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Warning

This note contains disturbing typo.

1 What is a Ramen Surface

So you just need to know complex analysis for this course.

In this course we will assume the space we work with is Hausdorff, i.e. ∆ : X →
X × X is closed immersion. This is equivalent to

∀x , y ∈ X ,∃U , V ∈ Op(X ), (U ∩ V = ; ∧ x ∈ U , v ∈ V )

Here for any topological space X , we use Op(X ) to denote the category of open sets,
with arrows being inclusion.

Example 1.1

1. Rn is Hausdorff
2. The affine line with double origin is not separated (i.e. does not have closed

diagonal).
3. As topological spaces,Zariski topologies are not Hausdorff (but we can have

closed diagonals, hence separated).

Next, when we talk about (topological) surfaces (over a field K), we mean a Haus-
dorff 2-manifold (over K). Since at the end of the day we work with Ramen surfaces,
which are defined over C, in this course we can think of a topological surface as a
1-manifold over C(or 2-manifold over R).

Example 1.2

1. C= R2, with one chart φ = Id : C→ C, is a topological surface.
2. If W ⊆ C is open, then with induced topology and inclusion gives W a struc-

ture of a surface.
3. The graph Γ f = G f = {(z, w) ∈ C2 : w = f (z)} of a continuous map f : U ⊆
C→ C is a topological surface.

4.

P1 = C∪ {∞}= {(x , y, z) ∈ R3 : x2 + y2 + z2 = 1}
︸ ︷︷ ︸

:=S2

= [C2\{0}/Gm]

We will put a few words on the last example. First, let us recall the stereo-
graphic projection from the north pole N , i.e. σ+N : S2\{(0,0, 1)} → R2 is de-
fined by (x , y, z) 7→

�

x
1−z , y

1−z

�

. Next, we also have σ+S : S2\{(0, 0,−1)} → R2
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by (x , y, z) 7→
�

x
1+z , y

1+z

�

. Those two maps gives us the two charts which
covers S2, and hence conclude S2 is a surface.
On the other hand, note S2 ∼= C∪{∞} can be done via σN : S2→ C∪{∞},
where we lift σ+N by setting (0,0, 1) to∞.

Now also recall complex charts of a surface X , which is just a homeomorphism
φ : U ⊆ X → V ⊆ C. Given two charts φi : Ui → Vi with U1 ∩ U2 ̸= ;, then we
can define its associated transition function (from (φ2, U2) to (φ1, U1)) to be φ21 :=
φ1 ◦φ−1

2 : φ2(U1 ∩ U2)→ φ1(U1 ∩ U2). Note this is a complex function.

Definition 1.3

Two charts φi : Ui → Vi of surface X is holomorphically compactible if φ21 and
φ12 are holomorphic (i.e. equivalently φ12 is biholomorphic).

Definition 1.4

An atlas on X is a collection U of charts (φi, Ui) such that
⋃

Ui covers X . An atlas
is holomorphic if any pair of charts in U are holomorphically compactible.

Definition 1.5

A Ramen surface is a topological surface with a complex atlas.

Example 1.6

1. X = C.
2. In general, if X admits an atlas with only one chart φ : X → V ⊆ C, then

U = {(φ, X )} is complex, as the compactibility is trivial to check.
3. If f : U ⊆ C→ V ⊆ C then Γ f is a Ramen surface by (2).

Lemma 1.7

If f : U ⊆ C→ V ⊆ C is holomorphic bijection, then f −1 is holomorphic.

Proof. (⇒): We will begin by show f is conformal, i.e. f ′(z) ̸= 0 for all z ∈ U . Now let
z0 ∈ U and set g = f − f (z0). Then g(z0) = 0, g is holomorphic bijection and f ′ = g ′

on U .

Since g is holomorphic and g(z0) = 0, g(z) = (z − z0)mh(z) with h holomorphic
and h(z0) ̸= 0. But g(z) is a bijection, and thus m = 1 (otherwise g ′(z0) = 0). Hence
g(z) = (z − z0)h(z) and so g ′(z) = h(z) + (z − z0)h′(z), and so

f ′(z0) = h(z0) ̸= 0

as desired. This immediately implies f −1 is holomorphic, i.e. f −1(w) = f −1(w, w).
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Then ∂ f −1

∂ w = 0, as z = f −1( f (z)). Since f is holomorphic, ∂ f
∂ z = 0. Then

0=
∂

∂ z
(z) =

∂

∂ z
( f −1( f (z))) =

∂ f −1

∂ w
∂ w
∂ z
+
∂ f −1

∂ w
∂ w
∂ z

Now note
∂ w
∂ z
= 0, and

∂ z
∂ z
=
∂ f
∂ z
=
∂ f
∂ z

This implies
∂ f −1

∂ w
◦ f ′(z) = 0⇒

∂ f −1

∂ w
= 0 since f ′(z) ̸= 0

This shows f ′ is holomorphic.

As a consequence of this lemma, we see to check for complex atlas, we only need
to check φi ◦φ−1

j is holomorphic for all i, j ∈ I .

Remark 1.8

If a topological surface admits a complex atlas, then its topology is second count-
able (and hence paracompact).

Let us now keep talking about the example S2 = C ∪ {∞}. The topology for
C∪ {∞}=: P1 is given by U ⊆ P1 open iff:

1. U ⊆ C is open (with standard metric topology), or
2. U = (C\K)∪ {∞} for some K ⊆ C compact.

One can show this is Hausdorff, as one can show (left as exercise). Next, we can put a
complex atlas on P1, and the standard is given by φ1 : C→ C and φ2 : C∗∪{∞}→ C,
where

φ1(z) = z, φ2(z) =
1
z

where we set 1
∞ = 0. One checks φ1,φ2 are homeomorphism with inverses, and it

remains to show φ1,φ2 are holomorphically compactible. It suffices to check φ1 ◦φ−1
2

is holomorphic by the above lemma. However, on the overlap (i.e. C∗ → C∗), this
function is just 1

z and hence holomorphic.

Definition 1.9

Two complex atlases U and V are called analytically equivalent if every chart of
U is holomorphically compactible with every chart in V .

This is an equivalence relation, since composition of biholomorphic functions is
still biholomorphic.
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Definition 1.10

A complex structure Σ on a topological surface X is an equivalence class of ana-
lytically equivalent atlases.

Its clear that a complex atlas on X determines a complex structure, and conversely
any complex structure is determined by a unique complex atlas, i.e. the maximal
complex atlas.

Thus, we have the following definition:

Definition 1.11

A Ramen surface is a pair (X ,Σ) where X is a topological surface and Σ is a com-
plex structure.

Let us finish today’s lecture with one last example, the complex torus.

Let Γ = spanZ(ω1,ω2), where ω1,ω2 ∈ C linearly independent (viewed as R2)
over R. Then, the complex torus associated with Γ is the quotient space π : C→ C/Γ
(with quotient topology). In particular, we see:

1. X is connected since C is.
2. X is compact since its the image of a compact set (i.e. Conv(0,ω1,ω2,ω1+ω2))

in C under π.
3. X ∼= S1 × S1 homeomorphically.
4. π is open. To see this one, it suffices to show π−1(π(U)) is open in C for all

U ⊆ C. However, π−1(π(U)) =
⋃

ω∈Γ (U +ω), which is indeed open.
5. X is Hausdorff (we can see this from the fact that the set of orbit equivalence

relation {(x , y) : [x] ∼ [y] ∈ X } = {(x , y) : x = y +mω1 + nω2, n, m ∈ Z} in
C×C is closed).

In the next lecture we will show X admits a complex atlas.

Today we will finish the example on torus.

Recall above we have X = C/Γ with Γ = spanZ(ω1,ω2), where ω1,ω2 ∈ C are
linearly independent as R-vectors.

In order to show X is a Ramen surface, we first need to show X is a surface. In the
above, recall π : C→ X is an open map (since the action is homeomorphism).

First we need to show it is Hausdorff. For this, we will show

E := {(x , y) ∈ C×C : [x]∼ [y]}

is a closed subset in C×C. To see this, just take a convergent sequence {(xn, yn)}n≥1

such that yn = xn+ωn for some ωn ∈ Γ . This means lim xn = x and lim yn = lim(xn+
ωn) = y , but if you think about it we see the choice of ωn has to stablize to some ω0

at some point (otherwise xn +ωn) will not converge. That is, lim(xn, yn) lies in E as
well, shows it is closed. Since E is closed, the diagonal of X → X × X is closed, hence
Hausdorff.
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Now it remains to give a complex atlas to X . For all p ∈ X , choose p̃ ∈ P be the
unique representative of p in the fundamental parallelogram and Vp an open neigh-
bourhood of p small enough so π|V is one-to-one. Now just set Up = π(Vp) and clearly
Up is open in X with p ∈ Up. Set φp be defined as (π|Vp

)−1 : Up→ Vp, then this gives a
chart around p.

It remains to check those are holomorphically compactible.

Let p, q ∈ X and consider ψ = φp ◦φ−1
q , where recall φp = (π|Up

)−1 and φ−1
q = π.

A computation shows

π(ψ(z)) = π ◦φp ◦φ−1
q (z) = π(z)

Thus we see ψ(z) ∼ z under our equivalence relation, and thus ψ(z) − z ∈ Γ ∼= Z2,
which is a discrete group. However, ψ(z)− z is continuous, and thus it must be con-
stant, i.e. it is holomorphic.

The last example we do is algebraic curves.

Let P(z, w) be a non-constant polynomial in complex variables z, w. Then we define

C := {(z, w) ∈ C2 : P(z, w) = 0}

We say C is smooth at (z0, w0) if ∇P(z0, w0) := ( ∂ P
∂ z (z0, w0),

∂ P
∂ w(z0, w0)) is non-zero,

and otherwise its singular at the point.

Example 1.12

1. Let P = w− z2, then C is smooth
2. Let P = w2 − z2, then C is non-singular at (0, 0)

The point is, all algebraic curves are Ramen surface, away from the singular points
(e.g. P = w2 − z2 then C\{(0,0)} is a Ramen surface).

Proposition 1.13

Let S = C\Sing (here Sing is the set of singular points of C). Then S admits a natural
complex structure, making it into a Ramen surface.

The above theorem is a direct consequence of the implicit function theorem. Recall
implicit function theorem says if (z0, w0) is a point on C s.t. ∂ P

∂ w(z0, w0) ̸= 0. Then
there is a disc D1 centered at z0 in C, D2 centered at w0 ∈ C, a holomorphic map
φ : D1→ D2, with φ(z0) = w0 such that

C ∩ (D1 × D2) = {(z,φ(z)) : z ∈ D1}

Proof. By assumption, (z0, w0) ∈ S means ∇P(z0, w0) is non-zero. Thus we get a chart
of S that is locally just the graph of a holomorphic function.
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Definition 1.14

Let X be a Ramen surface and Y ⊆ X open, then we define O(Y ) as the set of
holomorphic functions f : Y → C.

In the above, f : Y → C is holomorphic if for all charts (φ : U → V ), we have
f ◦φ−1 : φ(U ∩ Y ) ⊆ V → C is holomorphic.

Remark 1.15

1. With the obvious restriction, we see O is a sheaf (this means O : Op(X )→
(Rings) is a functor, plus some equalizer condition) valued in rings on X .

2. In fact, OX is a C-algebra.
3. As corollary of (1), to check f ∈ O(Y ), it suffices to show f |Ui

∈ O(Ui) for
an open cover {Ui} of Y .

2 Holomorphic Mapping and Meromorphic Func-
tions

Let us begin with examples.

Example 2.1

We classify f : P1→ C.

In this case, P1 admits a chart U1 = C and U2 = C∗ ∪ {∞}, where φ1 = Id and
φ2 =

1
z .

Then we see f ◦φ−1
1 = f : C→ C and f ◦φ−1

2 = f (1/z) : C→ C must both be
holomorphic.

Since f is holomorphic, we can do Taylor expansion to conclude f (z) =
∑∞

h=0 anzn.
However, we see f (1/z) must also be holomorphic, and f (z) = f (1/z) for all
z ∈ C∗ (the overlap of the two charts). This suggests f (z) is a constant a0 for all
z ∈ C∗, but f is continuous, hence f (0)must also equal a0, i.e. f is just a constant.

This concludes O(P1) = C.

There is nothing special about P1 here, as all we need is this complex manifold to
be compact, then the global sections must be constant.
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Theorem 2.2: Riemann’s Removable Singularity

Let U be an open subset of Ramen surface X and a ∈ U. Suppose f ∈ O(U\{a}) is
bounded on a neighbourhood of a, then f can uniquely extended to f ∗ ∈ O(U).

Proof. Apply the complex analysis version of this theorem.

Definition 2.3

Let X , Y be Ramen surfaces, then a continuous mapping f : X → Y is holomorphic
if for all pairs of charts ψ1,ψ2, the composition ψ2 ◦ f ◦ψ−1

1 is holomorphic as
complex function.

Then, we say f is biholomorphic if it is a bijection and both f and f −1 are holomorphic.
Finally, X , Y are isomorphic if there is biholomorphic mapping f : X → Y .

Remark 2.4

The definition of holomorphic mapping is equivalent to f ∗ : OY → f ∗OX is well-
defined. Here f ∗OX is a sheaf on Y defined by f ∗OX (V ) = OX ( f −1(V )).

Example 2.5

1. Any holomorphic function f : O(X ) is a holomorphic mapping f : X → C
2. Composition of holomorphic mappings are holomorphic
3. Let X = C/Γ and Y = C/Γ ′ be two complex tori, then X ∼= Y iff Γ = Γ ′.
4. Let f : P1→ P1 be given by

z 7→
az + b
cz + d

with ad − bc = 1 is an automorphism of P1. Note in this case, −d/c 7→∞,
−b/a 7→ 0 and∞ 7→ a/c. The inverse is given by

z 7→
dz − b
−cz + a
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Theorem 2.6: Identity Theorem

Suppose X , Y are Ramen surfaces and f1, f2 : X → Y be two holomorphic mapping
coincide on a set A⊆ X with a limit point a ∈ X . Then f1 = f2.

Before we prove this result, let us first recall the notion of isolated point and limit
point for topological spaces. For S ⊆ X . We say x is isolated point if x ∈ S and there is
open neighbourhood of x such that S ∩ (U\{x}) = ;. We say x is limit point if for all
open neighbourhood of x , S ∩ (U\{x}) ̸= ;. Note here limit points need not be in S.

Proof. Set B = {x ∈ X : f (x) = g(x)}. This is the equalizer of f and g and we see
A⊆ B. Now let

G = {x ∈ X : f |Wx
= g|Wx

for some open neighbourhood Wx}

and clearly G ⊆ B. We will show G is open, closed and non-empty, then G = X and
thus B = X .

To show G is open, let x ∈ G. Then we can find open neighbourhood Wx of x such
that f |Wx

= g|Wx
. But Wx is open neighbourhood for all x ′ ∈Wx , i.e. Wx ⊆ G. Hence

G is open.

Next we claim x is a limit point of B then x ∈ G. This would imply G contains all
its limit points and non-empty, since A⊆ B contains a limit point. This would conclude
our proof.

It remains to prove the claim.

First we show if x is a limit point of B then x ∈ B.

Let φ : U → V be a chart around x , where x is a limit point of B. Since f (x) ∈ Y ,
we can pick a chart φ′ : U ′→ V ′ around f (x). Note we can choose φ so that f (U) ⊆
U ′. Then f̃ := φ′ ◦ f ◦φ−1 is a holomorphic function from φ(U) ⊆ C to φ′(U ′) ⊆ C.
Since x is a limit point of B, φ(x) is a limit point of φ(U ∩ B) in C. Thus we can find
a sequence yn ∈ φ(U ∩ B) with lim yn = φ(x). By definition of yn, we see yn = φ(xn)
for some xn ∈ U ∩ B. This shows limφ(xn) = φ(x). By continuity of f̃ , we see

f̃ (φ(xn))→ f̃ (φ(x))

Similarly, g̃(φ(xn))→ g(φ(x)) where g̃ = φ′ ◦ g ◦φ−1. However, since xn ∈ U ∩ B, it
means f and g agrees on xn, i.e. we get

f̃ (φ(xn)) = φ
′( f (φ−1(φ(xn)))) = φ

′( f (xn)) = φ
′(g(xn)) = g̃(φ(xn))

Thus we see φ′( f (x)) = φ′(g(x)) by continuity, and hence f (x) = g(x) as φ′ is a
homeomorphism, i.e. x ∈ B.

We also want to show there exists open neighbourhood Wx of x where f |Wx
= g|Wx

.
Note f̃ , g̃ are holomorphic functions such that f̃ = g̃ on φ(U ∩ B) and φ(U ∩ B) has
a limit point. Thus f̃ = g̃ by the Identity theorem on C, i.e. x ∈ G.
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As a consequence of the Identity theorem, we have:

Corollary 2.6.1

Let f : X → Y be a holomorphic mapping. If f is not constant then f −1(y) will be a
set of isolated points, for all y ∈ f (X ) ⊆ Y .

Proof. Let y0 ∈ f (X ) and S = f −1(y0). Then let g : X → Y is defiend by x 7→ y0. If S
contains a limit point, then by the above, we see f = g is constant, a contradiction.
Hence S must only contain isolated points.

Corollary 2.6.2

Let f : X → Y be a holomorphic mapping between Ramen surfaces. If X is compact
then | f −1(y)|<∞.

Proof. This is because f −1(y) is closed subset of X and thus also compact. Now, for all
x ∈ f −1(y), we can find open neighbourhood Ux of x with f −1(y)∩ (Ux\{x}) = ; (as
f −1(y) contains only isolated points). Thus

⋃

x∈ f −1(y) Ux is an open cover of f −1(y)
and hence we can find a finite subcover, i.e. f −1(y) is finite set.

Theorem 2.7: Local Behaviour of Holomorphic Mapping

Let f : X → Y be a non-constant holomorphic mapping, a0 ∈ X and b0 = f (a0).
Then there exists integer k ≥ 1 and charts φ : U → V on X and ψ : U ′ → V ′ on Y ,
with following properties:

1. a0 ∈ U, φ(a0) = 0, b0 ∈ U ′ and ψ(b0) = 0
2. f (U) ⊆ U ′

3. The map F :=ψ ◦ f ◦φ−1 is given by F(z) = zk for all z ∈ V where k ≥ 1

The idea of the above proof is simple. Start with any chart, say φ : U1 → V1 and
ψ : U2 → V2, of X and Y , respectively, with φ around a0 and ψ around b0. WLOG
we may assume (by translation) φ(a0) = 0 and ψ(b0) = 0. But then ψ ◦ f ◦φ−1 is
holomorphic and a computation shows F(0) = 0. Now we see F(z) = zk g(z) for some
k ≥ 1 and g holomorphic at 0 with g(0) ̸= 0. Since g is holomorphic and non-zero at
0, its kth root exists, i.e. we can find holomorphic h on open neighbourhood near 0,
such that hk = g. Now just set our new variable t be z · h, we see F = tk as desired.

In particular, the k in the theorem above is called the multiplicity of f at a0.

Also, throughout, it is safe to assume the mappings between Ramen surfaces are
non-constant.
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Here are some global results.

Theorem 2.8

Let X , Y be connected Ramen surfaces and f : X → Y be a non-constant holomorphic
mapping. Then:

1. f is open
2. if Y = C, then | f | does attain its maximum on X

The two statements in the above theorem have their own names: open mapping the-
orem, and maximum modulus principle.

Corollary 2.8.1

Suppose X , Y are connected Ramen surfaces, with X compact. If f : X → Y is non-
constant holomorphic mapping, then Y is compact and f is surjective.

Proof. Since f is continuous, f (X ) is compact. It remains to check f (X ) = Y . Since Y
is connected, it is enough to check f (X ) is open, closed and ̸= ;. However, it is clearly
closed as X is compact and non-empty. In addition, since f is open, f (X ) is open.

Corollary 2.8.2

Every holomorphic function f : X → C on compact Ramen surface is constant.

Proof. X is compact and C is connected. By above result, it cannot be non-constant,
as that would imply C is compact.

Example 2.9

1. O(P1) = C
2. O(C/Γ ) = C. We can see this directly: say f : C/Γ → C is the same as some

f̃ : C → C that’s constant on the orbit. That is, f̃ (z + mω1 + nω2) = f (z)
for all n, m ∈ Z, i.e. they are elliptic functions, i.e. doubly-periodic. Thus we
see holomorphic doubly-periodic functions are constants.

Recall: let D ⊆ C be domain and a0 ∈ D. Consider f ∈ O(D\{a0}). Then, a0 is an
isolated singularity of f and must be of the form of the following three types:

1. If limz→a0
f (z) exists, then a0 is a removable singularity
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2. If limz→a0
| f (z)|=∞, then a0 is a pole of f

3. If limz→a0
f (z) does not exist and limz→a0

| f (z)| ̸= ∞, then a0 is an essential
singularity

Then a complex function f : D ⊆ C→ C is called meromorphic if it is holomorphic on
D except on a set of isolated points where it has poles.

Example 2.10

1. f (z) = sin(z)
z has removable singularity at z = 0

2. f (z) = 1
z has pole at z = 0

3. f (z) = e1/z has essential singularity at z = 0

Definition 2.11

Let X be a Ramen surface and Y an open subset of X . Then a meromorphic func-
tion on Y is a holomorphic function f : Y ′→ C, where Y ′ ⊆ Y and such that:

1. Y \Y ′ only contains isolated points
2. for all points in Y \Y ′, one has limx→p | f (x)|=∞

The points in Y \Y ′ are called the poles of f .

The set of all meromorphic functions on Y is denoted by U (Y ).

Example 2.12

1. Consider f : P1→ C given by

z 7→
az + b
cz + d

where ad − bc ̸= 0. This is holomorphic away from z = −d/c and has a pole
at z = −d/c.

2. Let n≥ 1 and f (z) =
∑n

i=0 aiz
i. Then f : C→ C is holomorphic and thus we

can extend this to f : P1→ C by sending∞ to∞.

Theorem 2.13

Suppose X is a Ramen surface and f ∈ U (X ). For each pole p of f , we define
f̂ (p) =∞ and f̂ (x) = f (x) otherwise. Then f̂ : X → P1 is holomorphic.

Proof. Let P (or you can denote this by div( f )) be the set of poles of f . Then f :
X\P → C is holomorphic and it induces the mapping f̂ : X → P1 as above. Note f̂ is
a continuous function on X , as it is continuous on X\P and

lim
x→x0

f̂ (x) = f̂ ( lim
x→x0

x) =∞
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for all x0 ∈ P.

It remains to show f̂ is holomorphic. To that end, we apply removable singularity
theorem. Let x0 ∈ P, we can find an open neighbourhood U of x0 so U ∩ P = {x0}.
We have

f (x0) =∞∈ P1

and thus pick the chart ψ(z) = 1
z on C∗∪{∞}. We check in this case f is bounded on

this chart. Let ε > 0 be small enough so ψ−1(Bε(0)) ⊆ f (U). Set

W = (ψ ◦ f̂ )−1(Bε(0)) ⊆ U

Then W is open and x0 ∈ W . Then ψ ◦ f̂ |W : W → Bε(0) is bounded with ψ ◦
f̂ |W is holomorphic on W\{x0}, i.e. ψ ◦ f̂ extends to holomorphic function on W by
Riemann’s removable singularity theorem.

3 Branched and Unbranched Coverings

Recall if X is topological space, then:

1. if X compact then any closed subset is compact
2. if X is Hausdorff then any compact subset is closed
3. if X Hausdorff and A discrete (i.e. only contains isolated points). If X is compact

then A is finite.

Definition 3.1

A continuous map p : X → Y is:

1. discrete if p−1(y) is discrete for all y
2. finite if p−1(y) is finite for all y

In particular, by the above facts if X compact Hausdorff, then discrete maps are finite.

Theorem 3.2

Let X , Y be Ramen surfaces, and f : X → Y is non-constant holomorphic map. Then
f is discrete. In particular, if X is compact, then f is finite.

Proof. Clear.

Its natural to ask, if X is not compact, then what condition do we need to make sure
f is finite. Well, note compact discrete sets are finite.
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Definition 3.3

A holomorphic map f : X → Y between Ramen surfaces is proper if f −1(K) is
compact for all compact K ⊆ Y .

Thus, we see if f is proper, then f −1(y) are compact, i.e. its compact and discrete and
hence finite. Thus we see proper maps are finite. Let us record this as a theorem.

Theorem 3.4

Let X , Y be Ramen surfaces and f : X → Y is non-constant proper map. Then f is
finite.

Now it is natural to ask the following:

Question

If f is finite, then is it proper?

Turns out it is true if f is closed.

Example 3.5

1. If X is compact Ramen, then f : X → Y is proper
2. Let f : C→ C be constant, then its not proper
3. Let π : C→ C/Γ be the projection, then its not proper

Next, we will show if f is proper, then f −1(y) all has the same number of elements.

Definition 3.6

Let X , Y be Ramen surfaces and f : X → Y a non-constant holomorphic map. A
point x ∈ X is called a branched point (or ramification point) if there does not
exist open neighbourhood U of x such that f |U is injective.

Otherwise we say its unbranched. We say f is unbranched if it does not have branched
points.
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Example 3.7

1. f : C→ C given by z 7→ zk for k ≥ 2 is branched at 0.
2. f : C→ C∗ given by z 7→ ez is unbranched.
3. More generally, if f : X → Y is a non-constant holomorhpic map that locally

looks like F(z) = zk, then its unbranched iff k = 1
4. π : C→ C/Γ is unbranched for any lattice

Here are some facts about non-constant holomorphic maps f : X → Y between
Ramen surfaces:

1. its open
2. locally it looks like z 7→ zk

3. f proper implies f finite

We will see the following:

1. if f is unbranched then:
(a) its local homeomorphism
(b) if f proper then all fibers have the same size

2. if f is branched then:
(a) the set A of all branched points of f is closed and discrete
(b) if f proper, then f (A) is closed and discrete

Definition 3.8

Let p : X → Y be holomorphic non-constant map between Ramen surfaces. Then:

1. p is a local homeomorphism if for all x ∈ X , ∃ open neighbourhood U of x
in X so p|U : U → p(U) is a homeomorphism

2. p is a covering map if for all y ∈ Y , ∃ open neighbourhood V of y in Y so

p−1(V ) =
⋃

j∈J

U j

with each U j open, disjoint, and p|U j
is a homeomorphism.

Its not hard to see:

1. every covering map is local homeomorphism
2. not every local homeomorphism is a covering map

Example 3.9

Let U ⊊ X be open subset and i inclusion. Then i is local homeomorphism but not
covering map. In addition, surjective local homeomorphism can fail to be covering
map as well. For exmaple, consider p : (0,2) ⊆ R→ S1 ⊆ C with t 7→ e2πi t . Then
this is not a covering map.

On the other hand, if you take p : R→ S1 by t 7→ e2πi t then it is.
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Example 3.10

1. p : C∗→ C∗ by t 7→ tk is a covering map for k ≥ 1. To see this, let a, b ∈ C∗ so
ak = b. Let w= e2πi/k be the primitive kth roots of unit so w j ̸= 1, 0< j < k,
and wk = 1. Then

p−1(b) = {a, aw, aw2, ..., awk−1}

and thus p′(z) = kzk−1 ̸= 0 for all z ∈ C∗, i.e. p is locally invertible. Thus we
can choose U0 of a so that p|U0

is homeomorphism, and we can choose U0

small enough so aw j /∈ U0 for 0 < j < k. Now set U j = w j · U0 for 0 < j < k.
Those will be all disjoint with the same image p(U0)

2. exp : C→ C∗ given by z 7→ exp(z) is a covering map.
3. π : C→ C/Γ is a covering map.

Theorem 3.11

Let p : X → Y be a covering map. Then, if X is connected, p is surjective and ∀y0, y1 ∈
Y , |p−1(y0)|= |p−1(y1)|.

Proof. Let y0 ∈ Y . Since p is a covering map, we can find V ⊆ Y so p−1(V ) =
∐

j∈J U j

with each U j
∼= V . Then |p−1(y0)| = |J |. In fact, |p−1(y)| = |J | for all y ∈ V . In

particular we see
p−1(y) =
∐

j∈J

p−1(y)∩ U j

THus, for all x ∈ p−1(y), we see x ∈
∐

j∈J U j implies x ∈ U j for some unique j.
Hence |p−1(y)| ≤ |J |. To check |J | ≤ |p−1(y)|, we need to show for all j ∈ J , we
can find x ∈ U j so p(x) = y . But each p|U j

is homeomorphism, hence surjective, i.e.
|J |= |p−1(y)|.

Now let A= {y ∈ Y : |p−1(y)|= |J |}. We want to show A= Y .

We first show A is open. Since p is a covering map, we can find open neighbour-
hood W ⊆ Y such that p−1(w) =

⋃

l∈J̃ Ũl with Ũl oepn disjoint and p|Ũl
are homeo-

morphisms. Then, for all z ∈W , |p−1(z)|= |J̃ |. But y ∈W so

|J̃ |= |p−1(y)|= |J |

This implies |p−1(z)|= |J | for all z ∈W , i.e. W ⊆ A, i.e. A is open.

It remains to show A= Y . In this case, let Ak = {y ∈ Y : |p−1(y)|= k}, then Ak are
open, disjoint and covers Y . Since each Ak is open and disjoint, we must have Y = Ak0

for some k0 by connectedness of Y . Thus Y = Ak0
for some k0. Note X ̸= ;, so p(X ) ̸= ;

and thus p−1(y0) ̸= ; for some y0 ∈ p(X ). Then for all y ∈ Y , |p−1(y)|= |p−1(y0)| ̸= 0.
THis shows p is surjective.
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Definition 3.12

Let p be a covering map. Then the number of sheets of p is |p−1(y)|.

This number may be finite or infinite.

Example 3.13

1. p : R→ S1 given by t 7→ e2πi t has an infinite number of sheets.
2. z 7→ zk has k sheets.

Theorem 3.14

Let X , Y be Ramen surfaces with f non-constant holomorphic map. Then:

1. f is unbranched iff its a local homeomorphism
2. f is proper and Unbranched then it is a covering map
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