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This note contains disturbing typo.

1 What is a Ramen Surface

So you just need to know complex analysis for this course.

In this course we will assume the space we work with is Hausdorff, i.e. A : X —
X x X is closed immersion. This is equivalent to

Vx,y €X,3U,Ve0pX),(UNV=0Ax€U,veV)

Here for any topological space X, we use Op(X) to denote the category of open sets,
with arrows being inclusion.

r\* Example 1.1

. R™ is Hausdorff
. The affine line with double origin is not separated (i.e. does not have closed

diagonal).

. As topological spaces,Zariski topologies are not Hausdorff (but we can have

closed diagonals, hence separated).

Next, when we talk about (topological) surfaces (over a field K), we mean a Haus-
dorff 2-manifold (over K). Since at the end of the day we work with Ramen surfaces,
which are defined over C, in this course we can think of a topological surface as a
1-manifold over C(or 2-manifold over R).

r's Example 1.2

1.
2

3.

4.

C = R?, with one chart ¢ =1d: C — C, is a topological surface.

If W C C is open, then with induced topology and inclusion gives W a struc-
ture of a surface.

The graph Ty = G; = {(z,w) € C?:w = f(2)} of a continuous map f : U C
C — C is a topological surface.

P!=CuU{oco}={(x,y,2) ER®: x>+ y* +2° = 1} = [C*\{0}/G,,]

~
=5

We will put a few words on the last example. First, let us recall the stereo-
graphic projection from the north pole N, i.e. o, : $*\{(0,0,1)} — R? is de-
fined by (x,y,2) — (£, 2% ). Next, we also have o} : $2\{(0,0,—1)} — R?
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@ by (x,y,2) — (1%, 1%) Those two maps gives us the two charts which
covers S2, and hence conclude S? is a surface.
On the other hand, note S = CU{oco} can be done via oy : S? — CU {00},

where we lift o}, by setting (0,0, 1) to co.

Now also recall complex charts of a surface X, which is just a homeomorphism
¢ : U CX — V CC. Given two charts ¢; : U, — V, with U; N U, # @, then we

can define its associated transition function (from (¢, U,) to (¢,,U;)) to be ¢,; :=
$10¢," 1 $,(U NU,) — ¢1(U; NU,). Note this is a complex function.

a2V
. Definition 1.3

Two charts ¢; : U; — V; of surface X is holomorphically compactible if ¢,, and
¢, are holomorphic (i.e. equivalently ¢, is biholomorphic).

| ’\J
. Definition 1.4

An atlas on X is a collection ¢ of charts (¢, U;) such that | JU; covers X. An atlas
is holomorphic if any pair of charts in ¢/ are holomorphically compactible.

| U
. Definition 1.5

A Ramen surface is a topological surface with a complex atlas.

r*\ Example 1.6

1. X =C.

2. In general, if X admits an atlas with only one chart ¢ : X — V C C, then
U ={(¢,X)} is complex, as the compactibility is trivial to check.

3. If f: U S C—V CC then Iy is a Ramen surface by (2).

{} Lemma 1.7

If f :U CC — V CC is holomorphic bijection, then f~! is holomorphic.

Proof. (=): We will begin by show f is conformal, i.e. f’(z) # 0 for all z € U. Now let
%, € U and set g = f — f(2,). Then g(z,) =0, g is holomorphic bijection and f’ = g’
onU.

Since g is holomorphic and g(z,) = 0, g(z) = (2 —2,)"h(z) with h holomorphic
and h(z,) # 0. But g(2) is a bijection, and thus m = 1 (otherwise g’(z,) = 0). Hence
2(2) = (2 —2)h(z) and so g’'(z) = h(z) + (z —z,)h’(2), and so

f'(z0) = h(z) #0

as desired. This immediately implies f ! is holomorphic, i.e. f~'(w) = f~}(w,w).
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Then % =0, as z = f }(f(2)). Since f is holomorphic, g—ﬁ = 0. Then

oftow | 3f ! oW
ow 0z ow 0z

d 9 . _
0= 5(2) = 50 (f(2)) =

Now note —_
ow dz of Of
- 0 MET T e
This implies
of1 of1
f_ of'(z)=0=> f_ =0 since f'(z) #0
ow ow

This shows f” is holomorphic.

c

As a consequence of this lemma, we see to check for complex atlas, we only need
to check ¢; o ¢ " is holomorphic for all i, j € I.

A
A?A Remark 1.8

If a topological surface admits a complex atlas, then its topology is second count-
able (and hence paracompact).

Let us now keep talking about the example S*> = C U {co}. The topology for
C U {oco} =: P! is given by U C P! open iff:

1. U C C is open (with standard metric topology), or
2. U= (C\K)U{oo} for some K C C compact.

One can show this is Hausdorff, as one can show (left as exercise). Next, we can put a
complex atlas on P!, and the standard is given by ¢»; : C — C and ¢, : C*U{oc0} — C,
where

o@D =35 $olz) =~

Z

where we set é = 0. One checks ¢, ¢, are homeomorphism with inverses, and it
remains to show ¢, ¢, are holomorphically compactible. It suffices to check ¢, o ¢;*
is holomorphic by the above lemma. However, on the overlap (i.e. C* — C¥), this
function is just % and hence holomorphic.

aV
f Definition 1.9

Two complex atlases I/ and V are called analytically equivalent if every chart of
U is holomorphically compactible with every chart in V.

This is an equivalence relation, since composition of biholomorphic functions is
still biholomorphic.



| ’\J
? Definition 1.10

A complex structure ¥ on a topological surface X is an equivalence class of ana-
lytically equivalent atlases.

Its clear that a complex atlas on X determines a complex structure, and conversely
any complex structure is determined by a unique complex atlas, i.e. the maximal
complex atlas.

Thus, we have the following definition:

Definition 1.11

—

A Ramen surface is a pair (X, %) where X is a topological surface and X is a com-
plex structure.

Let us finish today’s lecture with one last example, the complex torus.

Let ' = span,(w;, w,), where w;,w, € C linearly independent (viewed as R?)
over R. Then, the complex torus associated with T is the quotient space 7 : C — C/T
(with quotient topology). In particular, we see:

1. X is connected since C is.

2. X is compact since its the image of a compact set (i.e. Conv(0, w, w,, W;+ w,))
in C under .

3. X £ 8§, x S; homeomorphically.

4. 1 is open. To see this one, it suffices to show 7 (7(U)) is open in C for all
U € C. However, n'(n(U)) = | (U + w), which is indeed open.

5. X is Hausdorff (we can see this from the fact that the set of orbit equivalence
relation {(x,y) : [x]~[y]le X} ={(x,y) : x =y + mw,; + nw,,n,m € Z} in
C x C is closed).

In the next lecture we will show X admits a complex atlas.
Today we will finish the example on torus.

Recall above we have X = C/T" with I' = span,(w;, w,), where w;, w, € C are
linearly independent as R-vectors.

In order to show X is a Ramen surface, we first need to show X is a surface. In the
above, recall  : C — X is an open map (since the action is homeomorphism).

First we need to show it is Hausdorff. For this, we will show

E:={(x,y)eCxC:[x]~[y]}

is a closed subset in C x C. To see this, just take a convergent sequence {(x,, ¥,,)}n>1
such that y, = x,, + w,, for some w, € I'. This means lim x,, = x and lim y,, = lim(x, +
w,) =y, but if you think about it we see the choice of w, has to stablize to some w,
at some point (otherwise x,, + w,) will not converge. That is, lim(x,, y,) lies in E as
well, shows it is closed. Since E is closed, the diagonal of X — X x X is closed, hence
Hausdorff.



Now it remains to give a complex atlas to X. For all p € X, choose p € P be the
unique representative of p in the fundamental parallelogram and V,, an open neigh-
bourhood of p small enough so 7|, is one-to-one. Now just set U, = n(V,) and clearly
U, is open in X with p € U,. Set ¢, be defined as (7‘L’|Vp )" : U, = V,, then this gives a
chart around p.

It remains to check those are holomorphically compactible.

Let p,q € X and consider ¢ = ¢, o qbq_l, where recall ¢, = (77:|Up)_1 and qbq_l = 1.
A computation shows

n(Y(z))=mno¢,0¢ "(z) =n(z)

Thus we see v)(z) ~ z under our equivalence relation, and thus (z) —z € T = 7?2,
which is a discrete group. However, )(z) — 2z is continuous, and thus it must be con-
stant, i.e. it is holomorphic.

The last example we do is algebraic curves.
Let P(z,w) be a non-constant polynomial in complex variables z, w. Then we define
C :={(z,w) € C?: P(z,w) =0}

We say C is smooth at (z,, wy) if VP(zy,w,) 1= (g—’;(zo,wo), g—f/(zo,wo)) is non-zero,
and otherwise its singular at the point.

q\* Example 1.12

1. Let P =w—2z2, then C is smooth
2. Let P = w? — 22, then C is non-singular at (0, 0)

The point is, all algebraic curves are Ramen surface, away from the singular points
(e.g. P =w?—2z? then C\{(0,0)} is a Ramen surface).

ﬂ
r-T-l Proposition 1.13

Let S = C\ Sing (here Sing is the set of singular points of C). Then S admits a natural
complex structure, making it into a Ramen surface.

The above theorem is a direct consequence of the implicit function theorem. Recall
implicit function theorem says if (z,,w,) is a point on C s.t. g—i(zo,wo) # 0. Then
there is a disc D, centered at g, in C, D, centered at w, € C, a holomorphic map
¢ : D; — D,, with ¢(z,) = w, such that

CN (D, xDy) ={(2,¢(2)) : 2 € D, }

Proof. By assumption, (z,,w,) € S means VP(z,,w,) is non-zero. Thus we get a chart
of S that is locally just the graph of a holomorphic function.

c



| ’\J
? Definition 1.14

Let X be a Ramen surface and Y C X open, then we define &(Y) as the set of
holomorphic functions f : Y — C.

In the above, f : Y — C is holomorphic if for all charts (¢ : U — V), we have
fopl:9p(UNY)CV — C is holomorphic.

A
A®A Remark 1.15

1. With the obvious restriction, we see ¢ is a sheaf (this means ¢ : Op(X) —
(Rings) is a functor, plus some equalizer condition) valued in rings on X.

2. In fact, O is a C-algebra.

3. As corollary of (1), to check f € &(Y), it suffices to show f |, € O(U;) for
an open cover {U;} of Y.

2 Holomorphic Mapping and Meromorphic Func-
tions

Let us begin with examples.

"3 Example 2.1

We classify f : P! — C.

In this case, P! admits a chart U; = C and U, = C* U {00}, where ¢, =Id and
¢, = %

Then we see fo¢p, ' =f:C—Cand f o p,' = f(1/2) : C — C must both be
holomorphic.

Since f is holomorphic, we can do Taylor expansion to conclude f (z) = Z;Z 02"
However, we see f(1/z) must also be holomorphic, and f(z) = f(1/z) for all
z € C* (the overlap of the two charts). This suggests f(z) is a constant a,, for all
z € C*, but f is continuous, hence f(0) must also equal a,, i.e. f is just a constant.

This concludes ¢(P!) = C.

There is nothing special about P! here, as all we need is this complex manifold to
be compact, then the global sections must be constant.



en
‘?’ Theorem 2.2: Riemann’s Removable Singularity

Let U be an open subset of Ramen surface X and a € U. Suppose f € 0(U\{a}) is
bounded on a neighbourhood of a, then f can uniquely extended to f* € O'(U).

Proof. Apply the complex analysis version of this theorem.

| \J
? Definition 2.3

Let X, Y be Ramen surfaces, then a continuous mapping f : X — Y is holomorphic
if for all pairs of charts 1;,%,, the composition 1, o f o 1/){1 is holomorphic as
complex function.

Then, we say f is biholomorphic if it is a bijection and both f and f ~! are holomorphic.
Finally, X,Y are isomorphic if there is biholomorphic mapping f : X — Y.

'
A®A Remark 2.4

The definition of holomorphic mapping is equivalent to f* : 0, — f*0y is well-
defined. Here f*0y is a sheaf on Y defined by f* 0y (V) = Ox(f (V).

r\* Example 2.5

1. Any holomorphic function f : ¢(X) is a holomorphic mapping f : X — C
2. Composition of holomorphic mappings are holomorphic
3. Let X =C/T' and Y = C/T” be two complex tori, then X =Y iff [ =T".
4. Let f : P! — P! be given by

az+b

Z —>
cz+d

with ad — bc = 1 is an automorphism of P'. Note in this case, —d /c — ©o,
—b/a— 0 and oo — a/c. The inverse is given by

dz—D>b
—cz+a

Z —>




f*\
‘T’ Theorem 2.6: Identity Theorem

Suppose X,Y are Ramen surfaces and f,, f, : X — Y be two holomorphic mapping
coincide on a set A C X with a limit point a € X. Then f; = f,.

Before we prove this result, let us first recall the notion of isolated point and limit
point for topological spaces. For S C X. We say x is isolated point if x € S and there is
open neighbourhood of x such that S N (U\{x}) = 0. We say x is limit point if for all
open neighbourhood of x, S N (U\{x}) # @. Note here limit points need not be in S.

Proof. Set B = {x € X : f(x) = g(x)}. This is the equalizer of f and g and we see
A C B. Now let

G ={x€X: flw, = glw, for some open neighbourhood W, }

and clearly G € B. We will show G is open, closed and non-empty, then G = X and
thus B =X.

To show G is open, let x € G. Then we can find open neighbourhood W, of x such
that f|,, = gly, . But W, is open neighbourhood for all x" € W,, i.e. W, C G. Hence
G is open.

Next we claim x is a limit point of B then x € G. This would imply G contains all
its limit points and non-empty, since A C B contains a limit point. This would conclude
our proof.

It remains to prove the claim.
First we show if x is a limit point of B then x € B.

Let ¢ : U — V be a chart around x, where x is a limit point of B. Since f(x) €Y,
we can pick a chart ¢’ : U' — V' around f (x). Note we can choose ¢ so that f(U) C
U’. Then f := ¢’ o f o ¢! is a holomorphic function from ¢ (U) € C to ¢’(U’) C C.
Since x is a limit point of B, ¢ (x) is a limit point of ¢(U N B) in C. Thus we can find
a sequence y, € ¢(U NB) with lim y,, = ¢(x). By definition of y,, we see y, = ¢(x,)
for some x, € U N B. This shows lim ¢(x,) = ¢ (x). By continuity of f, we see

FloGx,)) = F($(x))

Similarly, (¢ (x,)) — g(¢(x)) where § = ¢’ 0 g o . However, since x, € UNB, it
means f and g agrees on x,, i.e. we get

FloGe)) = ¢'(F (@7 (d(x)) = ¢'(f (x)) = ¢"((x)) = &(D(x,)

Thus we see ¢'(f(x)) = ¢’(g(x)) by continuity, and hence f(x) = g(x) as ¢’ is a
homeomorphism, i.e. x € B.

We also want to show there exists open neighbourhood W, of x where f |, = gl .

Note f, & are holomorphic functions such that f =g on¢(UNB)and ¢(UNB) has
a limit point. Thus f = g by the Identity theorem on C, i.e. x € G.

c



As a consequence of the Identity theorem, we have:

n
‘c.i} Corollary 2.6.1

Let f : X — Y be a holomorphic mapping. If f is not constant then f '(y) will be a
set of isolated points, forall y € f(X)CY.

Proof. Let y, € f(X)and S = f'(y,). Thenlet g : X — Y is defiend by x — y,. If S
contains a limit point, then by the above, we see f = g is constant, a contradiction.
Hence S must only contain isolated points.

Cl

n
‘c.i} Corollary 2.6.2

Let f : X — Y be a holomorphic mapping between Ramen surfaces. If X is compact
then |f1(y)| < oco.

Proof. This is because f () is closed subset of X and thus also compact. Now, for all
x € f~}(y), we can find open neighbourhood U, of x with f(y)N (U \{x}) =0 (as
f7'(y) contains only isolated points). Thus | J . -1(y) Uy s an open cover of f ()
and hence we can find a finite subcover, i.e. f~1(y) is finite set.

a

.
I

'
¢$? Theorem 2.7: Local Behaviour of Holomorphic Mapping

Let f : X — Y be a non-constant holomorphic mapping, a, € X and b, = f(ay).
Then there exists integer k > 1 and charts ¢ : U > VonX andy : U - V' onY,
with following properties:

1. aoe U, ¢(a0):O, boe U/ Clnd '(/J(bO):O
2. fu)ycu
3. Themap F :=1p o f o ¢! is given by F(z) = z* for all z € V where k > 1

The idea of the above proof is simple. Start with any chart, say ¢ : U; — V; and
Y : U, = V,, of X and Y, respectively, with ¢ around a, and v around b,. WLOG
we may assume (by translation) ¢ (a,) = 0 and 1(b,) = 0. But then ¢ o f 0 ¢! is
holomorphic and a computation shows F(0) = 0. Now we see F(z) = z*g(z) for some
k > 1 and g holomorphic at 0 with g(0) # 0. Since g is holomorphic and non-zero at
0, its kth root exists, i.e. we can find holomorphic h on open neighbourhood near 0,
such that h* = g. Now just set our new variable t be z - h, we see F = t* as desired.

In particular, the k in the theorem above is called the multiplicity of f at a,.

Also, throughout, it is safe to assume the mappings between Ramen surfaces are
non-constant.
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Here are some global results.

P*\
¢¢? Theorem 2.8

Let X,Y be connected Ramen surfaces and f : X — Y be a non-constant holomorphic
mapping. Then:

1. f is open
2. if Y =C, then |f| does attain its maximum on X

The two statements in the above theorem have their own names: open mapping the-
orem, and maximum modulus principle.

"
‘c{} Corollary 2.8.1

Suppose X,Y are connected Ramen surfaces, with X compact. If f : X — Y is non-
constant holomorphic mapping, then Y is compact and f is surjective.

Proof. Since f is continuous, f (X) is compact. It remains to check f(X) =Y. Since Y
is connected, it is enough to check f (X) is open, closed and # (). However, it is clearly
closed as X is compact and non-empty. In addition, since f is open, f(X) is open.

8

N
(ﬁ} Corollary 2.8.2

| Every holomorphic function f : X — C on compact Ramen surface is constant.

Proof. X is compact and C is connected. By above result, it cannot be non-constant,
as that would imply C is compact.

"* Example 2.9

1. O(P) =

2. 0(C/T) = (C We can see this directly: say f : C/T — C is the same as some
f : € — C that’s constant on the orbit. That is, f (z + mw, + nw,) = f(z)
for all n,m € Z, i.e. they are elliptic functions, i.e. doubly-periodic. Thus we
see holomorphic doubly-periodic functions are constants.

Recall: let D C C be domain and a, € D. Consider f € &(D\{a,}). Then, qa, is an
isolated singularity of f and must be of the form of the following three types:

1. If lim,_,, f(2) exists, then a, is a removable singularity

11



2. Iflim,_,, |f(2)| = 00, then q, is a pole of f

3. If lim,_,, f(z) does not exist and lim,_,, |f(z)| # oo, then q, is an essential
singularity

Then a complex function f : D € C — C is called meromorphic if it is holomorphic on
D except on a set of isolated points where it has poles.

r*‘ Example 2.10

1. f(z)= %(Z) has removable singularity at z =0
2. f(z)= % has pole at 2 =0
3. f(z) = e!* has essential singularity at z = 0

| ’\J
. Definition 2.11

Let X be a Ramen surface and Y an open subset of X. Then a meromorphic func-
tion on Y is a holomorphic function f : Y’ — C, where Y’ C Y and such that:

1. Y\Y’ only contains isolated points
2. for all points in Y\Y’, one has lim,_,, |f (x)| = o0

The points in Y\Y" are called the poles of f.

The set of all meromorphic functions on Y is denoted by % (Y).

r'b‘ Example 2.12

1. Consider f : P! — C given by

az+b
cz+d

zZ —>

where ad — bc # 0. This is holomorphic away from z = —d /c and has a pole
atz =—d/c.

2. Letn>1and f(z) = Zl 0 z!. Then f : C — C is holomorphic and thus we
can extend this to f : P! — C by sending oo to co.

*§
T’ Theorem 2.13

Suppose X is a Ramen surface and f € U (X ). For each pole p of f, we define
f(p) = oo and f(x) = f(x) otherwise. Then f : X — P' is holomorphic.

Proof. Let P (or you can denote this by div(f)) be the set of poles of f. Then f:
X\P — C is holomorphic and it induces the mapping f X — P! as above. Note f is
a continuous function on X, as it is continuous on X \P and

lim f(x) :f(lim X)= 00
X—Xg X—Xq

12



for all x, € P.

It remains to show f is holomorphic. To that end, we apply removable singularity
theorem. Let x, € P, we can find an open neighbourhood U of x, so UNP = {x,}.
We have

f(xy) =00 P

and thus pick the chart ¢(z) = % on C*U{oco}. We check in this case f is bounded on
this chart. Let € > 0 be small enough so v~ (B.(0)) C f(U). Set

W=(pof)(B.0)CU

Then W is open and x, € W. Then Oflw : W — B.(0) is bounded with 4 o
f lw is holomorphic on W\{x,}, i.e. ¢ o f extends to holomorphic function on W by
Riemann’s removable singularity theorem.

cl

3 Branched and Unbranched Coverings

Recall if X is topological space, then:

1. if X compact then any closed subset is compact

2. if X is Hausdorff then any compact subset is closed

3. if X Hausdorff and A discrete (i.e. only contains isolated points). If X is compact
then A is finite.

| U
. Definition 3.1

A continuous mapp : X — Y is:

1. discrete if p~!(y) is discrete for all y
2. finite if p~!(y) is finite for all y

In particular, by the above facts if X compact Hausdorff, then discrete maps are finite.

'*\
‘T’ Theorem 3.2

Let X,Y be Ramen surfaces, and f : X — Y is non-constant holomorphic map. Then
f is discrete. In particular, if X is compact, then f is finite.

Proof. Clear.

&

Its natural to ask, if X is not compact, then what condition do we need to make sure
f is finite. Well, note compact discrete sets are finite.

13



| ’\J
? Definition 3.3

A holomorphic map f : X — Y between Ramen surfaces is proper if f'(K) is
compact for all compact K C Y.

Thus, we see if f is proper, then f ~!(y) are compact, i.e. its compact and discrete and
hence finite. Thus we see proper maps are finite. Let us record this as a theorem.

e

x

‘T" Theorem 3.4

Let X,Y be Ramen surfaces and f : X — Y is non-constant proper map. Then f is
finite.

Now it is natural to ask the following:

If f is finite, then is it proper?

Turns out it is true if f is closed.

q\‘ Example 3.5

1. If X is compact Ramen, then f : X — Y is proper
2. Let f : C — C be constant, then its not proper
3. Let m: C — C/T be the projection, then its not proper

Next, we will show if f is proper, then f ~!(y) all has the same number of elements.

ey
® Definition 3.6

Let X,Y be Ramen surfaces and f : X — Y a non-constant holomorphic map. A
point x € X is called a branched point (or ramification point) if there does not
exist open neighbourhood U of x such that f | is injective.

Otherwise we say its unbranched. We say f is unbranched if it does not have branched
points.

14



r's Example 3.7

1. f : C — C given by z — z* for k > 2 is branched at 0.

2. f : C — C* given by z — €* is unbranched.

3. More generally, if f : X — Y is a non-constant holomorhpic map that locally
looks like F(z) = z¥, then its unbranched iff k = 1

4. m:C — C/T is unbranched for any lattice

Here are some facts about non-constant holomorphic maps f : X — Y between
Ramen surfaces:

1. its open
2. locally it looks like z — z
3. f proper implies f finite

k

We will see the following:

1. if f is unbranched then:
(a) its local homeomorphism
(b) if f proper then all fibers have the same size
2. if f is branched then:
(a) the set A of all branched points of f is closed and discrete
(b) if f proper, then f(A) is closed and discrete

«

Definition 3.8

Let p : X — Y be holomorphic non-constant map between Ramen surfaces. Then:

1. p is a local homeomorphism if for all x € X, 3 open neighbourhood U of x
in X so p|y : U — p(U) is a homeomorphism
2. p is a covering map if for all y € Y, 9 open neighbourhood V of y in Y so

=y

jeJ

with each U; open, disjoint, and pIU]_ is a homeomorphism.

Its not hard to see:

1. every covering map is local homeomorphism
2. not every local homeomorphism is a covering map

'3 Example 3.9

Let U € X be open subset and i inclusion. Then i is local homeomorphism but not
covering map. In addition, surjective local homeomorphism can fail to be covering
map as well. For exmaple, consider p : (0,2) C R — S C C with t — e?™, Then
this is not a covering map.

On the other hand, if you take p : R — S! by t — €™ then it is.

15



ri\ Example 3.10

1. p:C*— C*by t — t*isa covering map for k > 1. To see this, leta, b € C* so
ak = b. Let w = e2™/% be the primitive kth roots of unit sow’ #1,0 < j <k,
and w* = 1. Then

p1(b) = {a,aw,aw?, ..., aw* '}
and thus p’(z) = kz""! # 0 for all z € C*, i.e. p is locally invertible. Thus we
can choose U, of a so that p|y;, is homeomorphism, and we can choose U,
small enough so aw’ ¢ U, for 0 < j < k. Now set U; =w’ - U, for 0 < j < k.
Those will be all disjoint with the same image p(U,)
2. exp : C — C* given by z — exp(z) is a covering map.
3. m:C — C/TI' is a covering map.

o
‘T’ Theorem 3.11

Letp : X — Y be a covering map. Then, if X is connected, p is surjective and Vy,, y;, €
Y, Ip~ (vl =Ip7" ()l

Proof. Let y, € Y. Since p is a covering map, we can find V €Y so p~ (V) =] [, U;

with each U; £ V. Then [p~'(y,)| = |J|. In fact, [p™'(y)| = [J| forall y € V. In
particular we see
=] ]r'e)ny,
JjEJ
THus, for all x € p~'(y), we see x € ]_[jej U; implies x € U; for some unique j.

Hence [p~'(y)| < |J|. To check |J| < |p~'(¥)|, we need to show for all j € J, we
can find x € U; so p(x) = y. But each plUj is homeomorphism, hence surjective, i.e.

1 =1p~ (¥l
Now letA={y €Y : [p~'(y)| = |J|}. We want to show A=Y.

We first show A is open. Since p is a covering map, we can find open neighbour-
hood W C Y such that p~'(w) = | J,; U; with U, oepn disjoint and p|; are homeo-
morphisms. Then, forallz € W, |p~'(z)| = |J|. But y € W so

1 =1p~' )l = V|
This implies |p~(z)| = |J| forallz € W, i.e. W C A, i.e. Ais open.

It remains to show A =Y. In this case, let A, = {y € Y : [p~'(y)| = k}, then A, are
open, disjoint and covers Y. Since each A; is open and disjoint, we must have Y = A
for some k, by connectedness of Y. Thus Y = A, for some k,. Note X # @, so p(X) #
and thus p~!(y,) # @ for some y, € p(X). Thenforally €Y, [p~(y)| = [p~*(y,)| # 0.
THis shows p is surjective.

C
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| ’\J
? Definition 3.12

| Let p be a covering map. Then the number of sheets of p is [p~(y)|.

This number may be finite or infinite.

q\‘ Example 3.13

1. p: R — S! given by t — 2™ has an infinite number of sheets.
2. z — z* has k sheets.

LA

B4 Theorem 3.14

Let X,Y be Ramen surfaces with f non-constant holomorphic map. Then:

1. f is unbranched iff its a local homeomorphism
2. f is proper and Unbranched then it is a covering map
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