = F_{n-1} + F_{n-2}$ and $F_{n-1} = F_{n-1}$, we see F_n and F_{n-1} can be both written as linear combination of F_{n-1} and F_{n-2} .
- O Thus we see for $n \ge 1$ we get

$$\begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_{n-1} \\ F_{n-2} \end{bmatrix}$$

Observation

- Since $F_n = F_{n-1} + F_{n-2}$ and $F_{n-1} = F_{n-1}$, we see F_n and F_{n-1} can be both written as linear combination of F_{n-1} and F_{n-2} .
- Thus we see for $n \ge 1$ we get

$$\begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_{n-1} \\ F_{n-2} \end{bmatrix}$$

Why stop here when we can repeat this? Clearly

$$\begin{bmatrix} F_{n-1} \\ F_{n-2} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_{n-2} \\ F_{n-3} \end{bmatrix}$$

Observation

- Since $F_n = F_{n-1} + F_{n-2}$ and $F_{n-1} = F_{n-1}$, we see F_n and F_{n-1} can be both written as linear combination of F_{n-1} and F_{n-2} .
- Thus we see for $n \ge 1$ we get

$$\begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_{n-1} \\ F_{n-2} \end{bmatrix}$$

• Why stop here when we can repeat this? Clearly

$$\begin{bmatrix} F_{n-1} \\ F_{n-2} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_{n-2} \\ F_{n-3} \end{bmatrix}$$

At the end of the day, we get

$$\begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1} \begin{bmatrix} F_1 \\ F_0 \end{bmatrix}$$

For the sake of writing less, we denote

$$A := \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

For the sake of writing less, we denote

$$A := \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

Question

How to compute A^{n-1} ?

Observation

Let's study this matrix a little bit closer.

Let's see how A acts on the standard basis

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Let's see how A acts on the standard basis

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

• Clearly
$$Ae_1 = e_1 + e_2$$
 and $Ae_2 = e_1$

Let's see how A acts on the standard basis

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

O Clearly
$$Ae_1 = e_1 + e_2$$
 and $Ae_2 = e_1$

In other word, under the action of A, both of the two standard vectors are rotated.

Let's see how A acts on the standard basis

$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\bigcirc Clearly Ae_1 = e_1 + e_2 and Ae_2 = e_1$$

- In other word, under the action of A, both of the two standard vectors are rotated.
- What if there are some vectors that are not rotated but only stretched?

http://wosugi.sakura.ne.jp/app/linear-transform/ https://shad.io/MatVis/

Fibonacci Sequence

Why That Matters?

Let $T: V \rightarrow V$ be a linear transformation, and if $Tv = \lambda v$, then we see

$$T^n v = \lambda^n v$$

Fibonacci Sequence

Why That Matters?

Let $T: V \rightarrow V$ be a linear transformation, and if $Tv = \lambda v$, then we see

$$T^n v = \lambda^n v$$

Taking power is now no-brainer!

Fibonacci Sequence

Why That Matters?

Let $T: V \rightarrow V$ be a linear transformation, and if $Tv = \lambda v$, then we see

$$T^n v = \lambda^n v$$

Taking power is now no-brainer!

• If we can find a basis of \mathbb{R}^2 such that $Av_1 = \lambda_1 v_1$ and $Av_2 = \lambda_2 v_2$

Fibonacci Sequence

Why That Matters?

Let $T: V \rightarrow V$ be a linear transformation, and if $Tv = \lambda v$, then we see

$$T^n v = \lambda^n v$$

Taking power is now no-brainer!

- If we can find a basis of \mathbb{R}^2 such that $Av_1 = \lambda_1 v_1$ and $Av_2 = \lambda_2 v_2$
- O Then we see for any $v = a_1v_1 + a_2v_2$, we have

$$A^n v = A^n (\sum a_i v_i) = \sum a_i \lambda_i^n v_i$$

Fibonacci Sequence

New Goal

Question

How do we find those magic vectors and magic numbers?

Question

How do we find those magic vectors and magic numbers?

Answer

Well, determinant is not covered yet, so I can't tell you...

Question

How do we find those magic vectors and magic numbers?

Answer

Well, determinant is not covered yet, so I can't tell you... At least not why

Definition 2

We define a map det which takes input as 2 by 2 matrices and output a real number as follows:

$$\det\left(\begin{bmatrix}a&b\\c&d\end{bmatrix}\right) = ad - bc$$

Definition 2

We define a map det which takes input as 2 by 2 matrices and output a real number as follows:

$$\det\left(\begin{bmatrix}a&b\\c&d\end{bmatrix}\right) = ad - bc$$

Theorem 3

A matrix A is invertible if and only if $det(A) \neq 0$.

Fibonacci Sequence

Magic Numbers And Vectors

Magic Numbers And Vectors

• We want to find λ so that there exists some $0 \neq v$ with $Tv = \lambda v$.

Fibonacci Sequence

Magic Numbers And Vectors

- We want to find λ so that there exists some $0 \neq v$ with $Tv = \lambda v$.
- This is the same as we want to find some v such that $(T \lambda I)v = 0$

Fibonacci Sequence

Magic Numbers And Vectors

- We want to find λ so that there exists some $0 \neq v$ with $Tv = \lambda v$.
- This is the same as we want to find some v such that $(T \lambda I)v = 0$
- This is the same as saying $(T \lambda I)$ is not invertible, as we are sending something non-zero to zero

Fibonacci Sequence

Magic Numbers And Vectors

- We want to find λ so that there exists some $0 \neq v$ with $Tv = \lambda v$.
- This is the same as we want to find some v such that $(T \lambda I)v = 0$
- This is the same as saying $(T \lambda I)$ is not invertible, as we are sending something non-zero to zero

Magic Number

Thus, to find magic numbers, we just need to solve

$$\det(A - \lambda I) = 0$$

where λ is a variable.

Computation

Well, we see

$$A - \lambda I = \begin{bmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{bmatrix}$$

Computation

Well, we see

$$A - \lambda I = \begin{bmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{bmatrix}$$

Thus, we see

$$\det(A - \lambda I) = \lambda^2 - \lambda - 1$$

Computation

Well, we see

$$A - \lambda I = \begin{bmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{bmatrix}$$

Thus, we see

$$\det(A - \lambda I) = \lambda^2 - \lambda - 1$$

Hence

$$\lambda_1 = \frac{1 + \sqrt{5}}{2}, \quad \lambda_2 = \frac{1 - \sqrt{5}}{2}$$

Let's try to find the magic vector correspond to
$$\lambda_1 = \begin{bmatrix} a \\ b \end{bmatrix}$$
.

Let's try to find the magic vector correspond to $\lambda_1 = \begin{bmatrix} a \\ b \end{bmatrix}$. Assume we don't know what v_1 is, and hence we have

$$\begin{bmatrix} 1 - \lambda_1 & 1 \\ 1 & -\lambda_1 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Let's try to find the magic vector correspond to $\lambda_1 = \begin{bmatrix} a \\ b \end{bmatrix}$. Assume we don't know what v_1 is, and hence we have

$$\begin{bmatrix} 1 - \lambda_1 & 1 \\ 1 & -\lambda_1 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

This is exactly the problem of finding solutions to a system of linear equations!

Let's try to find the magic vector correspond to $\lambda_1 = \begin{bmatrix} a \\ b \end{bmatrix}$. Assume we don't know what v_1 is, and hence we have

$$\begin{bmatrix} 1 - \lambda_1 & 1 \\ 1 & -\lambda_1 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

This is exactly the problem of finding solutions to a system of linear equations!

But there are infinitely many solutions to this system of equations. And we will just pick one generator of the solution space

Magic Vector

In short, one magic vector for λ_1 would be

$$v_1 = \begin{bmatrix} \lambda_1 \\ 1 \end{bmatrix}$$

Magic Vector

In short, one magic vector for λ_1 would be

$$v_1 = \begin{bmatrix} \lambda_1 \\ 1 \end{bmatrix}$$

Similarly, one magic vector for λ_2 would be

$$v_2 = \begin{bmatrix} \lambda_2 \\ 1 \end{bmatrix}$$

Magic Vector

In short, one magic vector for λ_1 would be

$$v_1 = \begin{bmatrix} \lambda_1 \\ 1 \end{bmatrix}$$

Similarly, one magic vector for λ_2 would be

$$v_2 = \begin{bmatrix} \lambda_2 \\ 1 \end{bmatrix}$$

Next, we want to rewrite

$$\begin{bmatrix} F_1 \\ F_0 \end{bmatrix}$$

in terms of v_1 and v_2

Fibonacci Sequence

Reap The Fruit

By observation,

$$\begin{bmatrix} F_1 \\ F_0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{5}} (v_1 - v_2)$$

Fibonacci Sequence

Reap The Fruit

By observation,

$$\begin{bmatrix} F_1 \\ F_0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{5}} (v_1 - v_2)$$

Thus, we see

$$A^{n-1}\begin{bmatrix} F_1 \\ F_0 \end{bmatrix} = \frac{1}{\sqrt{5}} (\lambda_1^{n-1} v_1 - \lambda_2^{n-1} v_2)$$

Fibonacci Sequence

Reap The Fruit

By observation,

$$\begin{bmatrix} F_1 \\ F_0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{5}}(v_1 - v_2)$$

Thus, we see

$$A^{n-1}\begin{bmatrix} F_1\\ F_0 \end{bmatrix} = \frac{1}{\sqrt{5}} (\lambda_1^{n-1} v_1 - \lambda_2^{n-1} v_2)$$

And so

$$F_{n} = \frac{1}{\sqrt{5}} \left(\lambda_{1}^{n} - \lambda_{2}^{n}\right) = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2}\right)^{n} - \left(\frac{1 - \sqrt{5}}{2}\right)^{n} \right)$$