Contents

1	What is a Ramen Surface	2
2	Holomorphic Mapping and Meromorphic Functions	7
3	Branched and Unbranched Coverings	13

This note contains disturbing typo.

1 What is a Ramen Surface

So you just need to know complex analysis for this course.

In this course we will assume the space we work with is Hausdorff, i.e. $\Delta : X \rightarrow X \times X$ is closed immersion. This is equivalent to

 $\forall x, y \in X, \exists U, V \in \operatorname{Op}(X), (U \cap V = \emptyset \land x \in U, v \in V)$

Here for any topological space X, we use Op(X) to denote the category of open sets, with arrows being inclusion.

🔁 Example 1.1

- 1. \mathbb{R}^n is Hausdorff
- 2. The affine line with double origin is not separated (i.e. does not have closed diagonal).
- 3. As topological spaces, Zariski topologies are not Hausdorff (but we can have closed diagonals, hence separated).

Next, when we talk about (topological) surfaces (over a field *K*), we mean a Hausdorff 2-manifold (over *K*). Since at the end of the day we work with Ramen surfaces, which are defined over \mathbb{C} , in this course we can think of a topological surface as a 1-manifold over \mathbb{C} (or 2-manifold over \mathbb{R}).

Example 1.2

- 1. $\mathbb{C} = \mathbb{R}^2$, with one chart $\phi = \text{Id} : \mathbb{C} \to \mathbb{C}$, is a topological surface.
- 2. If $W \subseteq \mathbb{C}$ is open, then with induced topology and inclusion gives W a structure of a surface.
- 3. The graph $\Gamma_f = G_f = \{(z, w) \in \mathbb{C}^2 : w = f(z)\}$ of a continuous map $f : U \subseteq \mathbb{C} \to \mathbb{C}$ is a topological surface.
- 4.

$$\mathbb{P}^1 = \mathbb{C} \cup \{\infty\} = \underbrace{\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}}_{:=S^2} = [\mathbb{C}^2 \setminus \{0\} / \mathbb{G}_m]$$

We will put a few words on the last example. First, let us recall the stereographic projection from the north pole *N*, i.e. $\sigma_N^+: S^2 \setminus \{(0,0,1)\} \to \mathbb{R}^2$ is defined by $(x, y, z) \mapsto \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$. Next, we also have $\sigma_S^+: S^2 \setminus \{(0,0,-1)\} \to \mathbb{R}^2$ by $(x, y, z) \mapsto \left(\frac{x}{1+z}, \frac{y}{1+z}\right)$. Those two maps gives us the two charts which covers S^2 , and hence conclude S^2 is a surface.

On the other hand, note $S^2 \cong \mathbb{C} \cup \{\infty\}$ can be done via $\sigma_N : S^2 \to \mathbb{C} \cup \{\infty\}$, where we lift σ_N^+ by setting (0, 0, 1) to ∞ .

Now also recall complex charts of a surface *X*, which is just a homeomorphism $\phi : U \subseteq X \to V \subseteq \mathbb{C}$. Given two charts $\phi_i : U_i \to V_i$ with $U_1 \cap U_2 \neq \emptyset$, then we can define its associated transition function (from (ϕ_2, U_2) to (ϕ_1, U_1)) to be $\phi_{21} := \phi_1 \circ \phi_2^{-1} : \phi_2(U_1 \cap U_2) \to \phi_1(U_1 \cap U_2)$. Note this is a complex function.

Definition 1.3

Two charts $\phi_i : U_i \to V_i$ of surface *X* is *holomorphically compactible* if ϕ_{21} and ϕ_{12} are holomorphic (i.e. equivalently ϕ_{12} is biholomorphic).

Definition 1.4

An *atlas* on *X* is a collection \mathcal{U} of charts (ϕ_i, U_i) such that $\bigcup U_i$ covers *X*. An atlas is *holomorphic* if any pair of charts in \mathcal{U} are holomorphically compactible.

Definition 1.5

A *Ramen surface* is a topological surface with a complex atlas.

Example 1.6

1. $X = \mathbb{C}$.

- 2. In general, if *X* admits an atlas with only one chart $\phi : X \to V \subseteq \mathbb{C}$, then $\mathcal{U} = \{(\phi, X)\}$ is complex, as the compactibility is trivial to check.
- 3. If $f : U \subseteq \mathbb{C} \to V \subseteq \mathbb{C}$ then Γ_f is a Ramen surface by (2).

Lemma 1.7

Lemma 1.7 If $f: U \subseteq \mathbb{C} \to V \subseteq \mathbb{C}$ is holomorphic bijection, then f^{-1} is holomorphic.

Proof. (\Rightarrow): We will begin by show f is conformal, i.e. $f'(z) \neq 0$ for all $z \in U$. Now let $z_0 \in U$ and set $g = f - f(z_0)$. Then $g(z_0) = 0$, g is holomorphic bijection and f' = g' on U.

Since g is holomorphic and $g(z_0) = 0$, $g(z) = (z - z_0)^m h(z)$ with h holomorphic and $h(z_0) \neq 0$. But g(z) is a bijection, and thus m = 1 (otherwise $g'(z_0) = 0$). Hence $g(z) = (z - z_0)h(z)$ and so $g'(z) = h(z) + (z - z_0)h'(z)$, and so

$$f'(z_0) = h(z_0) \neq 0$$

as desired. This immediately implies f^{-1} is holomorphic, i.e. $f^{-1}(w) = f^{-1}(w, \overline{w})$.

Then $\frac{\partial f^{-1}}{\partial \overline{w}} = 0$, as $z = f^{-1}(f(z))$. Since f is holomorphic, $\frac{\partial f}{\partial z} = 0$. Then

$$0 = \frac{\partial}{\partial \overline{z}}(z) = \frac{\partial}{\partial \overline{z}}(f^{-1}(f(z))) = \frac{\partial f^{-1}}{\partial w}\frac{\partial w}{\partial \overline{z}} + \frac{\partial f^{-1}}{\partial \overline{w}}\frac{\partial \overline{w}}{\partial \overline{z}}$$

Now note

$$\frac{\partial w}{\partial \overline{z}} = 0$$
, and $\frac{\partial \overline{z}}{\partial \overline{z}} = \frac{\partial \overline{f}}{\partial \overline{z}} = \frac{\overline{\partial f}}{\partial z}$

This implies

$$\frac{\partial f^{-1}}{\partial \overline{w}} \circ \overline{f'(z)} = 0 \Rightarrow \frac{\partial f^{-1}}{\partial \overline{w}} = 0 \text{ since } f'(z) \neq 0$$

This shows f' is holomorphic.

As a consequence of this lemma, we see to check for complex atlas, we only need to check $\phi_i \circ \phi_i^{-1}$ is holomorphic for all $i, j \in I$.

Remark 1.8

If a topological surface admits a complex atlas, then its topology is second countable (and hence paracompact).

Let us now keep talking about the example $S^2 = \mathbb{C} \cup \{\infty\}$. The topology for $\mathbb{C} \cup \{\infty\} =: \mathbb{P}^1$ is given by $U \subseteq \mathbb{P}^1$ open iff:

- 1. $U \subseteq \mathbb{C}$ is open (with standard metric topology), or
- 2. $U = (\mathbb{C} \setminus K) \cup \{\infty\}$ for some $K \subseteq \mathbb{C}$ compact.

One can show this is Hausdorff, as one can show (left as exercise). Next, we can put a complex atlas on \mathbb{P}^1 , and the standard is given by $\phi_1 : \mathbb{C} \to \mathbb{C}$ and $\phi_2 : \mathbb{C}^* \cup \{\infty\} \to \mathbb{C}$, where

$$\phi_1(z) = z, \quad \phi_2(z) = \frac{1}{z}$$

where we set $\frac{1}{\infty} = 0$. One checks ϕ_1, ϕ_2 are homeomorphism with inverses, and it remains to show ϕ_1, ϕ_2 are holomorphically compactible. It suffices to check $\phi_1 \circ \phi_2^{-1}$ is holomorphic by the above lemma. However, on the overlap (i.e. $\mathbb{C}^* \to \mathbb{C}^*$), this function is just $\frac{1}{2}$ and hence holomorphic.

Definition 1.9

Two complex atlases \mathcal{U} and \mathcal{V} are called *analytically equivalent* if every chart of \mathcal{U} is holomorphically compactible with every chart in \mathcal{V} .

This is an equivalence relation, since composition of biholomorphic functions is still biholomorphic.

Definition 1.10

A *complex structure* Σ on a topological surface *X* is an equivalence class of analytically equivalent atlases.

Its clear that a complex atlas on *X* determines a complex structure, and conversely any complex structure is determined by a unique complex atlas, i.e. the maximal complex atlas.

Thus, we have the following definition:

Definition 1.11

A **Ramen surface** is a pair (X, Σ) where X is a topological surface and Σ is a complex structure.

Let us finish today's lecture with one last example, the complex torus.

Let $\Gamma = \operatorname{span}_{\mathbb{Z}}(\omega_1, \omega_2)$, where $\omega_1, \omega_2 \in \mathbb{C}$ linearly independent (viewed as \mathbb{R}^2) over \mathbb{R} . Then, the complex torus associated with Γ is the quotient space $\pi : \mathbb{C} \to \mathbb{C}/\Gamma$ (with quotient topology). In particular, we see:

- 1. X is connected since \mathbb{C} is.
- 2. *X* is compact since its the image of a compact set (i.e. $\text{Conv}(0, \omega_1, \overline{\omega_2, \omega_1 + \omega_2})$) in \mathbb{C} under π .
- 3. $X \cong S_1 \times S_1$ homeomorphically.
- 4. π is open. To see this one, it suffices to show $\pi^{-1}(\pi(U))$ is open in \mathbb{C} for all $U \subseteq \mathbb{C}$. However, $\pi^{-1}(\pi(U)) = \bigcup_{\omega \in \Gamma} (U + \omega)$, which is indeed open.
- 5. *X* is Hausdorff (we can see this from the fact that the set of orbit equivalence relation $\{(x, y) : [x] \sim [y] \in X\} = \{(x, y) : x = y + m\omega_1 + n\omega_2, n, m \in \mathbb{Z}\}$ in $\mathbb{C} \times \mathbb{C}$ is closed).

In the next lecture we will show *X* admits a complex atlas.

Today we will finish the example on torus.

Recall above we have $X = \mathbb{C}/\Gamma$ with $\Gamma = \operatorname{span}_{\mathbb{Z}}(\omega_1, \omega_2)$, where $\omega_1, \omega_2 \in \mathbb{C}$ are linearly independent as \mathbb{R} -vectors.

In order to show *X* is a Ramen surface, we first need to show *X* is a surface. In the above, recall $\pi : \mathbb{C} \to X$ is an open map (since the action is homeomorphism).

First we need to show it is Hausdorff. For this, we will show

$$E := \{(x, y) \in \mathbb{C} \times \mathbb{C} : [x] \sim [y]\}$$

is a closed subset in $\mathbb{C} \times \mathbb{C}$. To see this, just take a convergent sequence $\{(x_n, y_n)\}_{n \ge 1}$ such that $y_n = x_n + \omega_n$ for some $\omega_n \in \Gamma$. This means $\lim x_n = x$ and $\lim y_n = \lim(x_n + \omega_n) = y$, but if you think about it we see the choice of ω_n has to stablize to some ω_0 at some point (otherwise $x_n + \omega_n$) will not converge. That is, $\lim(x_n, y_n)$ lies in *E* as well, shows it is closed. Since *E* is closed, the diagonal of $X \to X \times X$ is closed, hence Hausdorff.

Now it remains to give a complex atlas to X. For all $p \in X$, choose $\tilde{p} \in P$ be the unique representative of p in the fundamental parallelogram and V_p an open neighbourhood of p small enough so $\pi|_V$ is one-to-one. Now just set $U_p = \pi(V_p)$ and clearly U_p is open in X with $p \in U_p$. Set ϕ_p be defined as $(\pi|_{V_p})^{-1} : U_p \to V_p$, then this gives a chart around *p*.

It remains to check those are holomorphically compactible.

Let $p, q \in X$ and consider $\psi = \phi_p \circ \phi_q^{-1}$, where recall $\phi_p = (\pi|_{U_p})^{-1}$ and $\phi_q^{-1} = \pi$. A computation shows

$$\pi(\psi(z)) = \pi \circ \phi_p \circ \phi_a^{-1}(z) = \pi(z)$$

Thus we see $\psi(z) \sim z$ under our equivalence relation, and thus $\psi(z) - z \in \Gamma \cong \mathbb{Z}^2$, which is a discrete group. However, $\psi(z) - z$ is continuous, and thus it must be constant, i.e. it is holomorphic.

The last example we do is algebraic curves.

Let P(z, w) be a non-constant polynomial in complex variables z, w. Then we define

$$C := \{ (z, w) \in \mathbb{C}^2 : P(z, w) = 0 \}$$

We say C is smooth at (z_0, w_0) if $\nabla P(z_0, w_0) := (\frac{\partial P}{\partial z}(z_0, w_0), \frac{\partial P}{\partial w}(z_0, w_0))$ is non-zero, and otherwise its singular at the point.

Example 1.12 1. Let $P = w - z^2$, then *C* is smooth 2. Let $P = w^2 - z^2$, then *C* is non-singular at (0,0).

The point is, all algebraic curves are Ramen surface, away from the singular points (e.g. $P = w^2 - z^2$ then $C \setminus \{(0, 0)\}$ is a Ramen surface).

Proposition 1.13

Let $S = C \setminus \text{Sing}$ (here Sing is the set of singular points of *C*). Then *S* admits a natural complex structure, making it into a Ramen surface.

The above theorem is a direct consequence of the implicit function theorem. Recall implicit function theorem says if (z_0, w_0) is a point on C s.t. $\frac{\partial P}{\partial w}(z_0, w_0) \neq 0$. Then there is a disc D_1 centered at z_0 in \mathbb{C} , D_2 centered at $w_0 \in \mathbb{C}$, a holomorphic map $\phi: D_1 \to D_2$, with $\phi(z_0) = w_0$ such that

$$C \cap (D_1 \times D_2) = \{(z, \phi(z)) : z \in D_1\}$$

Proof. By assumption, $(z_0, w_0) \in S$ means $\nabla P(z_0, w_0)$ is non-zero. Thus we get a chart of *S* that is locally just the graph of a holomorphic function.

Definition 1.14

Let *X* be a Ramen surface and $Y \subseteq X$ open, then we define $\mathscr{O}(Y)$ as the set of holomorphic functions $f : Y \to \mathbb{C}$.

In the above, $f : Y \to \mathbb{C}$ is holomorphic if for all charts ($\phi : U \to V$), we have $f \circ \phi^{-1} : \phi(U \cap Y) \subseteq V \to \mathbb{C}$ is holomorphic.

Remark 1.15

- 1. With the obvious restriction, we see \mathcal{O} is a sheaf (this means $\mathcal{O} : Op(X) \rightarrow (\mathbf{Rings})$ is a functor, plus some equalizer condition) valued in rings on *X*.
- 2. In fact, \mathcal{O}_X is a \mathbb{C} -algebra.
- 3. As corollary of (1), to check $f \in \mathcal{O}(Y)$, it suffices to show $f|_{U_i} \in \mathcal{O}(U_i)$ for an open cover $\{U_i\}$ of *Y*.

2 Holomorphic Mapping and Meromorphic Functions

Let us begin with examples.

Example 2.1

We classify $f : \mathbb{P}^1 \to \mathbb{C}$.

In this case, \mathbb{P}^1 admits a chart $U_1 = \mathbb{C}$ and $U_2 = \mathbb{C}^* \cup \{\infty\}$, where $\phi_1 = \text{Id}$ and $\phi_2 = \frac{1}{z}$.

Then we see $f \circ \phi_1^{-1} = f : \mathbb{C} \to \mathbb{C}$ and $f \circ \phi_2^{-1} = f(1/z) : \mathbb{C} \to \mathbb{C}$ must both be holomorphic.

Since *f* is holomorphic, we can do Taylor expansion to conclude $f(z) = \sum_{h=0}^{\infty} a_n z^n$. However, we see f(1/z) must also be holomorphic, and f(z) = f(1/z) for all $z \in \mathbb{C}^*$ (the overlap of the two charts). This suggests f(z) is a constant a_0 for all $z \in \mathbb{C}^*$, but *f* is continuous, hence f(0) must also equal a_0 , i.e. *f* is just a constant.

This concludes $\mathscr{O}(\mathbb{P}^1) = \mathbb{C}$.

There is nothing special about \mathbb{P}^1 here, as all we need is this complex manifold to be compact, then the global sections must be constant.

Theorem 2.2: Riemann's Removable Singularity

Let U be an open subset of Ramen surface X and $a \in U$. Suppose $f \in \mathcal{O}(U \setminus \{a\})$ is bounded on a neighbourhood of a, then f can uniquely extended to $f^* \in \mathcal{O}(U)$.

Proof. Apply the complex analysis version of this theorem.

Definition 2.3

Let *X*, *Y* be Ramen surfaces, then a continuous mapping $f : X \to Y$ is **holomorphic** if for all pairs of charts ψ_1, ψ_2 , the composition $\psi_2 \circ f \circ \psi_1^{-1}$ is holomorphic as complex function.

Then, we say f is biholomorphic if it is a bijection and both f and f^{-1} are holomorphic. Finally, X, Y are isomorphic if there is biholomorphic mapping $f : X \to Y$.

Remark 2.4

The definition of holomorphic mapping is equivalent to $f^* : \mathscr{O}_Y \to f^* \mathscr{O}_X$ is welldefined. Here $f^* \mathscr{O}_X$ is a sheaf on *Y* defined by $f^* \mathscr{O}_X(V) = \mathscr{O}_X(f^{-1}(V))$.

Example 2.5

- 1. Any holomorphic function $f : \mathcal{O}(X)$ is a holomorphic mapping $f : X \to \mathbb{C}$
- 2. Composition of holomorphic mappings are holomorphic
- 3. Let $X = \mathbb{C}/\Gamma$ and $Y = \mathbb{C}/\Gamma'$ be two complex tori, then $X \cong Y$ iff $\Gamma = \Gamma'$.
- 4. Let $f : \mathbb{P}^1 \to \mathbb{P}^1$ be given by

$$z \mapsto \frac{az+b}{cz+d}$$

with ad - bc = 1 is an automorphism of \mathbb{P}^1 . Note in this case, $-d/c \mapsto \infty$, $-b/a \mapsto 0$ and $\infty \mapsto a/c$. The inverse is given by

$$z \mapsto \frac{dz - b}{-cz + a}$$

Theorem 2.6: Identity Theorem

Suppose X, Y are Ramen surfaces and $f_1, f_2 : X \to Y$ be two holomorphic mapping coincide on a set $A \subseteq X$ with a limit point $a \in X$. Then $f_1 = f_2$.

Before we prove this result, let us first recall the notion of isolated point and limit point for topological spaces. For $S \subseteq X$. We say x is isolated point if $x \in S$ and there is open neighbourhood of x such that $S \cap (U \setminus \{x\}) = \emptyset$. We say x is limit point if for all open neighbourhood of x, $S \cap (U \setminus \{x\}) \neq \emptyset$. Note here limit points need not be in S.

Proof. Set $B = \{x \in X : f(x) = g(x)\}$. This is the equalizer of f and g and we see $A \subseteq B$. Now let

 $G = \{x \in X : f|_{W_x} = g|_{W_x}$ for some open neighbourhood $W_x\}$

and clearly $G \subseteq B$. We will show *G* is open, closed and non-empty, then $\overline{G} = X$ and thus B = X.

To show *G* is open, let $x \in G$. Then we can find open neighbourhood W_x of *x* such that $f|_{W_x} = g|_{W_x}$. But W_x is open neighbourhood for all $x' \in W_x$, i.e. $W_x \subseteq G$. Hence *G* is open.

Next we claim x is a limit point of B then $x \in G$. This would imply G contains all its limit points and non-empty, since $A \subseteq B$ contains a limit point. This would conclude our proof.

It remains to prove the claim.

First we show if x is a limit point of B then $x \in B$.

Let $\phi : U \to V$ be a chart around x, where x is a limit point of B. Since $f(x) \in Y$, we can pick a chart $\phi' : U' \to V'$ around f(x). Note we can choose ϕ so that $f(U) \subseteq U'$. Then $\tilde{f} := \phi' \circ f \circ \phi^{-1}$ is a holomorphic function from $\phi(U) \subseteq \mathbb{C}$ to $\phi'(U') \subseteq \mathbb{C}$. Since x is a limit point of B, $\phi(x)$ is a limit point of $\phi(U \cap B)$ in \mathbb{C} . Thus we can find a sequence $y_n \in \phi(U \cap B)$ with $\lim y_n = \phi(x)$. By definition of y_n , we see $y_n = \phi(x_n)$ for some $x_n \in U \cap B$. This shows $\lim \phi(x_n) = \phi(x)$. By continuity of \tilde{f} , we see

$$f(\phi(x_n)) \rightarrow f(\phi(x))$$

Similarly, $\tilde{g}(\phi(x_n)) \rightarrow g(\phi(x))$ where $\tilde{g} = \phi' \circ g \circ \phi^{-1}$. However, since $x_n \in U \cap B$, it means f and g agrees on x_n , i.e. we get

$$\tilde{f}(\phi(x_n)) = \phi'(f(\phi^{-1}(\phi(x_n)))) = \phi'(f(x_n)) = \phi'(g(x_n)) = \tilde{g}(\phi(x_n))$$

Thus we see $\phi'(f(x)) = \phi'(g(x))$ by continuity, and hence f(x) = g(x) as ϕ' is a homeomorphism, i.e. $x \in B$.

We also want to show there exists open neighbourhood W_x of x where $f|_{W_x} = g|_{W_x}$. Note \tilde{f}, \tilde{g} are holomorphic functions such that $\tilde{f} = \tilde{g}$ on $\phi(U \cap B)$ and $\phi(U \cap B)$ has a limit point. Thus $\tilde{f} = \tilde{g}$ by the Identity theorem on \mathbb{C} , i.e. $x \in G$.

As a consequence of the Identity theorem, we have:

Corollary 2.6.1

Let $f : X \to Y$ be a holomorphic mapping. If f is not constant then $f^{-1}(y)$ will be a set of isolated points, for all $y \in f(X) \subseteq Y$.

Proof. Let $y_0 \in f(X)$ and $S = f^{-1}(y_0)$. Then let $g: X \to Y$ is defined by $x \mapsto y_0$. If S contains a limit point, then by the above, we see f = g is constant, a contradiction. Hence *S* must only contain isolated points.

Corollary 2.6.2 Let $f : X \to Y$ be a holomorphic mapping between Ramen surfaces. If X is compact then $|f^{-1}(y)| < \infty$. *Proof.* This is because $f^{-1}(y)$ is closed subset of X and thus also compact. Now, for all

 $x \in f^{-1}(y)$, we can find open neighbourhood U_x of x with $f^{-1}(y) \cap (U_x \setminus \{x\}) = \emptyset$ (as $f^{-1}(y)$ contains only isolated points). Thus $\bigcup_{x \in f^{-1}(y)} U_x$ is an open cover of $f^{-1}(y)$ and hence we can find a finite subcover, i.e. $f^{-1}(y)$ is finite set.

Theorem 2.7: Local Behaviour of Holomorphic Mapping

Let $f : X \to Y$ be a non-constant holomorphic mapping, $a_0 \in X$ and $b_0 = f(a_0)$. Then there exists integer $k \ge 1$ and charts $\phi : U \to V$ on X and $\psi : U' \to V'$ on Y, *with following properties:*

1. $a_0 \in U$, $\phi(a_0) = 0$, $b_0 \in U'$ and $\psi(b_0) = 0$ 2. $f(U) \subseteq U'$ 3. The map $F := \psi \circ f \circ \phi^{-1}$ is given by $F(z) = z^k$ for all $z \in V$ where $k \ge 1$

The idea of the above proof is simple. Start with any chart, say $\phi : U_1 \to V_1$ and $\psi: U_2 \to V_2$, of X and Y, respectively, with ϕ around a_0 and ψ around b_0 . WLOG we may assume (by translation) $\phi(a_0) = 0$ and $\psi(b_0) = 0$. But then $\psi \circ f \circ \phi^{-1}$ is holomorphic and a computation shows F(0) = 0. Now we see $F(z) = z^k g(z)$ for some $k \ge 1$ and g holomorphic at 0 with $g(0) \ne 0$. Since g is holomorphic and non-zero at 0, its *k*th root exists, i.e. we can find holomorphic *h* on open neighbourhood near 0, such that $h^k = g$. Now just set our new variable t be $z \cdot h$, we see $F = t^k$ as desired.

In particular, the k in the theorem above is called the multiplicity of f at a_0 .

Also, throughout, it is safe to assume the mappings between Ramen surfaces are non-constant.

 y)

Here are some global results.

Theorem 2.8

Let X, Y be connected Ramen surfaces and $f : X \to Y$ be a non-constant holomorphic mapping. Then:

1. f is open 2. if $Y = \mathbb{C}$, then |f| does attain its maximum on X

The two statements in the above theorem have their own names: open mapping theorem, and maximum modulus principle.

Suppose X, Y are connected Ramen surfaces, with X compact. If $f : X \rightarrow Y$ is non-constant holomorphic mapping, then Y is compact and f is surjective.

Proof. Since f is continuous, f(X) is compact. It remains to check f(X) = Y. Since Y is connected, it is enough to check f(X) is open, closed and $\neq \emptyset$. However, it is clearly closed as X is compact and non-empty. In addition, since f is open, f(X) is open.

Corollary 2.8.2

Every holomorphic function $f : X \to \mathbb{C}$ on compact Ramen surface is constant.

Proof. X is compact and \mathbb{C} is connected. By above result, it cannot be non-constant, as that would imply \mathbb{C} is compact.

Example 2.9

- 1. $\mathscr{O}(\mathbb{P}^1) = \mathbb{C}$
- 2. $\mathscr{O}(\mathbb{C}/\Gamma) = \mathbb{C}$. We can see this directly: say $f : \mathbb{C}/\Gamma \to \mathbb{C}$ is the same as some $\tilde{f} : \mathbb{C} \to \mathbb{C}$ that's constant on the orbit. That is, $\tilde{f}(z + m\omega_1 + n\omega_2) = f(z)$ for all $n, m \in \mathbb{Z}$, i.e. they are elliptic functions, i.e. doubly-periodic. Thus we see holomorphic doubly-periodic functions are constants.

Recall: let $D \subseteq \mathbb{C}$ be domain and $a_0 \in D$. Consider $f \in \mathcal{O}(D \setminus \{a_0\})$. Then, a_0 is an isolated singularity of f and must be of the form of the following three types:

1. If $\lim_{z\to a_0} f(z)$ exists, then a_0 is a removable singularity

- 2. If $\lim_{z \to a_0} |f(z)| = \infty$, then a_0 is a pole of f
- 3. If $\lim_{z\to a_0} f(z)$ does not exist and $\lim_{z\to a_0} |f(z)| \neq \infty$, then a_0 is an essential singularity

Then a complex function $f : D \subseteq \mathbb{C} \to \mathbb{C}$ is called meromorphic if it is holomorphic on *D* except on a set of isolated points where it has poles.

- 1. $f(z) = \frac{\sin(z)}{z}$ has removable singularity at z = 02. $f(z) = \frac{1}{z}$ has pole at z = 03. $f(z) = e^{1/z}$ has essential singularity at z = 0

Definition 2.11

Let *X* be a Ramen surface and *Y* an open subset of *X*. Then a *meromorphic* function on *Y* is a holomorphic function $f : Y' \to \mathbb{C}$, where $Y' \subseteq Y$ and such that:

- 1. $Y \setminus Y'$ only contains isolated points
- 2. for all points in $Y \setminus Y'$, one has $\lim_{x \to p} |f(x)| = \infty$

The points in $Y \setminus Y'$ are called the poles of f.

The set of all meromorphic functions on *Y* is denoted by $\mathcal{U}(Y)$.

Example 2.12

1. Consider $f : \mathbb{P}^1 \to \mathbb{C}$ given by

$$z \mapsto \frac{az+b}{cz+d}$$

where $ad - bc \neq 0$. This is holomorphic away from z = -d/c and has a pole at z = -d/c.

2. Let $n \ge 1$ and $f(z) = \sum_{i=0}^{n} a_i z^i$. Then $f : \mathbb{C} \to \mathbb{C}$ is holomorphic and thus we can extend this to $f : \mathbb{P}^1 \to \mathbb{C}$ by sending ∞ to ∞ .

Theorem 2.13

Suppose X is a Ramen surface and $f \in \mathcal{U}(X)$. For each pole p of f, we define $\hat{f}(p) = \infty$ and $\hat{f}(x) = f(x)$ otherwise. Then $\hat{f}: X \to \mathbb{P}^1$ is holomorphic.

Proof. Let P (or you can denote this by div(f)) be the set of poles of f. Then f: $X \setminus P \to \mathbb{C}$ is holomorphic and it induces the mapping $\hat{f} : X \to \mathbb{P}^1$ as above. Note \hat{f} is a continuous function on *X*, as it is continuous on $X \setminus P$ and

$$\lim_{x \to x_0} \hat{f}(x) = \hat{f}(\lim_{x \to x_0} x) = \infty$$

for all $x_0 \in P$.

It remains to show \hat{f} is holomorphic. To that end, we apply removable singularity theorem. Let $x_0 \in P$, we can find an open neighbourhood U of x_0 so $U \cap P = \{x_0\}$. We have

$$f(x_0) = \infty \in \mathbb{P}^1$$

and thus pick the chart $\psi(z) = \frac{1}{z}$ on $\mathbb{C}^* \cup \{\infty\}$. We check in this case f is bounded on this chart. Let $\epsilon > 0$ be small enough so $\psi^{-1}(B_{\epsilon}(0)) \subseteq f(U)$. Set

$$W = (\psi \circ \hat{f})^{-1}(B_{\epsilon}(0)) \subseteq U$$

Then W is open and $x_0 \in W$. Then $\psi \circ \hat{f}|_W : W \to B_{\epsilon}(0)$ is bounded with $\psi \circ \hat{f}|_W$ $\hat{f}|_{W}$ is holomorphic on $W \setminus \{x_0\}$, i.e. $\psi \circ \hat{f}$ extends to holomorphic function on W by Riemann's removable singularity theorem.

Branched and Unbranched Coverings 3

Recall if *X* is topological space, then:

- 1. if *X* compact then any closed subset is compact
- 2. if X is Hausdorff then any compact subset is closed
- 3. if X Hausdorff and A discrete (i.e. only contains isolated points). If X is compact then *A* is finite.

Definition 3.1

A continuous map $p: X \to Y$ is:

- *discrete* if p⁻¹(y) is discrete for all y
 finite if p⁻¹(y) is finite for all y

In particular, by the above facts if *X* compact Hausdorff, then discrete maps are finite.

Theorem 3.2

Let X, Y be Ramen surfaces, and $f : X \rightarrow Y$ is non-constant holomorphic map. Then f is discrete. In particular, if X is compact, then f is finite.

Proof. Clear.

Its natural to ask, if X is not compact, then what condition do we need to make sure *f* is finite. Well, note compact discrete sets are finite.

Definition 3.3

A holomorphic map $f : X \to Y$ between Ramen surfaces is **proper** if $f^{-1}(K)$ is compact for all compact $K \subseteq Y$.

Thus, we see if f is proper, then $f^{-1}(y)$ are compact, i.e. its compact and discrete and hence finite. Thus we see proper maps are finite. Let us record this as a theorem.

Theorem 3.4

Let X, Y be Ramen surfaces and $f : X \to Y$ is non-constant proper map. Then f is finite.

Now it is natural to ask the following:

If f is finite, then is it proper?

Turns out it is true if f is closed.

Example 3.5

- 1. If *X* is compact Ramen, then $f : X \to Y$ is proper
- 2. Let $f : \mathbb{C} \to \mathbb{C}$ be constant, then its not proper
- 3. Let $\pi : \mathbb{C} \to \mathbb{C}/\Gamma$ be the projection, then its not proper

Next, we will show if f is proper, then $f^{-1}(y)$ all has the same number of elements.

Definition 3.6

Let X, Y be Ramen surfaces and $f : X \to Y$ a non-constant holomorphic map. A point $x \in X$ is called a *branched point* (or *ramification point*) if there does not exist open neighbourhood U of x such that $f|_U$ is injective.

Otherwise we say its unbranched. We say f is unbranched if it does not have branched points.

Example 3.7

- 1. $f : \mathbb{C} \to \mathbb{C}$ given by $z \mapsto z^k$ for $k \ge 2$ is branched at 0.
- 2. $f : \mathbb{C} \to \mathbb{C}^*$ given by $z \mapsto e^z$ is unbranched.
- 3. More generally, if $f : X \to Y$ is a non-constant holomorphic map that locally looks like $F(z) = z^k$, then its unbranched iff k = 1
- 4. $\pi: \mathbb{C} \to \mathbb{C}/\Gamma$ is unbranched for any lattice

Here are some facts about non-constant holomorphic maps $f : X \rightarrow Y$ between Ramen surfaces:

- 1. its open
- 2. locally it looks like $z \mapsto z^k$
- 3. *f* proper implies *f* finite

We will see the following:

- 1. if f is unbranched then:
 - (a) its local homeomorphism
 - (b) if f proper then all fibers have the same size
- 2. if f is branched then:
 - (a) the set A of all branched points of f is closed and discrete
 - (b) if f proper, then f(A) is closed and discrete

Definition 3.8

Let $p: X \to Y$ be holomorphic non-constant map between Ramen surfaces. Then:

- 1. *p* is a *local homeomorphism* if for all $x \in X$, \exists open neighbourhood *U* of *x* in *X* so $p|_U : U \to p(U)$ is a homeomorphism
- 2. *p* is a *covering map* if for all $y \in Y$, \exists open neighbourhood *V* of *y* in *Y* so

$$D^{-1}(V) = \bigcup_{j \in J} U_j$$

with each U_i open, disjoint, and $p|_{U_i}$ is a homeomorphism.

Its not hard to see:

- 1. every covering map is local homeomorphism
- 2. not every local homeomorphism is a covering map

Example 3.9

Let $U \subsetneq X$ be open subset and *i* inclusion. Then *i* is local homeomorphism but not covering map. In addition, surjective local homeomorphism can fail to be covering map as well. For exaple, consider $p : (0,2) \subseteq \mathbb{R} \to S^1 \subseteq \mathbb{C}$ with $t \mapsto e^{2\pi i t}$. Then this is not a covering map.

On the other hand, if you take $p : \mathbb{R} \to S^1$ by $t \mapsto e^{2\pi i t}$ then it is.

1. $p : \mathbb{C}^* \to \mathbb{C}^*$ by $t \mapsto t^k$ is a covering map for $k \ge 1$. To see this, let $a, b \in \mathbb{C}^*$ so $a^k = b$. Let $w = e^{2\pi i/k}$ be the primitive *k*th roots of unit so $w^j \ne 1$, 0 < j < k, and $w^k = 1$. Then

$$p^{-1}(b) = \{a, aw, aw^2, ..., aw^{k-1}\}$$

and thus $p'(z) = kz^{k-1} \neq 0$ for all $z \in \mathbb{C}^*$, i.e. p is locally invertible. Thus we can choose U_0 of a so that $p|_{U_0}$ is homeomorphism, and we can choose U_0 small enough so $aw^j \notin U_0$ for 0 < j < k. Now set $U_j = w^j \cdot U_0$ for 0 < j < k. Those will be all disjoint with the same image $p(U_0)$

- 2. exp : $\mathbb{C} \to \mathbb{C}^*$ given by $z \mapsto \exp(z)$ is a covering map.
- 3. $\pi : \mathbb{C} \to \mathbb{C}/\Gamma$ is a covering map.

Theorem 3.11

Let $p: X \to Y$ be a covering map. Then, if X is connected, p is surjective and $\forall y_0, y_1 \in Y$, $|p^{-1}(y_0)| = |p^{-1}(y_1)|$.

Proof. Let $y_0 \in Y$. Since p is a covering map, we can find $V \subseteq Y$ so $p^{-1}(V) = \prod_{j \in J} U_j$ with each $U_j \cong V$. Then $|p^{-1}(y_0)| = |J|$. In fact, $|p^{-1}(y)| = |J|$ for all $y \in V$. In particular we see

$$p^{-1}(y) = \prod_{j \in J} p^{-1}(y) \cap U_j$$

THus, for all $x \in p^{-1}(y)$, we see $x \in \prod_{j \in J} U_j$ implies $x \in U_j$ for some unique j. Hence $|p^{-1}(y)| \leq |J|$. To check $|J| \leq |p^{-1}(y)|$, we need to show for all $j \in J$, we can find $x \in U_j$ so p(x) = y. But each $p|_{U_j}$ is homeomorphism, hence surjective, i.e. $|J| = |p^{-1}(y)|$.

Now let $A = \{y \in Y : |p^{-1}(y)| = |J|\}$. We want to show A = Y.

We first show *A* is open. Since *p* is a covering map, we can find open neighbourhood $W \subseteq Y$ such that $p^{-1}(w) = \bigcup_{l \in \tilde{J}} \tilde{U}_l$ with \tilde{U}_l open disjoint and $p|_{\tilde{U}_l}$ are homeomorphisms. Then, for all $z \in W$, $|p^{-1}(z)| = |\tilde{J}|$. But $y \in W$ so

$$|\tilde{J}| = |p^{-1}(y)| = |J|$$

This implies $|p^{-1}(z)| = |J|$ for all $z \in W$, i.e. $W \subseteq A$, i.e. A is open.

It remains to show A = Y. In this case, let $A_k = \{y \in Y : |p^{-1}(y)| = k\}$, then A_k are open, disjoint and covers Y. Since each A_k is open and disjoint, we must have $Y = A_{k_0}$ for some k_0 by connectedness of Y. Thus $Y = A_{k_0}$ for some k_0 . Note $X \neq \emptyset$, so $p(X) \neq \emptyset$ and thus $p^{-1}(y_0) \neq \emptyset$ for some $y_0 \in p(X)$. Then for all $y \in Y$, $|p^{-1}(y)| = |p^{-1}(y_0)| \neq 0$. THis shows p is surjective.

Definition 3.12

Let *p* be a covering map. Then the *number of sheets* of *p* is $|p^{-1}(y)|$.

This number may be finite or infinite.

Example 3.13

p : ℝ → S¹ given by *t* → e^{2πit} has an infinite number of sheets.
 z → z^k has *k* sheets.

Theorem 3.14

Let *X*, *Y* be Ramen surfaces with *f* non-constant holomorphic map. Then:

- 1. f is unbranched iff its a local homeomorphism
- 2. *f* is proper and Unbranched then it is a covering map