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Examples Fibonacci Sequence

Application Of Matrices

Let’s find the general formula for Fibonacci sequence.

Definition 1

Let F0 = 0, F1 = 1 and define Fn = Fn−1 + Fn−2. We call the
sequence {Fn}n≥0 as the Fibonacci sequence.

Question

Can we find a function f ∶ N→ N so that Fn = f (n)?
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Examples Fibonacci Sequence

Observation

1 Since Fn = Fn−1 + Fn−2 and Fn−1 = Fn−1, we see Fn and Fn−1
can be both written as linear combination of Fn−1 and Fn−2.

2 Thus we see for n ≥ 1 we get

[ Fn
Fn−1

] = [1 1
1 0

] [Fn−1
Fn−2

]

3 Why stop here when we can repeat this? Clearly

[Fn−1
Fn−2

] = [1 1
1 0

] [Fn−2
Fn−3

]

4 At the end of the day, we get

[ Fn
Fn−1

] = [1 1
1 0

]
n−1

[F1
F0

]
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Examples Fibonacci Sequence

New Goal

For the sake of writing less, we denote

A ∶= [1 1
1 0

]

Question

How to compute An−1?
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Examples Fibonacci Sequence

Observation

Let’s study this matrix a little bit closer.

1 Let’s see how A acts on the standard basis

e1 = [1
0
] , e2 = [0

1
]

2 Clearly Ae1 = e1 + e2 and Ae2 = e1
3 In other word, under the action of A, both of the two standard

vectors are rotated.

4 What if there are some vectors that are not rotated but only
stretched?
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Visualization

http://wosugi.sakura.ne.jp/app/linear-transform/

https://shad.io/MatVis/
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Examples Fibonacci Sequence

Why That Matters?

Let T ∶ V → V be a linear transformation, and if Tv = λv , then we
see

T nv = λnv

Taking power is now no-brainer!

1 If we can find a basis of R2 such that Av1 = λ1v1 and
Av2 = λ2v2

2 Then we see for any v = a1v1 + a2v2, we have

Anv = An(∑ aivi) =∑ aiλ
n
i vi
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Examples Fibonacci Sequence

New Goal

Question

How do we find those magic vectors and magic numbers?

Answer

Well, determinant is not covered yet, so I can’t tell you...

At least not why
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Examples Fibonacci Sequence

Determinants

Definition 2

We define a map det which takes input as 2 by 2 matrices and
output a real number as follows:

det([a b
c d

]) = ad − bc

Theorem 3

A matrix A is invertible if and only if det(A) ≠ 0.
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Examples Fibonacci Sequence

Magic Numbers And Vectors

1 We want to find λ so that there exists some 0 ≠ v with
Tv = λv .

2 This is the same as we want to find some v such that
(T − λI )v = 0

3 This is the same as saying (T −λI ) is not invertible, as we are
sending something non-zero to zero

Magic Number

Thus, to find magic numbers, we just need to solve

det(A − λI ) = 0

where λ is a variable.

Dongshu Dai MATH 146 Section 2 Enrichment



Examples Fibonacci Sequence

Magic Numbers And Vectors

1 We want to find λ so that there exists some 0 ≠ v with
Tv = λv .

2 This is the same as we want to find some v such that
(T − λI )v = 0

3 This is the same as saying (T −λI ) is not invertible, as we are
sending something non-zero to zero

Magic Number

Thus, to find magic numbers, we just need to solve

det(A − λI ) = 0

where λ is a variable.

Dongshu Dai MATH 146 Section 2 Enrichment



Examples Fibonacci Sequence

Magic Numbers And Vectors

1 We want to find λ so that there exists some 0 ≠ v with
Tv = λv .

2 This is the same as we want to find some v such that
(T − λI )v = 0

3 This is the same as saying (T −λI ) is not invertible, as we are
sending something non-zero to zero

Magic Number

Thus, to find magic numbers, we just need to solve

det(A − λI ) = 0

where λ is a variable.

Dongshu Dai MATH 146 Section 2 Enrichment



Examples Fibonacci Sequence

Magic Numbers And Vectors

1 We want to find λ so that there exists some 0 ≠ v with
Tv = λv .

2 This is the same as we want to find some v such that
(T − λI )v = 0

3 This is the same as saying (T −λI ) is not invertible, as we are
sending something non-zero to zero

Magic Number

Thus, to find magic numbers, we just need to solve

det(A − λI ) = 0

where λ is a variable.

Dongshu Dai MATH 146 Section 2 Enrichment



Examples Fibonacci Sequence

Magic Numbers And Vectors

1 We want to find λ so that there exists some 0 ≠ v with
Tv = λv .

2 This is the same as we want to find some v such that
(T − λI )v = 0

3 This is the same as saying (T −λI ) is not invertible, as we are
sending something non-zero to zero

Magic Number

Thus, to find magic numbers, we just need to solve

det(A − λI ) = 0

where λ is a variable.

Dongshu Dai MATH 146 Section 2 Enrichment



Examples Fibonacci Sequence

Computation

Well, we see

A − λI = [1 − λ 1
1 −λ]

Thus, we see
det(A − λI ) = λ2 − λ − 1

Hence

λ1 =
1 +

√
5

2
, λ2 =

1 −
√

5

2
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Magic Vectors

Let’s try to find the magic vector correspond to λ1 = [a
b
].

Assume we don’t know what v1 is, and hence we have

[1 − λ1 1
1 −λ1

] ⋅ [a
b
] = [0

0
]

This is exactly the problem of finding solutions to a system of
linear equations!
But there are infinitely many solutions to this system of equations.
And we will just pick one generator of the solution space
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Examples Fibonacci Sequence

Magic Vector

In short, one magic vector for λ1 would be

v1 = [λ1
1
]

Similarly, one magic vector for λ2 would be

v2 = [λ2
1
]

Next, we want to rewrite

[F1
F0

]

in terms of v1 and v2
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Reap The Fruit

By observation,

[F1
F0

] = [1
0
] = 1√

5
(v1 − v2)

Thus, we see

An−1 [F1
F0

] = 1√
5
(λn−11 v1 − λn−12 v2)

And so

Fn =
1√
5
(λn1 − λn2) =

1√
5
((1 +

√
5

2
)
n

− (1 −
√

5

2
)
n

)
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