
Contents

1 Categories 2

2 Natural Trans and Equivalence 6

3 Adjoints 11

4 Yoneda Lemma 19

5 Limits and Colimits 20

6 Flat, Projective&Injective Modules 31

7 Abelian Category 41

8 Proof of Mitchell Embedding 48

9 Injective Modules, Revisit 52

10 Complexes 55

11 Resolutions 62

12 Derived Functors 72

13 δ-Functors 79

14 Spectral Sequences 88

14.1 Bockstein Spectral Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 90

14.2 Spectral Sequence of Filtered Complex . . . . . . . . . . . . . . . . . . . . 91

14.3 Spectral Sequence of Double Complex . . . . . . . . . . . . . . . . . . . . 96

1



1 Categories

Category is cool.

Definition 1.1

A category C consists of:

1. a class of objects Obj(C)
2. a class of morphisms HomC(A, B) = Hom(A, B) for every pair of A, B ∈

Obj(C)

such that:

1. there is a map Hom(A, B) × Hom(B, C) → Hom(A, C) called composition,
and we write this as ( f , g) 7→ f ◦ g ∈ Hom(A, C)

2. for f : A→ B, g : B→ C and h : C → D, we have ( f ◦ g) ◦ h= f ◦ (g ◦ h)
3. there is an identity map Id ∈ Hom(A, A) such that IdA◦ f = f and g◦IdB = g

for all A, B ∈ Obj(C)

Definition 1.2

Let C be a category, A, B ∈ C. Then we say A and B are isomorphic, and write
A∼= B, if there is a morphism f : A→ B such that there is a morphism g : B→ A,
with f ◦ g = IdB and g ◦ f = IdA.

In the future we will use C to denote the object as well.

We remark that there are some subtly points to be made about the foundation.
Namely, here when we say class we mean a collection that can be a set or can be
bigger than sets (e.g. “the set of all sets” is a proper class).

Definition 1.3

A locally small category C is a category where Hom(A, B) is a set for every pair
of A, B ∈ C.

All the things we learned in undergrad and most grad courses are categories.

Example 1.4

1. We have the category of sets (Set), the morphisms are set maps
2. The category of groups (Grp), the morphisms are group homomorphisms
3. The category of topological spaces (Top), morphisms are continuous maps
4. The category of pointed topological spaces (Top∗), here the objects are

pointed topological spaces, i.e. a pair (X , x) with x ∈ X , and morphisms
are continuous maps f : (X , x)→ (Y, y) with f (x) = y

5. The category of abelian groups (Ab)
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6. The category of rings (Ring)
7. The category of left R-modules (R-Mod), which we will use this to denote

the category of left modules
8. The category of right R-modules (Mod-R).
9. Let X be a topological space, then we define Op(X ) as the category of open

sets of X , with morphism being U → V if and only if U ⊆ V
10. The category of Lie algebra over k, (Liek), where objects are Lie algebras.

That is, a Lie algebra is a k-vector space V , together with a Lie bracket
[, ] : V × V → V such that:

• [, ] is bilinear, i.e. [αv1 + v2, w] = α[v1, w] + [v2, w]
• [v, w] = −[w, v]
• [[v, w], u] = [[v, u], w] + [v, [w, u]]

The morphisms are of course k-linear maps that preserves the Lie bracket,
i.e. φ([v, w]) = [φ(v),φ(w)]. Here is a basic examples of Lie algebra: take
R be a ring (need not be commutative), k ,→ R, with k ⊆ Z(R) = {z ∈ R :
zx = xz for all x ∈ R}, and [r, s] = rs− sr.

Definition 1.5

A groupoid is a small category where all morphisms are invertible.

Immediately we see a group is the same as a groupoid with the object being a
singleton, i.e. Obj(G) = {∗}.

Example 1.6

Let C be a groupoid such that |Hom(A, B)| ≤ 1 for A, B ∈ C. Then this is the same
as a equivalence relation on the set Obj(C).

A functor is just a morphism between categories:

Definition 1.7

Let C,D be two categories. A functor F : C→D consists of:

1. F : Obj(C)→ Obj(D), which we write as F(A) or FA.
2. F : Hom(A, B)→ Hom(FA, FB) for all A, B ∈ C, which we write as F( f ) or

F f for f : A→ B.

such that:

1. F(IdC) = IdF(C)
2. F( f ◦ g) = F( f ) ◦ F(g)

Example 1.8

1. The forgetful functor G : (Ab)→ (Grp) which sends the abelian group G to
the group G.

2. The abelianization functor A : (Grp) → (Ab) which sends the group H to
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the abelian group H/[H, H], where recall [H, H] is the commutator of H.
3. The forgetful functor G : (Grp)→ (Set) which sends G to the set G.
4. The free functor G : (Set)→ (Grp) which sends the set S to the free group

generated by the symbols in the set S.
5. The fundamental group functor π1 : (Top∗)→ (Grp) which sends (X , x) to

the group of loops start and end at x . The morphisms are the natural ones.
For example π1(S1, 1) = Z.

Let’s see some actions

Theorem 1.9: Brouwer’s Fixed Point Theorem

Let D = {z ∈ C : |z| ≤ 1} and S1 = {z ∈ C : |z| = 1}. Then if f : D → D is
continuous then f has a fixed point.

Proof. Suppose not, and let f : D → D be continuous without fixed point. Then
f (x) ̸= x for all x ∈ D, and thus the ray f (x)→ x must hit a unique point on S1.
Denote this point by φ(x), and observe φ : D→ S1 is continuous. In particular, note
we have diagram

S1 D

S1

i

IdS

φ

Now, by the above example, we see π1(S1, 1) = Z, and by basic algebraic topology we
see π1(D, 1) = {1} is trivial. Now by functoriality, we must have

π1(S1, 1) π1(D, 1)

π1(S1, 1)

π1(i)

π1(IdS)
π1(φ)

This is the same as a diagram
Z {1}

Z
IdZ

There are no such arrow {1} → Z make the above diagram commute, hence we are
done.

Example 1.10

Let S = R[x1, ..., xm] be the ring of polynomials over a commutative ring R. Let
I ⊆ S be an ideal of S. Then we can define the functor V (I) : (R-Alg)→ (Set) as
follows: for each R-algebra f : R→ T , we let

V (I)(T ) := {(t1, ..., tm) ∈ T m : f (t1, ..., tm) = 0∀ f ∈ I}
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One can show this is a functor.

For example, if we let R= R, S = R[x , y], and I =



x2 + y2 − 1
�

, then we see

V (I)(R) = {(x0, y0) ∈ R2 : x2
0 + y2

0 − 1= 0}

When we plot this set, its not hard to see the picture is given by the circle of radius
1, which we will denote by S1. On the other hand, if we take the R-algebra be
R[t]/(t2), which we will denote as R[ε] where we use ε to denote the image of
t in R[t]/(t2). We see clearly that elements of R[ε] can be written as x0 + x1ε
for x0, x1 ∈ R, such that ε2 = 0. Then we see V (I)(R[ε]) consists of all the tuples
(x0+ x1ε, y0+ y1ε), with x0, x1, y0, y1 ∈ R, such that (x0+ x1ε)2+(y0+ y1ε)2 = 1.
Expand this expression out, we get

(x0 + x1ε)
2 + (y0 + y1ε)

2 = x2
0 + 2x0 x1ε+ x2

1ε
2 + y2

0 + 2y0 y1ε+ y2
1ε

2

= (x2
0 + y2

0 ) + 2(x0 x1 + y0 y1)ε

For this expression to equal 1, we must have
¨

x2
0 + y2

0 = 1

x0 x1 + y0 y1 = 0

Now fix a point (x0, y0) on the circle S1 of radius 1 in R2, we see all solutions to
x0 x1+ y0 y1 = 0 lies on the unique line passing through origin and parallel to the
tangent line of S1 at (x0, y0): see the following

Example 1.11

1. Let U : (Ring)→ (Grp) be R 7→ R∗, which sends the ring R to the group of
units of R. In this case, f : R→ S then U( f ) is f |R∗ .

2. Let F : (Ring) → (Ab) be R 7→ R where we forget the ring structure on R

5



and only keep the additive structure. This is a functor.
3. Let R : (Ab)→ (Ring) be the free tensor A 7→

⊕

n≥0 A⊗n. This is a functor.

Example 1.12

Let (Dom) be the category of integral domains, and let (Field)→ (Dom) be the
inclusion functor. Then, can we get an “inverse” functor F : (Dom)→ (Field) by
define F(R) = Frac(R)?

The answer is no, because for example, if Z[x]→ Z is defined by f (p(x)) =
p(0). Then F( f )( 1

x ) =
f (1)
f (x) =

1
0 , which makes no sense.

The fix is to consider (Domi), which is the category of integral domains, with
morphisms being injective morphisms R→ S. Then the functor F is well-defined.

Definition 1.13

A functor F : C → D is full/faithful if Hom(X , Y ) → Hom(FX , FY ) is surjec-
tive/injective. In the case F is full and faithful we say F is fully faithful.

Let’s see check whether some of the functors are full/faithful.

Example 1.14

Let G : (Grp)→ (Ab) be the abelianization.

Then this is not faithful. Indeed, take A5 ⊆ S5, and two morphisms A5 → A5

be the identity and h 7→ xhx−1, conjugation by x ̸= e ∈ A5. Then we see G(Id)
and G(h 7→ xhx−1) are both the identity on G(A5), as [A5, A5] = A5 because A5 is
simple and [A5, A5] is normal and cannot be trivial (simple means the only normal
subgroups of G is the trivial group and G itself).

This functor is also not full. Indeed, take

H1 = Z/2Z, H2 =Q8 = {±i,± j,±k,±1}

Then Hom(H1, H2) consists of 4 elements and Hom(G(H1), G(H2)) consists of 8
elements.

2 Natural Trans and Equivalence

Natural transformation is a way to compare functors.

Definition 2.1

Let F, G : C → D, then we say θ : F → G is a natural transformation if, for

all A ∈ C, we have an arrow F(A)
θA−→ G(A), such that for all f : A→ B we have
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diagram

F(A) F(B)

G(A) G(B)

F( f )

θA θB

G( f )

We note that if F : C→D, and θ = IdF , then θ : F → F is a natural trans because

FA FB

FA FB

F( f )

IdFA IdFB

F( f )

commutes.

We can compose two natural trans vertically, i.e. if we have

F G

G D

εη

then we can define ε ◦η : F → D and this is again a natural transformation.

Example 2.2

Let C,D be two categories, we can define E := Fun(C,D) to be the category where
objects are functors and morphisms are natural trans.

Example 2.3

Let (Vec) be the moduli space of vector spaces, and (Vec)(k) the category of k-
vector spaces. Then we get

(Vec)(k)→ (Vec)(k)

V 7→ V ∗

This is clearly a functor. On the other hand, we can also do V 7→ V ∗∗, the dou-
ble dual of V , which also defines a functor F . By linear algebra, we see there
is a natural transformation between the double dual functor F and the identity
functor.

Let’s now restrict to I : (FinVec)(k)→ (Vec)(k), where (FinVec) is the moduli
space of finite dimensional vector spaces, and I is the functor of inclusion that
is fully faithful. In this subcategory, the natural transformation between Id and
double dual F admits a inverse natural transformation. This is because when we
deal with finite dimensional vector spaces, the dual and double dual will have the
same dimension as V .
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Example 2.4

Let G be a group, viewed as a category, and let S : G → (Sets) be a functor. It
is not hard to see that such a functor is the same as a left G-set S, i.e. a set with
a left G-action. Thus, suppose we have two functors S, T : G → (Sets), then a
natural transformation θ : S⇒ T is the same as a G-equivariant map θ : S→ T .
That is, θ (g · s) = g · θ (s) for all s ∈ S and g ∈ G.

Next we will talk about equivalence of categories and isomorphisms.

There should be a distinction between those two notions when we deal with cate-
gories. For example, consider a category C with objects being Z and we have an arrow
a→ b if and only if a ≡ b (mod 4). On the other hand consider Z/4Z as a category
(as it is a groupoid). Those two categories should be equivalent, but they cannot be
isomorphic as one has infinitely many objects and one has 4.

Definition 2.5

We say C and D are isomorphic if there are F : C → D and G : D→ C such that
G ◦ F = IdC and F ◦ G = IdD.

Definition 2.6

We say C and D are equivalent if there are F : C → D and G : D → C such that
G ◦ F ∼= IdC and F ◦ G ∼= IdD. In this case we say F is the quasi-inverse of G.

In other word, C and D are equivalent if we have η : G◦F → IdC and η−1 : IdC → G◦F
and so on.

Exercise

Check the two categories we described above about Z/4Z are equivalent. Con-
clude that

PMATH945≡MATH145 (mod Z/4Z)

Definition 2.7

A functor F : C → D is essentially surjective if for every D ∈ D, there is a C ∈ C
such that D ∼= F(C).

Definition 2.8

A full subcategory C′ ⊆ C is a skeleton if for every object X ∈ C, there is an
isomorphism X

∼
−→ Y where Y ∈ C′ and Y is unique. A category C is called a

skeleton category if C is a skeleton of C.
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Lemma 2.9

If C is a category, then C admits a skeleton C′. Moreover:

1. The inclusion ι : C′→ C is an equivalence of category
2. If C and D are skeleton categories, then every fully faithful and essentially

surjective F : C→D is an isomorphism of categories

Proof. First we prove C′ exists. By axiom of choice, we pick a representative in every
isomorphism class in C (i.e. we consider C/ ∼ where A ∼ B iff A

∼
−→ B). Let this

category be C′, which is a full subcategory of C. Thus, for every X ∈ C, we can use
axiom of choice to select a particular isomorphism θX : X

∼
−→ κ(X ) with κ(X ) ∈ C′.

WLOG we can pick θX = IdX if X ∈ C′. Then there is a unique way to extend this map
between objects κ : Obj(C)→ Obj(C′) to a functor so that θ : IdC

∼
−→ ικ. Indeed, set

κ( f ) := θY ◦ f ◦ θ−1
X ∈ HomC′(κ(X ),κ(Y )), f ∈ HomC(X , Y )

On the other hand, we clearly have κι = IdC′ , thus κ is quasi-inverse of ι, which shows
ι is an equivalence of category.

On the other hand, suppose F : C → D is fully faithful and essentially surjective
between skeleton categories. Then for any Z ∈D, we can find X so Z ∼= FX , but then
this means Z = FX (as D is skeleton). Such an X is unique, because F is fully faithful
and FX ∼= FX ′. Thus F is bijective on Obj(C) to Obj(D), and hence we can define its
inverse G.

Theorem 2.10

Let F : C→D, then F gives an equivalence of category if and only if F is essentially
surjective and fully faithful.

Proof. Suppose F is an equivalence of categories. Take quasi-inverse G : D → C and

GF
ψ
−→
∼

IdC and FG
φ
−→
∼

IdD. Then, for every Z ∈D we can find φZ : F(G(Z))
∼
−→ Z . This

shows F is essentially surjective, and similarly G is essentially surjective. Now observe
the following composition

Hom(X , Y ) Hom(FX , FY ) Hom(GF(X ), GF(Y )) Hom(X , Y )

f F( f ) GF( f ) ψY GF( f )ψ−1
X

F G ∼

is in fact the identity, thus the first arrow F has left inverse, and the second arrow G
has right inverse. Exchange the role of F and G, we see when X , Y ∈ Obj(C) lies in

the image of G, then Hom(X , Y )
F
−→ Hom(FX , FY ) has right inverse. However, every
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object in C is isomorphic to something in the image of G, thus F is fully faithful as
desired.

Now we prove the converse. By Lemma 2.9 we can take skeleton inclusions ι1 :
C′ → C and ι2 : D′ → D. Let κi be ιi ’s quasi-inverse. Then F ′ := κ2 ◦ F ◦ ι1 : C′ → D′
is fully faithful and essentially surjective. Thus we know F ′ is an isomorphism of
categories (by Lemma 2.9, as C′ and D′ are both skeleton categories). Set G := ι1 ◦
F ′−1 ◦κ2, then observe we have

GF = ι1F ′−1κ2F ∼= ι1F ′−1κ2F ι1κ1 = ι1κ1
∼= IdC

FG = F ι1F ′−1κ2
∼= ι2κ2F ι1F ′−1κ2 = ι2κ2

∼= IdD

where we used the fact F ′ = κ2F ι1.

Definition 2.11

Let C be a category, then we define the opposite category Copp be the category
where Obj(C) = Obj(Copp) and the arrows are given by A→ B in C if and only if
we have an arrow B→ A in Copp, i.e. we revert all the arrows in C.

Example 2.12

Let C = (FinVec)(C), then we have C ∼= Copp where we send V 7→ V ∗ and if
T : V →W then T ∗ is given by f 7→ f ◦ T . On the other hand we have Copp→ C
by sending V 7→ V ∗ as well. This composition gives the double dual on C itself.

Example 2.13

Let k = k be ACF. The category of affine k-varieties is equivalent to the category
of finitely generated reduced k-algebras. The two functors are given by R 7→
maxSpec(R), and X 7→ Γ (X ,OX ).

Example 2.14

Similarly, we have Gelfand’s theorem, which gives equivalence to the category
of unital commutative C∗-algebras and the opposite category of the category of
compact Hausdorff spaces. The two functors are similar, one is Spec and one is
global sections.

Example 2.15

We also have Stone’s theorem, which says the opposite category of category of
Boolean algebras is equivalent to the compact totally disconnected Hausdorff
spaces. To get from Boolean algebra to Stone spaces, we just take Spec, and
on the other hand, we take X to the continuous functions from X to F2.
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3 Adjoints

The adjoints are like nerds and jocks. I dont know what this means.

Definition 3.1

Let F : C → D and G : D → C, then we say F, G is an adjoint pair, if we have

natural isomorphism HomD(FA, B)
αA,B
−−→ HomC(A, GB) for all A∈ C and B ∈D.

Here natural means that, if we have f : A→ A′ and g : B→ B′ then

Hom(FA′, B) Hom(A′, GB)

Hom(FA, B′) Hom(A, GB′)

αA′ ,B

αA,B′

In other words, for x : FA′→ B, we require the equality

G(g) ◦αA′,B(x) ◦ f = αA,B′(g ◦ x ◦ F( f ))

We note natural can also be interprected as a natural transformation between Hom(F(−),−)
and Hom(−, G(−)).

Next we will talk about examples of adjunction.

Example 3.2

Let R be a commutative ring and let’s look at the category of R-modules. Then
recall the universal property of tensor product says that, given R-modules M , N ,
then M ⊗ N satisfies the condition that for all R-module P, whenever we have
bilinear map M × N → P, then there is unique R-linear M ⊗ N → P.

Now take AB = Hom(Sets)(B, A), then for any f : Y × Z → X in X Y×Z we can
map f to f̃ : Z → X Y by f̃ (z) = f (−, z). Now specialize to X , Y, Z be R-modules,
then we get isomorphism

X Y×Z ∼= (X Y )Z

In other word, we get

Hom(Y × Z , X )∼= HomR(Z ,HomR(Y, X ))

where on the left the arrows are R-bilinear. Now by universal property of ⊗, we
see this is the same as saying

HomR(Y ⊗R Z , X )∼= HomR(Z ,HomR(Y, X ))

Recast this in terms of functors, let F, G be functors from R-modules to R-
modules defined by:

1. F(M) = Y ⊗R M
2. G(M) = HomR(Y, M)
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Then what we did above says

HomR(F(Z), X )∼= HomR(Z , G(X ))

Let’s check this is an adjoint pair. Suppose we have φ : Z → Z ′ and ψ : X →
X ′, then we want commutative diagram

Hom(Y ⊗ Z ′, X ) Hom(Z ′, Hom(Y, X ))

Hom(Y ⊗ Z , X ′) Hom(Z ,Hom(Y, X ′))

αZ′ ,X

αZ ,X ′

Then we see for f : Y ⊗ Z ′→ X , we get

αZ ′,X ( f ) = f̃ : Z ′→ Hom(Y, X )
f̃ (z)(y) = f (y ⊗ z)

Then, we see for any input y ∈ Y , we get

G(ψ) ◦ f̃ ◦φ(z)(y) = G(ψ) ◦ f̃ (φ(z))
= G(ψ)( f (−⊗φ(z)))
=ψ( f (y ⊗ψ(z)))

On the other hand,

ψ ◦ f̃ ◦ F(φ)(z)(y) =ψ ◦ f ◦ F(φ)(y ⊗ z)
=ψ ◦ f (y ⊗φ(z))

The next example is field of fraction:

Example 3.3

Let (Domo) be the category of integral domains, with arrows being injections.
Then let F : (Domo)→ (Fields) be the functor sends A to its field of fraction. On
the other hand, let G : (Fields)→ (Domo) be the forgetful functor. Then we see

Hom(F(A), K)∼= Hom(A, G(K)) = Hom(A, E)

naturally, as one should check.

Example 3.4

Let G : (Rings)→ (Grp) be the functor defined by G(R) = R×, the unit group of
R. On the other hand, we can define F : (Grp)→ (Rings) by

H 7→ Z[H]

which is the group algebra of H over ring Z. They forms an adjoint pair. Indeed,
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F(H) = Z[H], then for φ : H1→ H2 we get

F(φ) = φ̃ : Z[H1]→ Z[H2]
∑

h∈H1
αhh 7→

∑

h∈H1
αhφ(h)

Then we see Hom(F(H), R)∼= Hom(H, G(R)) naturally as one should check.

Its not hard to see all of those have an universal property at play. For example, for
the unit group functor, we have

H R

Z[H]

φ

∃!φ̃

Example 3.5

Next, let’s ask if π1 : (Top∗)→ (Grp) has any left/right adjoint.

Is π1 a left adjoint? If it were, we would get G : (Grp)→ (Top∗) such that

Hom(Grp)(π1(X , x0), H)∼= Hom(Top∗)((X , x0), GH)

Now take
(S1\{−1}, 1)→ (S1, 1)→ (D, 1)

where D is the unit disk. Then we know their fundamental groups are given by

{1} → Z→ {1}

Now apply adjoint, we must have

Hom(X , GH)∼= Hom({1}, H)

Hom(Y, GH)∼= Hom(Z, H)

Hom(Z , GH)∼= Hom({1}, H)

This is impossible as there is only one unique X → GH, while we have many
Y → GH. Similarly we cannot make π1 to be a right adjoint. Indeed, say F is left
adjoint to π1, then we get

Hom(FZ, X )∼= Hom(Z, {1})

Hom(FZ, Y )∼= Hom(Z,Z)

Hom(FZ, Z)∼= Hom(Z, {−1})

which is impossible.

In general, forgetful functor is adjoint to free functor.
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Example 3.6

Let G : (Grp) → (Set) be the forgetful functor, then it is adjoint to the functor
which assigns a set S to the free group 〈X 〉 generated by the set S. This also has
a universal property: for all groups H and set map h : X → H, we have

X 〈X 〉

H

x 7→x

h
∃!h̃

There are many examples of free functors, which we will not go into details as they
are very common. Another example would be X 7→ span(X ), which sends a set X to
the free vector space generated by X , so on and so on.

Example 3.7

Here is a slightly more complicated example. Let G : (Top) → (Set) be the for-
getful functor, and F be the functor sends a set S to the topological space S with
discrete topology. Then observe

Hom(FS, X )∼= Hom(S, GX ) = Hom(S, X )

as one should check.

The abelianization functor is adjoint to the forgetful functor. Indeed, this is because
we have a universal property: for all group homomorphism φ : H → A with A abelian,
there exists a unique φ̃ : H/[H, H] → A, which commutes with the projection map
H → H/[H, H].

Example 3.8

Recall a Lie algebra is a vector space L equipped with Lie bracket. Then for any
k-algebra R, we can define [a, b] := ab − ba which makes R into a Lie algebra.
Now, we have what’s called the universal enveloping algebra, which sends a Lie
algebra L over k to U(L), with the universal property that, for all Lie algebra
homomorphism φ : L→ R (where R is k-algebra), we have diagram

L U(L)

R

φ

∃!φ̃

The construction of U(L) is very strightforward, i.e. we define U(L) = k 〈X 〉/(x y−
y x : x , y ∈ X ), where X is any basis of L.

Example 3.9

Another example from analysis: let F : (MetricSp)→ (CMetricSp) be the com-
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pletion functor which sends the metric space to its completion. Then this is left
adjoint of the forgetful functor G.

Enough examples, now we do some theories.

Definition 3.10

Let (F, G,φ) be a adjoint pair, define the unit

η : IdC → GF

by the image of IdFX under φ : HomD(FX , FX ) → HomC(X , GFX ), i.e. ηX :=
φ(IdFX ) : X → GFX . Similarly we define the counit

ε : FG→ IdD

by the image of IdGY under φ−1 : HomC(GY, GY ) → HomD(Y, FGY ), i.e. εY :=
φ−1(IdGY ).

One can verifyη and ε are natural transformations. This is mostly diagram chasing.
Indeed, take h : X ′→ X in C, then by naturality of φ, we get commutative diagram

IdFX Hom(FX , FX ) Hom(X , GFX ) ηX

Fh Hom(FX ′, FX ) Hom(X ′, GFX ) φ(Fh)

IdFX ′ Hom(FX ′, FX ′) Hom(X ′, GFX ′) ηX ′

φ

(Fh)∗

(Fh)∗

h∗

(GFh)∗

φ

φ

where (Fh)∗ means it sends f : FX → FX to f ◦ Fh and (Fh)∗ means sends f : FX ′→
FX ′ to (Fh)◦ f and so on. By chasing the diagram we conclude the following diagram

X ′ GFX ′

X GFX

ηX ′

GFhh

ηX

φ(Fh)

is commutative. This shows η is a natural trans.

We also observe the unit and counit determines φ in the following way:

φ( f ) = G f ◦η : X → GY, ∀ f : FX → Y
φ−1(g) = εY ◦ F g : FX → Y, ∀g : X → GY (Eq. 3.1)

We can prove this using a diagram: for φ( f ), observe

IdFX Hom(FX , FX ) Hom(X , GFX ) ηX

f Hom(FX , Y ) Hom(X , GY ) φ( f ) = G f ◦ηX

φ

φ

f∗ (G f )∗

The case for φ−1(g) is similar.
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Lemma 3.11

For adjoint pair (F, G,φ), unit η and counit ε, we have equations

IdG =
�

G
η◦G
−−→ (GF)G = G(FG)

G◦ε
−→ G

�

IdF =
�

F
F◦η
−−→ F(GF) = (FG)F

εF
−→ F

� (Eq. 3.2)

Proof. Let Y ∈D, by definition of εY : FGY → Y and Equation Eq. 3.1, we see

IdGY = φ(εY ) = G(εY ) ◦ηGY : GY → GY

This is the first claim we want to prove. Using IdFX = φ−1(ηX ) and Equation Eq. 3.1
we get the second claim.

Proposition 3.12

For a pair of functors F : C → D and G : D→ C, the following maps are inverse to
each other:

{ϕ : (F, G,ϕ) is an adjoint pair }⇋ {(η,ϵ) : satisfies Eq.3.2}
ϕ −→

�

ηX := ϕ (idFX ) ,ϵY := ϕ−1 (idGY )
�

ϕ( f ) := G f ◦ηX ←− (η,ϵ)

Proof. Given units and counits (η,ε). Define φ( f ) = G f ◦ ηX and ψ(g) = εY ◦ F g,
where f : FX → Y and g : X → GY . By naturality of η and ε, we see φ and ψ gives a
natural transformation between functors Hom(F(−),−) and Hom(−, G(−)). We claim
ψ◦φ = Id. Indeed, the left map sends f to εY ◦ FG f ◦ FηX . By naturality of ε, we see
the diagram

FX FGFX FGY

FX Y

FηX FG f

εYεFX

f

commutes. Thus ψφ( f ) = f ◦ εFX ◦ FηX . By Equation Eq. 3.2 we see this is f as
desired, i.e. ψφ = Id. Similarly we see φψ = Id. This together with the above
discussion we conclude the proof.

Theorem 3.13

Suppose F : C → D be a functor. If G, G′ : D → C be two right adjoints of F, then

16



G ∼= G′.

Proof. By definition of adjoint, we have

Hom(A, GB)
αA,B
−−→ Hom(FA, B)

α′A,B
←−− Hom(A, G′B)

We want to produce a map η : G→ G′ so for all D ∈D we get ηD : GD→ G′D.

But take A= GD and B = D, we see by definition of adjoint, we get

Hom(GD, GD)
∼
−→ Hom(GD, GD′)

IdGD 7→ ηD

which is obtained by compose α and (α′)−1.

It remains to show η is natural. Thus let f : D→ D′, then we want to check if the
following diagram

GD GD′

G′D G′D′

G f

η η

G′ f

is commutative. But by naturality of adjoint, we get commutative diagram

Hom(A′, GB) Hom(FA′, B) Hom(A′, G′B)

Hom(A, GB′) Hom(FA, B′) Hom(A, G′B′)

for all A→ A′ and B→ B′. Now set A= A′ = GD, Id : A→ A′, B = D and B′ = D′ with
f : B→ B′. Then we get a diagram

Hom(GD, GD) Hom(GD, G′D)

Hom(GD, GD′) Hom(GD, G′D′)
β

where IdGD ∈ Hom(GD, GD) will be mapped to G′ f ◦ηD if we go right then down. But
if we go down then right we dont really get what we wanted. To complete the proof,
we use naturality again, with B = B′ = GD′, Id : B → B′, A= GD and A′ = GD′ with
G f : A→ A′. This gives

Hom(GD′, GD′) Hom(GD′, G′D′)

Hom(GD, GD′) Hom(GD, G′D′)
β

where if we go down then right, we get the same arrow as if we go down then right in
the diagram above this diagram. In other word, if we go right then down, we would
get an arrow equal to G′ f ◦ ηD. But if we chase the diagram, this is in fact ηD′ ◦ G f .
This proves the naturality of η, as desired.

17



It remains to show we can find ε : G′→ G so ε ◦η = IdG′ and η ◦ ε = IdG. This is
also just diagram chasing.

Now we do another example of adjoints.

Example 3.14

Let X be topological space, then we get category Op(X ), with objects being open
sets and arrows being inclusion relation, i.e. U → V if and only if V ⊆ U . Let D
be a concrete category, such as (Set), (Grp), (Ring), (R-Mod) and so on.

Then a presheaf valued in D is a functor F : Op(X )→D. We say F is a sheaf
if for all U and open cover U =

⋃

Ui, we get short exact sequence

F (U)
∏

i F (Ui)
∏

i, j F (Ui ∩ U j)p2

p1

where p1 sends (si)i to (si|Ui∩U j
)i, j and p2 sends (si)i to (s j|Ui∩U j

)i, j. Its not hard to
see F (;) must be the terminal object in the category its valued in.

Since presheaves are just functors from Op(X ) → D, we see morphisms of
presheaves are just natural transformations η : F → G . In particular we get a
functor (Sh) → (PreSh), which is just the inclusion of sheaves into presheaves
(i.e. it is the forgetful functor). This functor has an adjoint, which is called
sheafification.

To define sheafification, one way to do it is using the explicit notion of stalks.
We define this as, for x ∈ X ,

Fx := lim−→
x∈V

F (V )

where the colimit runs over all open sets V containing x . This can also be de-
fined as equivalence class of [( f , U)] with f ∈ F (U) (we omit the equivalence
relation).

Then, for a presheaf F , we define its sheafification F sh by

F sh(U) :=

¨

(sx) ∈
∏

x∈U

Fx : (sx) compatible

«

Here compatible means the following: for all x ∈ U , we can find open nbhd Vx

of x and t ∈F (Vx), such that sz = [(t, Vx)] for all z ∈ Vx .

Proposition 3.15

Let F be a presheaf, then F sh is a sheaf.

Proof. Standard (and annoying) routine.
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Theorem 3.16

The forgetful functor (Sh)→ (PreSh) is right adjoint of sh : (PreSh)→ (Sh).

4 Yoneda Lemma

Let C be locally small category, and consider Hom(−,−) : Copp × C → (Sets). In par-
ticular by fixing A∈ C we get hA := Hom(A,−), which is a functor from Copp to (Sets).
Similarly we can do hA = Hom(−, A).

Theorem 4.1: Yoneda

Let F be the full subcategory of Fun(C, (Sets)) with objects hA. Then we have iso-
morphism of categories C ∼= F opp. Similarly we get C ,→ Fun(Copp, (Sets)).

We note in general its not enough to just know the size of the hom set, as we also need
naturality. On the ot her hand, it is, actually enough when working with finite abelian
groups, i.e. we know A =

∏

i Z/p
ki
i Z for some ki ≥ 1. But then Hom(A,Z/pZ) = pr

where r = #{ j : p j ≥ p} and so on.

Definition 4.2

We say a functor F : Copp → (Set) is representable, if there exists X ∈ C and
isomorphism φ : hX

∼
−→ F .

Example 4.3

Take C = Op(X ) be the category of open sets on topological space X . Then we
see it sends an open set U to a presheaf on X , namely F (V ) = ; if U ̸⊆ V and
otherwise its just the restriction of sections.

Theorem 4.4

A small category C is isomorphic to a concrete category.

Proof. Let Y : C → Fun(C, (Sets))opp be the functor A 7→ hA. Then we see since C is
small, hA

∼=
∐

B∈C Hom(A, B). Thus we can form a new category C′ with objects being
∐

B∈C Hom(A, B) as A varying. One checks if we have φ : A→ A′ then we get induced
map in C′. But then its strightforward to see we get an equivalence of categories C
and C′.
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5 Limits and Colimits

Definition 5.1

An object I ∈ C is initial if there exists unique I → A for all A ∈ C. An object is
terminal if its initial in Copp.

We note if I is initial then its unique up to unique isomorphism.

Example 5.2

The following examples are standard

initial terminal
(Sets) ; {∗}
(Rings) Z (0)
(AbGrp) (0) (0)

On the other hand, in (Fields), we have no initial or terminal objects. When we
take the category of k-algebras, then initial is k and terminal is (0).

We can define initial and terminal objects by adjoint pairs. Let • be the category
with 1 object • and 1 morphism Id•. Then we get unique G : C → • by sending A to
•. Then, the functor which sends • to I is a left adjoint to G. On the other hand, the
functor sends • to T is a right adjoint to G.

In our definition of limits and colimits, we will use cone and cocones.

Definition 5.3

A diagram is a functor B→ C.

Typically, B will be a small category. In this case, we can think of B as a bunch of dots
together with arrows between each other, as we can make B into a concrete category.

Definition 5.4

Let F : B → C be a diagram. A cocone to F is an object N of C and maps φB :
FB→ N for all B ∈ B, such that the diagram commutes with N .

To be explicit, when we say the diagram commutes with N , we mean that whenever
we have FB→ FB′, then the triangle

FB FB′

N

commutes.
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Definition 5.5

Let F : B→ C be a diagram, then a cone to F is a cocone to B→ Copp, i.e. we want
object N and morphisms φB : N → FB such that it commutes with the diagram.

Definition 5.6

A limit of a diagram F is a cone (L,φB) such that, if (N , fB) is another cone, then
there exists unique θ : N → L such that the following diagram commutes

N

L

FB FB′

fB fB′

φB φB′

for all B→ B′. In this case we write L as

lim←− F := L

The definition of colimit is where we invert all the arrows above (i.e. we work
with cocones). In this case we write lim−→ F .

Remark 5.7

Note given F : B→ C a diagram, then we get a category of cones (resp. cocones).
If we do this, then the limits are just terminal objects in the category of cones,
and colimits are just initial objects in the category of cocones.

Note if we take B be the empty diagram, then we just get the initial and terminal
objects of C, if they exists.

Example 5.8

Let B be the category with morphisms consists of only identities. Then we see

lim←− F =
∏

B∈B
FB

lim−→ F =
∐

B∈B
FB

If we take C to be the category of sets, then we just get lim←− F is Cartesian product
of sets and lim−→ F the disjoint union of sets. When we take C = (Top), then the
product is literally

∏

X i with product topology. In the category of groups, product
is just free product and coproduct is direct sum. In category of commutative rings,
product is Cartesian product and coproduct is tensor product.
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In rings, Z[x]
∐

Z[y] = Z 〈x , y〉 and in commutative rings Z[x]
∐

Z[y] =
Z[x , y].

Lemma 5.9

Let I =
∐

j∈J I j as a partition of sets. If all products indexed by I j exists for all j ∈ J,
and all products indexed by J exists, then all products indexed by I exists in C. In
particular we have unique isomorphism α and commutative diagram

∏

I X i

∏

j∈J

�

∏

i∈I j
X i

�

Xk

pk
pk p j

α

Similar results holds for coproducts.

Example 5.10

Let I be a small category with diagram F : I → (Sets). Then

lim←− F :=

¨

(x i)i∈Obj(I) ∈
∏

i∈I
F(i) : ∀σ ∈ HomI(i, j), F(σ)(x j) = x i

«

This is, in fact, an equalizer diagram, which we will define later. Clearly we have
natural projection p j : lim←− F → F( j), defined by p j((x i)i) = x j, where j range
over I. Next we consider G : I → (Set) and we compute lim−→G. This is given by

lim−→G :=

�

∐

i∈I
G(i)

�

/∼

where the equivalence relation is generated by

x ∼ G(σ)(x), ∀σ : i→ j, x ∈ G(i)

Those two examples above are nice, as we get a complete description of what
limits and colimits look like when our category is at least sets. However, the ∼
relation here is very inexplicit. We will resolve this problem when we consider
filtered limits/colimits.

Example 5.11

Let X be a topological space, F a sheaf on X . Then we see the stalk is an colimit.

Next, we talk about equalizer/coequalizer, and pushout/pullback.

Definition 5.12
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Consider the diagram I defined by • •
a

b
. Then for F : I → C and let

f = F(a) and g = F(b). Then we define the coequalizer, denoted by coker( f , g)
as lim−→ F . Similarly we define the equalizer, denoted by ker( f , g), as lim←− F .

Let’s explain what this is in more details. A functor F : I → C is the same as two
arrows f : A→ B and g : A→ B. Then, the universal property of ker( f , g) is given by
the following diagram

L

ker( f , g) A B

∃!

g

f
φ

That is, the two compositions
�

ker( f , g)→ A
f
−→ B

�

=
�

ker( f , g)→ A
g
−→
�

are equal, and whenever we have L→ B and L
φ
−→ A that makes the triangle commutes,

the arrow L→ B actually factor through ker( f , g). The case for coker( f , g) is just flip
all the arrows, and hence left as an exercise.

Example 5.13

Let C = (Set) be the category of sets and f , g : X → Y . Then

ker( f , g) = {x ∈ X : f (x) = g(x)}

coker( f , g) = Y /∼

where the equivalence relation ∼ is generated by f (x)∼ g(x).

Lemma 5.14

Let f , g : X → Y . If ker( f , g) exists, then ker( f , g) → X is a monomorphism. If
coker( f , g) exists, then Y → coker( f , g) is a epimorphism.

Here recall we say f : X → Y is monomorphism if f ∗ : Hom(Z , X ) → Hom(Z , Y ) is
injective for all objects Z , and f is epimorphism if f∗ : Hom(Y, Z) → Hom(X , Z) is
injective for all objects Z .

Definition 5.15

Consider the diagram I defined by • • • . Then we define:

1. the pullback (or fibered product) as lim←− F where F : Iopp → C is given by
X → Z ← Y , and we denote this by X ×Z Y

2. the pushout (or fibered coproduct) as lim−→ F where F : I → C is given by
X ← Z → Y , and we denote this by X

∐

Z Y
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As usual, we record the universal property of fibered product (and pushout is just
flip all the arrows): the pullback satisfies

L

X ×Z Y X

Y Z

pX

pY

∃!

We often denote the pullback diagram by

X ×Z Y X

Y Z

□

and for pushout we replace □ by ⊞

Example 5.16

Consider A2
C and the group Aut(A2

C). This has some subgroups, such as L, which
consists of linear automorphisms, and T , which consists of the automorphisms
(x , y) 7→ (x+p(y), y). Let A= L∩T , then a theorem says Aut(A2

C) is the pushout
in (Grp) of L↔ A→ T .

Example 5.17

Consider the Seifert-Van Kampen theorem. Say we have pointed topological
spaces X , Y with a common point x . This is the same as saying we have X ∩Y = A
and we have inclusion (X , x)← (A, x)→ (Y, x). In particular if we take colimit
and then fundamental group, then Seifert-Van Kampen says this is the same as
the colimit of fundamental group. That is, we have

π1(lim−→(X ← A→ Y ))∼= lim−→(π1(X ← A→ Y )) = π1(X ) ∗π1(A) π1(Y )

Right, so we talked about limits and colimits, but in general we do not have a very
nice description of them. Thus we consider filtered limits instead.

Let Λ be a directed set with ≤, i.e. we have x ≤ x , x ≤ y ≤ z and upper bound
of x , y . Then let C be a category, then consider the category consists of {Ci}i∈Λ and
morphisms being ( fi j : Ci → C j)i≥ j, where fi j ◦ f jk = fik and fii = Id. Then, the limit
lim←−Ci, if it exists, is called the projective limit of the projective system.

Example 5.18

Consider the projections πn : Z/pnZ→ Z/pn−1Z and the projective system

...→ Z/pnZ→ Z/pn−1Z→ ...→ Z/pZ

Then the projective limit of the system onN formed by≤ isZp, the p-adic integers.
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How can we describe this in another way? Well, we know

Zp ⊆
∞
∏

n=1

Z/pnZ

where (x1, x2, ...) ∈ Zp if and only if π2(x2) = x1, π3(x3) = x2, π4(x4) = x3 and
so on.

Example 5.19

The next example we consider is the profinite groups. The setup is again a di-
rected set Λ and {Gi}i∈Λ with Gi finite groups. We work with the category C,
compact Hausdorff topological groups. Assume we have a projective system, then
Ĝ = lim←−Gi is called a profinite group. Explicitly, Ĝ = {(gi)i∈Λ : ∀i ≥ j, fi j(gi) =
g j}. Since Gi is finite we can give this the discrete topology, and its going to be
compact as its fintie. Thus the projective limit Ĝ is compact Hausdorff totally
disconnected group.

Theorem 5.20: RAPL

Let F : C→D be the left adjoint to G. If lim←−Di exists in D, then lim←−GDi exists in C
and lim←−GDi

∼= G(lim←−Di).

To prove this, we need to develop some theory.

First, recall that by Yoneda we can embed any C into the category of functors. We
now denote those by

C∧ := Fun(Copp, (Sets))

C∨ = Fun(Copp, (Sets)opp) = Fun(C, (Sets))opp

Then Yoneda lemma says that, for S ∈ C and A∈ C∧, the map

HomC∧(hS, A)→ A(S)
�

HomC(·, S)
φ
−→ A(·)

�

7→ φS(IdS)

is bijective, and it gives an isomorphism of functors HomC∧(hC(·), ·)
∼
−→ ev∧, where

ev∧ : (Copp) × C∧ → (Sets) is given by (S, A) 7→ A(S), and hC : C → C∧ sends S to
hS = Hom(·, S).

Now here comes one nice application of Yoneda lemma: given category C, even a
limit lim←− F does not exists in C, once we embed C into C∧ or C∨, it always exists (to be
exact, all small limits exists). This is the following proposition:

Proposition 5.21

Let I be a small category, then the limit of the diagram F : I → C∧ is given by the
object “ lim−→ ”F ∈ Obj(C∧)

“ lim−→ ”F : S 7→ lim−→(F(S))
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�

T
f
−→ S

�

7→
�

lim−→ F(S)
lim−→ F( f )

−−−−→ lim−→ F(T )

�

together with natural transformation F( j)(·) → lim−→ F(·), where j ∈ Obj(I) and
lim−→ F( f ) is the natural one. Similarly the limit of G : Iopp→ C∧ is given by “ lim←− ”G :
S 7→ lim←−(G(S)) and so on.

Proof. The trick is point by point reduce to the case of sets. We only explain F : I → C∧
and leave G : Iopp → C∨ for the readers. Consider the universal property of colimits,
i.e. we get

F(i) F( j)

lim−→ F

L

ιi ι j

F(φ)

∃!

where L ∈ C∧ and a bunch of arrows F(i)→ L. For every object S ∈ C, since lim−→ exists
in (Sets), we know there exists unique φ(S) such that the diagram

F(i)(S) lim−→ F(S)

L(S)

φ(S)

is commutative for all i ∈ I. Now it remains to prove those φ(·) can be glued into

“ lim−→ ”F
φ
−→ L. Let f : T → S be any arrow in C, let’s now treat L(S) as the constant

functor ∆(L(S)) : I → (Sets). Its easy to see lim−→∆(L(S)) = L(S). A similar claim
holds for L(T ). Thus, we see for every i ∈ I, the following diagram

F(i)(S) F(i)(T )

L(S) L(T )

F(i)( f )

commutes. In particular, by naturality of colimits and the commutative of above dia-
gram, we conclude

lim−→ F(S) lim−→ F(T )

L(S) L(T )

lim−→ F( f )

φ(S) φ(S)

is commutative. But this is the same as saying φ is functorial, and we are done.

26



In particular, by the above result, we can translate the existence problem of limits
and colimits into representability problem of functors, and this is what the following
proposition says. Before we start, let hC : C → C∧ be the functor S 7→ HomC(·, S) and
kC : C→ C∨ be given by S 7→ HomC(S, ·).

Proposition 5.22

Let I be a small category. Use kC and hC we can embed C as subcategory of C∨ and
C∧, respectively.

1. The functor F : I → C has a colimit if and only if the functor “ lim−→ ”F ∈ C∨
is representable; given the limit of F is the same as giving object lim−→ F ∈ C
together with an isomorphism kC(lim−→ F)

∼
−→ “ lim−→ ”F.

2. The functor G : Iopp → C has a limit if and only if “ lim←− ”G ∈ C∧ is repre-
sentable; given the limit of G is the same as giving object lim←−G ∈ C together

with isomorphism hC(lim←−G)
∼
−→ “ lim←− ”G.

Thus, the property of limits is characterized by

HomC(lim−→ F, ·)
∼
−→ lim←−HomC(F(i), ·) = “ lim−→ ”F

HomC(·, lim←−G)
∼
−→ lim←−HomC(·, G(i)) = “ lim←− ”G

Proof. We first consider colimit. The universal property of colimit can be re-interpreted
as the following: to give the colimit of F is the same as to give object lim−→ F together
with arrows ιi : F(i)→ lim−→ F , so that the morphism between functors

kC(lim−→ F) HomC(lim−→ F, ·) lim←−i
HomC(F(i), ·) “ lim−→ ”F

f (ι∗i f = f ◦ ι)i∈I

=
=

ξ

is an isomorphism. Conversely, any isomorphism ξ : kC(lim−→ F)
∼
−→ “ lim−→ ”F can be

induced by a family of arrows ιi : F(i)→ lim−→ F . We can see this by Yoneda embedding.
This concludes the proof, as the case for lim←− is similar.

Now we can start to describe the relation between limits and functors. Let T :
C1 → C2 be a functor, I a small category. By Proposition 5.22, we see the existence
of limit is the same as representability of “ lim−→ ”F or “ lim←− ”G. Thus let’s now consider
what’s the image of limits in C1 under F .

First let F : I → C1 and suppose the colimit lim−→ F exists. Then by Proposition 5.22
we see the “ lim−→ ”T F ∈ C∨2 is the limit of T F . By universal property, we see for every
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i
φ
−→ j in I , we get

T F(i) T F( j)

“ lim−→ ”T F

T lim−→ F

T (F( j)→ lim−→ F) T (F( j)→ lim−→ F)

T F(φ)

∃!

and hence an arrow “ lim−→ ”T F → T lim−→ F . We also get an arrow T lim←−G→ “ lim←− ”T G in
C∧2 , where G : Iopp→ C1, if we just flip all the arrows above.

Definition 5.23

Let T, F, G be as above, and assume the limits of F and G exists. Then we say:

1. T preserves lim−→ F , if “ lim−→ ”(T F)
∼
−→ T (lim−→ F)

2. T preserves lim←−G, if T (lim←−G)
∼
−→ “ lim←− ”(T G)

Now we are ready to prove RAPL, and in fact, also left adjoint preserves colimit:

Theorem 5.24

Consider adjoint pair (F, G,φ)where F : C1→ C2 and G : C2→ C1. Then F preserves
all lim−→ and G preserves all lim←−, if the limit exists and its small limit.

Proof. By duality of limit and colimit, we only need to show G preserves lim←−. Consider
β : Iopp → C2 and assume lim←−β exists. Then, by Proposition 5.21, Proposition 5.21
and functoriality of φ, we have isomorphisms in C∧1

HomC1
(·, G(lim←−β))

∼
−→ HomC2

(F(·), lim←−β)

= lim←−HomC2
(F(·),β(i))

∼
−→ lim←−HomC1

(·, Gβ(i))

= “ lim←− ”Gβ

It remains to verify the arrows in Definition 5.23 are isomorphisms. This is a standard
exercise, but we do it anyway. For any j ∈ I we let the projection be p j : lim←−β → β( j),
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then we have commutative diagram

HomC1
(·, G(lim←−β)) HomC1

(·, Gβ( j))

HomC2
(F(·), lim←−β) HomC1

(F(·),β( j))

lim←−HomC2
(F(·),β(i)) HomC1

(F(·),β( j))

lim←−HomC2
(·, Gβ(i)) HomC1

(·, Gβ( j))

(Gp j)∗

φ

= =

φ−1

where:

• the first and third square commutes by functoriality of φ
• the composition of the vertical arrows on the right is the identity
• the composition of the vertical arrows on the left is the isomorphism we obtained

from the above computation

This concludes the isomorphism G lim←−β
∼
−→ “ lim←− ”Gβ and the morphism G lim←−β →

“ lim←− ”Gβ in Definition 5.23 are characterized by the same family of commutative dia-
grams. This concludes the proof.

Of course we can ask to what extend does the converse holds? In general, this is
not true, but in special cases we get the converse.

Definition 5.25

Let C be locally small, then we say C ∈ C is a cogenerator if the functor hC :
Copp→ (Sets) is faithful.

Definition 5.26

Let C be a locally small category, then we say C has a small cogenerating set, if
there is a set {Ci}i∈I , such that hCi are jointly faithful.

Theorem 5.27: Special Adjoint Functor Theorem

Let D be concrete with all limit exists, has a small cogenerating set, G : D→ C with
C locally small. If G preserves limit. Then G has a left adjoint.

Now we talk about completeness for categories.
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Definition 5.28

A category C is complete if for all small categories I and all diagrams F : I → C,
the limit lim←− F exists. Similarly we say C is cocomplete if for all small I and
diagram F : Iopp→ C, the colimit lim−→ F exists.

Theorem 5.29: Freyd

A small category C is complete if and only if its induced by a partially ordered set
(P,≤), such that every subset has least lower bound.

Proof. Assume C is complete. Assume we have distinct morphisms f , g : X → Y in C,
then for small set I we can construct

∏

i∈I Y , and hence HomC(X ,
∏

i∈I Y ) ⊇ { f , g}I .
Take |I |= |Mor(C)| and use the fact |X |< |PowerSet(X )| we see C must be a partially
ordered set. On the other hand, we see the limits in partially ordered set is just least
lower bound, and hence we are done.

Theorem 5.30

Let I be a small category and C a category.

1. If for all subsets J ⊆ Mor(I) and all family of objects (X j) j∈J the product
∏

j∈J X j exists, and for all f , g : X → Y the kernel ker( f , g) exists, then all
limits indexed by I exists in C.

2. If for all subsets J ⊆Mor(I) and (X j) j∈J the coproduct
∐

j∈J X j exists, and for
all f , g : X → Y the cokernel coker( f , g) exists, then all colimits indexed by I
exists in C.

Proof. Those two claims are dual to each other, hence we only prove the case for lim←−.

Consider β : Iopp→ C. For morphism σ : i→ j in I , recall we have the target and
source morphisms s(σ) = i and t(σ) = j. Construct

∏

i∈I β(i) and
∏

σ∈Mor(I)β(s(σ)).
For every σ ∈Mor(I) define a pair of morphisms

∏

i∈I β(i) β(s(σ))

β(t(σ))

ps(σ)

pt(σ) β(σ)

Thus from universal property of products we get morphisms

∏

i∈I β(i)
∏

σ∈Mor(I)β(s(σ))g

f

30



. We claim the following data defines our desirede lim←−β:

ker( f , g),

�

q j : ker( f , g)→
∏

i∈I

β(i)
p j
−→ β( j)

�

(Eq. 5.1)

We know the limit and colimit in sets, thus by Proposition 5.21 we know the functor
“ lim←− ”β is equivalent to

lim←−HomC(·,β(i)) = ker

 

∏

i∈I

HomC(·,β(i))⇒
∏

σ∈Mor(I)

HomC(·,β(s(σ)))

!

= HomC(·, ker( f , g))

This means “ lim←− ”β is representable. In particular, by definition of q j we know when
we take projection of lim←−Hom(·,β(i)) → Hom(·,β( j)) is the same as taking q j∗ :
Hom(·, ker( f , g))→ Hom(·,β( j)). Now apply Proposition 5.22 we conclude the proof.

Corollary 5.30.1

A category is complete if and only if all equalizers and small products exists, and its
cocomplete if and only if all coequalizers and small coproducts exists.

6 Flat, Projective&Injective Modules

Now we consider some application of those results. From now on until we mentioned
it next time, we will assume R is commutative ring.

Example 6.1

Note PSL2(Z) = SL2(Z)/{±I} ∼= Z/2Z
∐

(Grp)Z/3Z is the free product of Z/2Z
with Z/3Z. In particular, PSL2(Z)/[PSL2(Z), PSL2(Z)] has index 6, and we can
see this as follows. Consider the abelianization functor A : (Grp)→ (Ab), which
is a left adjoint and it preserves colimits. Thus we see

A(PSL2(Z))∼= A(Z/2Z
∐

(Grp)

Z/3Z)

= A(Z/2Z)
∐

(Ab)

A(Z/3Z)

= Z/2Z⊕Z/3Z

Next, we have some right exact functors:
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Example 6.2

Consider the tensor product functor (· ⊗M) : (R-Mod)→ (R-Mod). This functor
is right exact. This is because given A → B → C → 0, this is the same as the

cokernel of A⇒ B with two arrows being A→ B and A
0
−→ B (i.e. WLOG C can be

taken to be B/ Im(A)). Thus because (· ⊗M) preserves colimit, we conclude

A⊗M → B ⊗M → C ⊗M → 0

In particular we also see (·⊗M) commutes with direct sum (since its a coproduct),
i.e. we get (⊕Ai)⊗M ∼= ⊕(Ai ⊗M).

Example 6.3

Now take the hom functor HomR(M , ·), and this is left exact, because kernel is a
limit. Similarly we get HomR(M ,

∏

Ai) =
∏

i Hom(M , Ai) because product is a
limit.

Note the tensor in general is not left exact, and if this is the case, when we give it
a name:

Definition 6.4

We say a R-module M is flat if (· ⊗M) is an exact functor.

Example 6.5

1. Q is a flat Z-module
2. R is always flat over itself, more generally, Rp is always flat as R-module,

where p ∈ Spec R.

Definition 6.6

We say R-module M is faithfully flat if 0→ A→ B→ C → 0 is exact if and only
if 0→ M ⊗ A→ M ⊗ B→ M ⊗ C → 0 is exact.

Example 6.7

Q is not faithfully flat. To see this, let A be a finite torsion abelian group. Then
A⊗Z Q = 0. Indeed, Z/nZ⊗Z Q = 0 because [a]⊗ b

c = [a]⊗
nb
nc = [na]⊗ b

c = 0
for all [a] ∈ Z/nZ and b/c ∈Q. But then any finite abelian group is given by

A∼=
⊕

Z/niZ

for some ni, and thus A⊗Z Q = 0. At this point, consider an sequence of finite
abelian groups 0→ A→ B→ C → 0 that is not exact, and tensor with Q we get
0→ 0→ 0→ 0→ 0 which has to be exact. This shows Q is not faithfully flat.
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Example 6.8

The covariant hom functor is not always right exact. Indeed, consider Z
π
−→

Z/2Z→ 0 and M = Z/2Z, then we get

HomZ(Z/2Z,Z)→ Hom(Z/2Z,Z/2Z)

is the same as 0→ Z/2Z which cannot be exact.

A natural question to ask is when HomR(P,−) is exact. We need A
f
−→ B → 0 is

exact, which implies Hom(P, A) → Hom(P, B) → 0 must be exact, where (ψ : P →
A) 7→ ( f ◦ψ). This means that, whenever we have exact sequence A→ B → 0 and
a arrow P → B, there must exists an unique arrow P → A that makes the following
diagram commute:

A B 0

P

f

ψ
∃!

Definition 6.9

An R-module is projective if Hom(P, ·) is exact.

We note the universal property of projective modules is the passage above the defini-
tion. As an immediate corollary, we see if {Pi} is a family of projective modules, then
⊕

Pi is projective. Also, by the example above we see Z/2Z cannot be projective.

On the other hand, we have two contravariant hom functor HomR(·, M). Namely,

HomR(·, M)1 : (R-Mod)→ (R-Mod)opp

HomR(·, M)2 : (R-Mod)opp→ (R-Mod)

The first hom functor is left adjoint and the second one is right exact.

Definition 6.10

An R-module I is injective if Hom(−, I)1 is exact.

Well, when is this happening? Let 0→ N
f
−→ M be exact, then

Hom(M , I)→ Hom(N , I)→ 0

under the map ψ 7→ ψ ◦ f is exact. Well, this is the same as saying, we have the
following diagram

I

0 N M
f

ψ ∃!
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At this point, we will no longer consider commutative ring R, but instead general
associative ring R with a 1.

In this case, we have (R-Mod), (Mod-R) and (S-Mod-R), which are the left, right
R-modules and (S, R)-bimodules, respectively (bimodules means s ·m · r = (sm) · r =
s · (m · r)). In particular, we have (R-Mod-Z) = (R-Mod) and similarly (Z-Mod-R) =
(Mod-R).

Now we first define tensor product for non-commutative rings.

Let M ∈ (S-Mod-R) and N ∈ (R-Mod-T ), then we will define M⊗R N ∈ (S-Mod-T),
as follows: M ⊗R N is the free Z-module on all symbols e(m,n) with m ∈ M and n ∈ N ,
subject to the equivalence relation generated by

e(m1+m2,n) − em1,n − em2,n

em,n1+n2
− em,n1

− em,n2

emr,n − em,rn

with m, mi ∈ M , n, ni ∈ N and r ∈ R.

This still has the desired universal property that

M × N P

M ⊗R N
∃!

where M × N → P is R-bilinear and M × N → M ⊗R N is given by (m, n) 7→ m⊗ n.

Example 6.11

Let R = M2(C) and V = {
�

a
b

�

: a, b ∈ C}. Then V is (R,C)-bimodule. Also let

W = {
�

c d
�

: c, d ∈ C}. Then W is (C, R)-bimodule. One can in fact compute
W ⊗R V ∼= C.

Just like tensor product, if R is not commutative, then the Hom also run into prob-
lem. Let’s say RMS and RNT , where we use X MY to mean M is left X -module and right
Y -module. Then we see

Hom(R-Mod)(M , N) ∈ (S-Mod-T )

The structure is given by the following: let φ ∈ Hom(R-Mod)(M , N), then

(s ·φ · t)(m) := φ(m · s) · t

Now we describe the tensor hom adjunction. Suppose we have S MR, RNT and S PU .
Then we want to capture the isomorhpism PM×N ∼= (PM)N . Thus, what we want is

Hom(M ⊗ N , P)∼= Hom(N ,Hom(M , P))
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Let’s figure out what the categories are. Well, M ⊗R N is (S, T )-module, and P is
(S, U)-module. Hence, what we want is Hom(S-Mod)(M ⊗ N , P). On the other hand, N
is (R, T )-module and Hom(M , P) is (R, U)-module, which shows we want

Hom(R-Mod)(N ,Hom(S-Mod)(M , P))

Overall, the isomorphism is a (T, U)-bimodule morphism.

Then we get back to the flat, projective and injective modules. First, we say P is
projective if HomR(P, ·) is exact, if P ∈ (R-Mod).

Proposition 6.12

The following are equivalent:

1. P is projective
2. all short exact sequence 0→ A→ B→ P → 0 splits
3. there is Q such that P ⊕Q ∼= R⊕I where I is some index set.

Proposition 6.13

1. If R is a commutative local ring, then f.g. projective modules are free. In fact,
all projective module over commutative local ring is free.

2. If R is commutative PID, then projective modules are free.
3. If R is commutative Noetherian with Spec R is connected (i.e. 0, 1 are the only

idempotents), then every non-f.g. projective module is free.

Definition 6.14

A projective R-module P is stably free if there exists a ∈ N, such that P ⊕ Ra is
free.

Remark 6.15: Eilenberg Swindle

Suppose P ⊕Q = F with F free. Then we can do

(P ⊕Q)⊕ (P ⊕Q)⊕ ...∼= F ⊕ F ⊕ ...

where

(P ⊕Q)⊕ (P ⊕Q)⊕ ...∼= P ⊕ (Q⊕ P)⊕ (Q⊕ P)...∼= P ⊕ (F ⊕ F ⊕ ...)

where at the end,
⊕

F is free.

Example 6.16: Swan’s Example

We will construct something thats projective stably free but not free.

We will construct P to be a projective stably free rank 2 module over

A= R[X , Y, Z]/(1− X 2 − Y 2 − Z2)
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such that P ⊕ A ∼= A3 and P ̸∼= A2. Set I = (1 − X 2 − Y 2 − Z2) and let x , y, z be
the image of X , Y, Z in A, i.e. R = R[x , y, z] such that x2 + y2 + z2 = 1. Consider
φ : A3 → A given by (a, b, c) 7→ ax + b y + cz. Observe since x2 + y2 + z2 = 1
we see (ux , uy, uz) 7→ u under φ. This makes A projective because its free. Now
consider

0→ kerφ→ A3→ A→ 0

This splits and so P := kerφ is stably free, as P ⊕ A= A3.

We claim P is not free. To show this, it suffices to show Q := P ⊗A S is not
free, where A ,→ S := C(S2;R) is the embedding of the polynomial real valued
functions on the 2-sphere S2 into all continuous real valued functions on 2-sphere.
Because 0→ P → A3→ A→ 0 splits, we see

0→Q→ S3→ S→ 0

splits by the map α, which sends (a ∂
∂ x , b ∂

∂ y , c ∂∂ z ) 7→ ax + b y + cz.

Now we invoke the following theorem: if X is compact Hausdorff, then the
category of fintie rank real vector bundles of X is equivalent to the category of
fintie rank projective C(X ;R)-modules. The equivalence is given by E 7→ Γ (X ,E ).
Under this equivalence, we see the above sequence becomes

0→T → O
∂

∂ x
⊕O

∂

∂ y
⊕O

∂

∂ z
α
−→ O → 0

of vector bundles over S2, where O is the trivial vector bundle. However, this is
exactly the short exact sequence that defines the tangent bundle on S2. Thus we
see Q is free over S if and only if the tangent bundle on S2 is trivial. But by Hairy
Ball theorem we see that the tangent bundle on S2 does not admit any nowhere
vanishing section, i.e. its not trivial.

Next, we will work towards Lazard theorem, which says flat R-modules is the same
as filtered limits of free modules. In practice, this is very nice because it means we can
reduce to the free case when we look at properties for flat modules.

First, we will need to generalize the notion of filtered limits.

Definition 6.17

A category B is filtered if every finite subcategory has a cocone.

This really means that when we have a finite set of objects {B1, ..., Bk}, then we can
find B with Bi → B, and whenever we have f , g : B1→ B2 we get a diagram

B1 B2 B
g

f

When we take a colimit of a filtered category, this is really like taking a filtered colimit.
Indeed, if {Mi} is a filtered subcategory of R-modules, then

lim−→Mi =
∐

Mi/∼
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where mi ∈ Mi and m j ∈ M j are equivalent iff we can find f : Mi → M and g : M j → M
such that f (mi) = g(m j). This is obviously an equivalence relation. Also, we see this
is R-module, where we define [mi+m j] by [ fi(mi)+ f j(m j)], where mi ∈ Mi, m j ∈ M j,
and the fi, f j exists by the definition of filtered category. You should check this is
well-defined.

We now proceed to prove the following result:

Theorem 6.18: Govorov-Lazard

An A-module M is flat iff M is a filtered colimit of finite rank free A-modules.

Here the filtered/direct colimit assumption is necessary. If G is the colimit of the
diagram

Z Z

Z

×2

×2

Then G ∼= Z3/((1,0,−2), (1,−2,0)) has torsion, and thus cannot be flat Z-module.
Indeed. observe

2(1,−1,−1) = (1,0,−2) + (1,−2, 0) = 0

but (1,−1,−1) ̸= 0 since if

(1,−1,−1) = a(1,0,−2) + b(1,−2,0)

for some a, b ∈ Z, then 1= 2a = 2b, which is impossible.

Lemma 6.19

Let M be R-module. The following are equivalent:

1. M is flat over R
2. for every injection of R-modules N ⊆ N ′, the map N ⊗R M → N ′ ⊗R M is

injective
3. for every ideal I ⊆ R the map I ⊗R M → R⊗R M = M is injective
4. for every finitely generated ideal I of R, the map I ⊗R M → R ⊗R M = M is

injective

Proof. It suffices to show (4)⇒ (1). Say N1→ N2→ N3 is exact. Let K = ker(N2→ N3)
and Q = im(N2→ N3). Then we get maps

N1 ⊗R M → K ⊗R M → N2 ⊗R M →Q⊗R M → N3 ⊗R M

Observe the first and third arrow are surjective. Thus if we show the second and
fourth are injective, then we are done. Indeed, assume the second and fourth arrows
are injective, then sicne tensor is right exact, let’s tensor K → N2 → Q→ 0 by M and
we get

K ⊗M → N2 ⊗M →Q⊗M → 0

is exact. Thus ker(N2 ⊗ M → Q ⊗ M) = im(K ⊗ M → N2 ⊗ M). Since im(K ⊗ M →
N2⊗M) = im(N1⊗M → N2⊗M) (by surjectivity of N1⊗M → K⊗M) and ker(N2⊗M →
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Q ⊗ M) = ker(N2 ⊗ M → N3 ⊗ M) (by injectivity of Q ⊗ M → N3 ⊗ M), this becomes
ker(N2 ⊗M → N3 ⊗M) = im(N1 ⊗M → N2 ⊗M), which shows the functor −⊗R M is
exact, i.e. M is flat.

Thus, it suffices to show the second and fourth arrows are injective. Hence, it
suffices to show −⊗R M transforms injective R-modules maps into injective R-module
maps.

Assume K → N is injective R-module map and x ∈ ker(K ⊗M → N ⊗M). We have
to show x is zero. The R-module K is the union of its finite R-submodules; hence,
K ⊗ M is the colimit of R-modules of the form Ki ⊗ M where Ki runs over all finite
R-submodules of K (because tensor product commutes with colimits). Thus, for some
i our x comes from an element x i ∈ Ki⊗M . Thus we may assume K is finite R-module,
and thus regard the injection K → N as an inclusion, i.e. K ⊆ N .

The R-module N is the union of its finite R-submodules that contains K . Hence,
N⊗M is the colimit of R-modules of the form Ni⊗M where Ni are fintie submodules of
N that contains K . This is a colimit over a directed system, hence we see the element
x ∈ K ⊗ M maps to zero in at least one of these R-modules Ni ⊗ M (since x maps to
zero in N ⊗M). Thus we may assume N is finite R-module.

Assume N is finite. Write N = R⊕n/L and K = L′/L for some L ⊆ L′ ⊆ R⊕. For any
R-submodule G ⊆ R⊕n, we have a canonical map G⊗M → M⊕n obtained by composign
G ⊗ M → Rn ⊗ M = M⊕n. It suffices to prove L ⊗ M → M⊕n and L′ ⊗ M → M⊕n are
injective. Indeed, if those two are injective, then

K ⊗M = L′ ⊗M/L ⊗M → M⊕n/L ⊗M

is also injective.

Thus, it suffices to show that L ⊗ M → M⊕n is injective when L ⊆ R⊕n is an R-
submodule. We do this by induction on n. The base case n = 1 we handle below.
Let us do the induction step first. Assume n > 1 and set L′ = L ∩ R ⊕ 0⊕(n−1). Then
L′′ = L/L′ is a submodule of R⊕(n−1). We obtain a diagram

L′ ⊗M L ⊗M L′′ ⊗M 0

0 M M⊕n M⊕n−1

By induction and base case the left and right vertical arrows are injective. The row is
exact. Thus the middle vertical arrow is injective as well, and we are done.

It remains to show the base case. Let L ⊆ R be R-submodule, i.e. L = I for some
ideal I , and we have to show I ⊗R M → M is injective for any ideal I of R. We konw
this is true when I is finitely generated. But I =

⋃

Iα is a union of f.g. ideals Iα, and
so I = lim−→ Iα. But ⊗ commutes with colimits, and all Iα ⊗ M → M are injective by
assumption, we are done.
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Lemma 6.20: Equational Criterion For Flatness

M is a flat A-module iff any relation
∑n

i=1 fimi = 0, fi ∈ A, mi ∈ M is trivial, i.e.
we can find m′j ∈ M and ai j ∈ A such that

mi =
∑

j

ai jm
′
j and

∑

i

ai j fi = 0

In other word, we can write 0=
∑n

i=1 fimi using zero coefficients,

∑

j

�

∑

i

ai j fi

�

m′j =
∑

j

0 ·m′j = 0

Proof. (⇒): Suppose M is flat,
∑

i fimi = 0 in M , and let I = ( fi)i ⊆ A be the ideal
generated by the coefficients. The exact sequence 0 → I → A remains exact after
tensoring with M , so

∑

i fi⊗mi = 0 in I⊗M . If φ : An→ I is defined by φ(a1, ..., an) =
∑

i ai fi and K is its kernel, the then exact sequence 0→ K → An φ
−→ I → 0 remains exact

after tensoring with M , so there is
∑

j k j⊗m′i in K⊗M such that
∑

j k j⊗m′j =
∑

i ei⊗mi

(where {ei} is the standard basis for An), since (φ ⊗ 1)(
∑

i ei ⊗mi) = 0. Each k j can
be expressed as k j =

∑

i ai jei so that

∑

i

ei ⊗

�

∑

j

ai jm
′
j

�

=
∑

i

ei ⊗mi ∈ An ⊗M ∼= M n

and mi =
∑

j ai jm
′
j (the first condition above). Also, k j ∈ K = ker(φ) so φ(k j) = 0 =

∑

i ai j fi (the second condition above). This proves the (⇒) direction.

(⇐): Suppose every relation in M is trivial. Let I
ι
−→ A be the inclusion of a finitely

generated ideal. Recall flatness of M is equivalent to injectivity of I ⊗M → A⊗M for
any such I . If (ι ⊗ 1)(

∑

i fi ⊗mi) = 0 ∈ A⊗M then
∑

i fimi is a relation in M , hence
trivial. Using the notation of the previous lemma, we have

∑

i

fi ⊗mi =
∑

i

fi ⊗

�

∑

j

ai jm
′
j

�

=
∑

j

�

∑

i

fiai j

�

⊗m′j = 0

and ι ⊗ 1 is injective.

Corollary 6.20.1

M is a flat A-module iff whenever given a map f : An→ M and a finitely generated
N ≤ ker( f ), there is a factorization

An F

M

h

f
g
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with F a finite rank free A-module and N ≤ ker(h).

Proof. If N is generated by one element x = ( fi)i, f (x) =
∑

i fimi = 0, then M is flat iff
this relation is trivial mi =

∑

j ai jm
′
j,
∑

i ai j fi = 0, by the above Lemma. Take F = Am,
h(a1, ..., an) =

∑

i, j ai jaie j where {e j} is the standard basis, and g(a1, ..., am) =
∑

j aim
′
j.

Then we see
h( f1, ..., fn) =

∑

i, j

ai j fie j = 0

(g ◦ h)(a1, ..., an) = g

�

∑

i, j

ai jaie j

�

=
∑

i, j

ai jaim
′
j =

∑

i

aimi = f (a1, ..., an)

Now if N = N ′ + Ax ′ and An h′
−→ F ′

g ′
−→ M factors f with N ′ ≤ ker(h′), then we can find

F , h′′ and g with h′(x) ∈ ker(h′′) such that the following commutes

An F ′ F

M

h′ h′′

f
g ′ g

Taking h= h′′ ◦ h′ we have N ≤ ker(h) and f = g ◦ h.

Next, recall that given filtered systems {M ′
i }, {Mi} and {M ′′

i }, and arrows fi : M ′
i →

Mi, gi : Mi → M ′′
i , if all the sequences

M ′
i → Mi → M ′′

i

are exact then
lim−→M ′

i → lim−→Mi → lim−→M ′′
i

is also exact.

Definition 6.21

An induced sub-poset (J ,≤) of (I ,≤) is cofinal in (I ,≤) if for any i ∈ I , there is
j ∈ J so i ≤ j.

Lemma 6.22

If J is cofinal in the directed poset I and {Mi} is a directed system of A-modules, then

lim−→
i∈I

Mi = lim−→
j∈J

M j

Lemma 6.23

Every A-module M is a filtered colimit of finitely presented A-modules.
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Proof. Take an exact sequence 0→ K → AI → M → 0 and let

Λ := {(J , N) : J ⊆ I finite , N ⊆ K ∩ AJ f.g.}

partially ordered by (J ′, N ′)≤ (J , N) if J ′ ⊆ J and N ′ ⊆ N . For λ= (J , N) define

Mλ = AJ/N

One checks this is a filtered system, and we have h : lim−→λ
Mλ → M . This is what we

want.

Now we are ready to prove Lazard’s theorem.

Proof of Theorem 6.18. Suppose M is flat A-module. Consider I = M ×Z in the aboce
lemma, and AI q

−→ M by 1(m,v) 7→ m (the generator of the ith coordinate gets mapped
to the projection of i = (m, v) onto M). Let λ = (J , N) ∈ Λ with J ⊆ I a finite set and
N ≤ ker( f )∩AJ a f.g. module, then by the Corollary 6.20.1, the map Mλ := AJ/N

qλ−→ M
factors through a finite rank free A-module F

Mλ

h
−→ F

g
−→ M , h : AJ → F

such that qλ = g ◦ h. We now realize this F as Mµ for some λ ≤ µ, giving a cofinal
subset of Λ consisting of finite rank free A-modules.

Let {b1, ..., bn} be a basis for F and choose i1, ..., in ∈ I such that il /∈ J and

q(1il ) = g(bl), q : AI → M , g; F → M

This is possible since I is M times Z. Let J ′ = J ∪ {i1, ..., in} and define a map AJ ′ h̃
−→ F

extending h and mapping 1il to bl , with kernel N ′. The following diagram commutes

AJ ′ F

AI M

h̃

g

q

so N ′ ≤ ker(q). The top arrow splits as its a surjection to free objects. Thus AJ ′ ∼= N ′⊕F
and N ′ is f.g. as well. Thus µ = (J ′, N ′) ∈ Λ and λ ≤ µ. Thus we see M is indeed the
filtered colimit of finite rank free modules, as desired.

7 Abelian Category

Abelian categories should be something similar to the category of R-modules.
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Definition 7.1

A preadditive category C is one where each Hom-set is an abelian group.

In particular, given preadditive category, we should have 0A,B ∈ Hom(A, B). Next,

suppose we have A
g
−→ B

f
−→ C , then we want the composition map ( f , g) 7→ f ◦ g to

be Z-linear. That is, we want ( f , g1 + ng2) 7→ f ◦ (g1 + ng2) = f ◦ g1 + nf ◦ g2 for
non-negative integer n≥ 0. Similarly we want ( f1 + nf2) ◦ g = f1 ◦ g + nf2 ◦ g.

Definition 7.2

A additive category is a preadditive category where all (includes empty) finite
products and coproducts exists.

In fact, we will see, in an additive category, since we have empty product and
coproduct, we have initial and terminal objects. In particular, the initial and terminal
object will be isomorphic, and we just call it the 0 object.

Indeed, let I be initial and T be terminal, then we have

I
∃!α
−→ T

0T,I
−→ I

where 0T,I exists as the category is preadditive. However, since we have unique I → I ,
i.e. the IdI , this means IdI = 0I ,I = 0T,I ◦ α, i.e. 0I ,I = IdI . However, α must be 0I ,T .
Similarly we see 0T,T = IdT . Thus we see 0I ,T ◦ 0T,I = IdI and 0T,I ◦ 0I ,T = IdT and
I ∼= T . This in fact is true for a more general setting.

Theorem 7.3

Let C be an additive category. Then

n
∏

i=1

Mi
∼=

n
∐

i=1

Mi

Proof. We have the following diagram

∏

i Mi

M1 ... Mn

∐

i Mi

π1 πn

i1 in

where the jth composition is given by (mi)ni=1 7→ m j 7→ (0, ..., m j, ..., 0). We claim
θ :=

∑

k ik ◦πk :
∏

Mi →
∐

Mi is an isomorphism.
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We need to produce a map ψ :
∐

Mi →
∏

Mi. However, we have cocone

M1 ... Mn

∐

Mi

Mk

0M1,Mk
0Mn ,Mk

∃!

Thus we can find unique βk :
∐

Mi → Mk, such that

βk ◦ i j = δik :=

¨

IdMk
if j = k

0M j ,Mk
otherwise

where δik is the Kronecker delta. We can revert all the arrows in the above diagram,
and we can get γk : Mk→

∏

Mi, such that

πi ◦ γk = δik

Define
ψ :=

∑

k

γk ◦ βk

It remains to prove θ and ψ are inverse of each other. Will,

ψ ◦ θ =
∑

k,l

γk ◦ (βk ◦ il) ◦πl =
∑

k,l

γk ◦ (δk,l) ◦πl =
n
∑

k=1

γk ◦πk = Id∏Mi

where
∑n

k=1 γk ◦πk = Id∏Mi
is obtained by using universal property of product.

Definition 7.4

Let C be a additive category, and f : A→ B an arrow in C, then we define

ker( f ) := Eq( f , 0)

to be the equalizer of the diagram A B
f

0
. Dually, we define the cokernel

of g : B→ C be the coequalizer of B C
g

0
.

Definition 7.5

A preabelian category is an additive category where all kernels and cokernels
exists.
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Equivalently, preabelian category is additive category where all finite limits and
colimits exists.

Next, recall mono and epi morphisms are defined as follows: we say f : A→ B is
monomorphism if whenever we have

C A B
h1

h2

with f h1 = f h2 then h1 = h2. Similarly, we say f : A→ B is epimorphism, if whenever
we have

A B C
f h1

h2

with h1 f = h2 f then h1 = h2.

Clearly mono does not imply injection, and epi does not imply surjection.

Example 7.6

In the category of Hausdorff topological space, the inclusionQ→ R is not onto but
epimorphism. On the other hand, in the category of commutative rings, Z ,→ Q
is both epi and mono.

In a concrete category, injection implies mono and surjection implies epi. This is
because this is true in (Sets), as one should check.

Remark 7.7

Let f : A → B, then it is mono if and only if lim←−(A
f
−→ B

f
←− A) exists. Dually,

f : B→ A is epi iff lim−→(A
f
←− B

f
−→ A) exists.

Definition 7.8

A monomorphism f : A→ B is normal if it is a kernel of some diagram, i.e. we
have a (universal) diagram

A B C
f g

0

Similarly, an epimorphism g : B→ C is normal if it is a cokernel of some diagram.

Definition 7.9

A abelian category is a preabelian category where all monomorphisms and epi-
morphisms are normal.
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Example 7.10

The category of abelian groups is abelian category. Indeed, say f : A → B is
mono, then we see f is the kernel of B → B/ im( f ). Similarly, if g : B → C is
epimorphism, then ker(g)→ B

g
−→ C witness g being a cokernel.

The above example still holds when we move to (R-Mod) or (Mod-R).

Example 7.11

Let X be a topological space, and Op(X ) the category of open sets by inclusion.
Then a sheaf OX is a functor Op(X )opp→ (AbGrp), and we say (X ,OX ) is a ringed
space if OX : Op(X )opp→ (Ring).

For example, take X = Spec R = {p : p prime ideal of R} with R integral do-
main, and OX the structure sheaf, i.e.

OX (U) = {
f
g

: f , g ∈ R, g non-zero on U}

Here we say g is non-zero on U if the stalk of g at u ∈ U is not equal 0 for all u.
Here, if u= p, then in fact we have the stalk at u just equal Rp, the localization at
prime p.

Next, given ringed spaces (X ,OX ) and (Y,OY ), a morphism between them
will be a pair ( f , f ♯) where f : X → Y continuous, and f ♯ : OY → f∗OX is a
natural transformation where f∗OX : Op(Y )opp → (Ring) is given by f∗OX (V ) :=
OX ( f −1(V )) for V ⊆ Y open.

More generally, given ringed space (X ,OX ), we can consider the category of
sheaves of OX -modules. This is just globalization of modules on OX (U). This is an
example of abelian category. To see this, all things are trivial. To see monomor-
phisms and epimorphisms are normal, we just note we can globalize the ker-
nel and cokernel construction, e.g. given a morphism of sheaves of OX -modules
F → G , we can form coker(F → G ) by taking sheafification of the presheaf
U 7→ coker(F (U)→ G (U)). Then mono and epi are normal follows by the fact
mono and epi in (R-Mod) are normal.

Our next topic is Mitchell’s embedding theorem. What this says is that, given A an
abelian category, {Ai}i a set of objects in A. Then there exists a small abelian subset
A0 of A that contains {Ai} and an embedding A0 ,→ (R-Mod).

This is very nice, because we can now check mono and epi for any abelian category
with ease.

Example 7.12

We claim A is an abelian category and f : A→ B is both mono and epi, then f is
an isomorphism. Indeed, we can create A0 which contains A, B, and embed A0 to
some (R-Mod) by fully faithful F . Then clearly in (R-Mod) we have F f is mono
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and epi, but in (R-Mod) it is kind of obvious mono+epi implies isomorphism.
Thus we are done.

The proof of the following result will be given in a separate section.

Theorem 7.13: Mitchell Embedding

Let A be a small abelian category. Then there is a fully faithful exact functor

F : A→ (R-Mod)

for some ring R.

Here, given F : C → D. Then full functor means F is onto on the hom set for all
C1, C2 ∈ C, i.e. Hom(C1, C2) → Hom(FC1, FC2) is surjective. On the other hand, F
is faithful meanings this map on the hom set is injective. Next, a functor between
abelian categories is exact if F is additive (meaning the map on hom sets is group
homomorphism) and maps exact sequence to exact sequence.

Its not hard to see if F is additive, then F(0C) = 0D, as one should check.

Next, we ask what is exactness in an abelian category. Well,

A
f
−→ B

g
−→ C

is exact at B if g ◦ f = 0A,C and im( f ) = ker(g) where im( f ) := ker(coker( f )) by
definition.

What is the map
ker(coker( f ))→ ker(g)

Well, note we have
A ker(coker( f ))

A B C

coker( f )

∃!

i

0π

f g

0 0

Here we have unique arrow A→ ker(coker( f )) because we have

A B coker( f )
f

0

π

and thus
A

ker(coker( f )) B coker( f )i π

0

f∃!u

where f = i ◦ u.

We remark u : A→ im( f ) is an epimorphism.
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Now get back to exactness, note g ◦ f = 0, thus g ◦ i ◦ u = 0 = 0 ◦ u. Since u is an
epimorphism, we see this means g ◦ i = 0. We can see this by the cone

im( f )

ker(g)

B C

∃!h̃

j

i

0

g

To use Mitchell embedding for any abelian category, we will need the following
lemma.

Lemma 7.14

Let A be an abelian category and {Ai} be a set of objects of A. Then there exists a
full small abelian subcategory A0 of A, such that {Ai} are objects of A0.

Proof. Given X ⊆A. Let C(X ) be the full subcategory of A whose objects includes:

1. X
2. isomorphism class representatives of all finite limits/colimits
3. isomorphism class representatives of witnesses that monos/epis are normal

Note C(X ) need not be abelian. Thus define C2(X ) = C(C(X )),..., Cn(X ) = C(Cn−1(X ))
and so on. Take

A0 =
⋃

n≥1

Cn(X )

With this lemma, when we are working with {Ai} ⊆A, we can first take A0 as above,
then embed A0 into some R-modules, and be happy about it.

Remark 7.15

If A,B are abelian categories, and F : A→ B is fully faithful exact, then A
u
−→ B is

mono in A if and only if F(u) is monomorphism in B. A similar claim holds for
epimorphisms.

To see this, we need a fact, which says u is mono iff ker(u) = 0 iff 0→ A
u
−→ B

is exact. Similarly we have the fact that v is epi iff coker(v) = 0 iff B
v
−→ C → 0 is

exact.

The proof is now left as an exercise.
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8 Proof of Mitchell Embedding

To prove the Mitchell embedding, we are going to first embed A into Pro(A) (or dually
into Ind(A)), then take R= End(Pro(A))(S) where S is a set of projective generators.

To make sense of this, we first introduce Grothendieck categories.

Definition 8.1

Let E be a category, Σ a non-empty set in E . Then:

• We say Σ is a set of generators, if, for any pair of arrows f , g : x → y , if
for all s ∈ Σ and ε : s → x we have f ε = gε, then f = g. If Σ is a set of
generators, then we say s ∈ Σ is a generator.

• We say Σ is a set of cogenerators, if, for any pair of arrows f , g : x → y , if
for all s ∈ Σ and all δ : y → s, we have δ f = δg, then f = g. If s ∈ Σ with
Σ a set of cogenerators, then we say s is a cogenerator.

Definition 8.2

Let X be an object of abelian categoryA. Then we say X is projective if Hom(X , ·) :
A → (AbGrp) is an exact functor. Dually, we say X is injective if Hom(·, X ) :
Aopp→ (AbGrp) is an exact functor.

Proposition 8.3

Let A be abelian, X ∈A be injective (resp. projective). If for all T ∈A with T ̸= 0,
Hom(T, X ) ̸= 0 (resp. Hom(X , T ) ̸= 0), then X is a cogenerator (resp. generator)

Proof. We only do the injective case. If X is cogenerator, then apply the definition of

cogenerator to T T
IdT

0
we get δ ∈ Hom(T, X ) such that δ = δ ◦ IdT ̸= δ ◦ 0= 0.

Conversely, we want to show that, if h : S → T is non-zero then there exists δ ∈
Hom(T, X ) such that δh ̸= 0. Observe we can find δ′ ∈ Hom(im(h), X ) such that

δ′ ̸= 0. But by property of epimorphism we see the composition S ↠ im(h)
δ′

−→ X
is non-zero. Now apply the property of injective objects we see we can extend δ′ to
δ : T → X .

Definition 8.4

Let A be abelian category. Then:

1. If for all X ∈A, there is injective object I and monomorphism X → I , then
we say A has enough injectives.

2. If for all X ∈ A, there is projective object P and epimorphism X → P, then
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we say A has enough projective.

Definition 8.5

Let A be abelian category, then we say A is a Grothendieck category if:

1. A is cocomplete
2. A has generators
3. for all filtered small category I , the functor lim−→ : AI → A is exact, i.e. for

any arrow α→ β → γ in AI := Fun(I ,A), we have

∀i ∈ I , 0→ α(i)→ β(i)→ γ(i)→ 0 is eaxct

implies
0→ lim−→α→ lim−→β → lim−→γ→ 0 is exact

As an immediate application we see in a Grothendieck category, for any small set
I , the functor

⊕

I : AI →A is exact.

Theorem 8.6: Grothendieck

Let A be Grothendieck category. Let I be the full subcategory of all injective objects,
let the inclusion be ι : I → A. Then there is a functor F : A → I together with
φ : IdA→ ιF so that

φX : X → F(X )

is monomorphism. Specifically, A has enough injectives.

Corollary 8.6.1

Every Grothendieck category A has injective cogenerator.

Now we move to ind and pro construction.

Definition 8.7

Let C be a category.

• If X ∈ Obj(C∧) can be represented as “ lim−→ ”X i, where the index is a filtered
small category, and X i ∈ C, then we say X is an ind-object in C.

• If X ∈ Obj(C∨) can be represented as “ lim←− ”X i, where the index is a filtered
small category, and X i ∈ C, then we say X is an pro-object in C.

The collection of all ind-objects of C forms the category IndC, and the collection of
all pro-objects form the category ProC. Clearly we have fully faithful functor C→ IndC
and C → ProC. Also, by definition of C∧ and C∨, we see (IndC)opp ∼= Pro(Copp). From
now on we will write ind and pro objects by “ lim−→ ”X i and “ lim←− ”X i.
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Lemma 8.8

Let X = “ lim−→ ”X i and Y = “ lim−→ ”Yj be ind-objects, then there is canonical bijection

HomIndC(X , Y )∼= lim←−
i

lim−→
J

HomC(X i, Yj)

Similarly for pro-objects X , Y we have

HomProC(X , Y )∼= lim←−
j

lim−→
i

HomC(X i, Yj)

Example 8.9

Let k be a field, and (FinVect) be the category of finite dimensional k-vector
spaces. Then we will see

A := Ind(FinVect)∼= (Vect) := B

where (Vect) is the category of k-vector spaces. Indeed, define functor A→ B as
follows: it maps “ lim−→ ”Vi to V := lim−→Vi. To see this is fully faithful, observe

Homk(V, W )∼= lim←−
i

lim−→
j

Homk(Vi, Wj)

Indeed, to give a linear map f : V → W is the same as to give a family of com-
pactible family of linear maps fi : Vi → W , while filtered lim−→ in (Vect) says each
fi will factor through some Wj.

This functor is also essentially surjective. Indeed, given vector space V , then
the set of finite dimensional subspaces V ♭ with inclusion relation gives a filtered
poset, and clearly lim−→V ♭ ∼= V .

Next, we will record two results that we will use, without proof:

Theorem 8.10

Let C be abelian category, then IndC is also abelian, and C → IndC is fully faithful
exact functor. Dually, ProC is abelian and C→ ProC is fully faithful exact functor.

Theorem 8.11

If C is small abelian category, then IndC is Grothendieck category.

Now we are ready to prove the Mitchell embedding theorem.

Lemma 8.12

Let C be cocomplete abelian category with projective generators, and O ⊆ Obj(C) a
set. Then there exists projective generator S such that all X ∈ O can be represented
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as quotient object of S.

Lemma 8.13

Let S ∈ Obj(C) be a projective generator of abelian category C, and let R= HomC(S, S).
This gives fully faithful functor

G := HomC(S, ·) : C→ (Mod-R)

If X ∈ Obj(C) can be represented as the direct sum of finitely many copies of S, then
the map

HomC(X , Y )→ Hom(Mod-R)(GX , GY )

induced by G is bijective for all Y ∈ C.

Note R is a ring as we can add f : S→ S and g : S→ S since C is abelian, and we can
multiply f and g by composition.

Proof. Take m≥ 0 and short exact sequence

0→ X ′→ S⊕m→ X → 0

and apply G to it. Consider the diagram in (AbGrp)

0 HomC(X , Y ) HomC(S⊕m, Y ) HomC(X ′, Y )

0 HomR(GX , GY ) HomR(G(S⊕m), GY ) HomR(GX ′, GY )
(Eq. 8.1)

where all the vertical arrows are induced by fully faithful G, thus its monomorphism.
Observe

HomC(S, Y )
Id
−→ GY

∼
←−−−−−
ψ 7→ψ(1R)

HomR(R, GY ) = HomR(GS, GY )

where the composition is equal the homomorphism induced by G. Since G is additive,
we see the middle vertical arrow in Eq. 8.1 is isomorphism. Then its not hard to see
the left vertical arrow is also isomorphism.

Theorem 8.14: Mitchell Embedding

If A is small abelian category, then there is ring R and fully faithful exact functor
F : A→ (Mod-R).

Proof. Since Aopp is still small abelian, Theorem 8.11 says Ind(Aopp) is Grothendieck
category, and hence it has an injective cogenerator, by Corollary 8.6.1. Then

Pro(A)∼= Ind(Aopp)opp
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and so we see Pro(A) has a projective generator. Also, we see A → ProA is fully
faithful exact functor between abelian categories, and so we can view A as a full
subcategory of ProA.

Now apply Lemma 8.12 with O = A, we get a projective generator S of Pro(A),
where all objects of A can be represented as quotients of S. Now consider the functor

A→ Pro(A) G
−→ (Mod-R)

G := HomPro(A)(S, ·), R := HomProC(S)

and denote the composition to be F . Then since A→ ProA and ProA G
−→ (Mod-R) are

all exact, we see F is exact. By Lemma 8.13 we know G is fully faithful, thus F is fully
faithful, thus we are done.

9 Injective Modules, Revisit

Well, we investigated the injective and projective objects in (R-Mod), along with flat
modules. Namely, R-module I is injective if Hom(−, I)1 is exact (here Hom(−, I)1 is
the contravariant hom functor from (R-Mod) to (R-Mod)opp), projective if Hom(I ,−)
is exact, and flat if ⊗I is exact.

Proposition 9.1

Consider short exact sequence 0→ I
f
−→ M

g
−→ P → 0. If I is injective or P projective,

then this short exact sequence splits.

Proposition 9.2: Baer Criterion

Module I is injective if and only if for any left ideal a in R, any R-module morphism
f : a→ I can be extended to R-module morphism R→ I .

Proof. (⇒): Injectivity says for any g : M ′→ M , every h : M ′→ I can be extended to
h̃ : M → I . Now take M ′ = a and M = R, and the arrow M ′→ M be inclusion.

(⇐): Consider poset (P ,≤) where P consists of (M1, h1), where M1 satisfies M ′ ⊆
M1 ⊆ M , and h1 : M1 → I is an extension of h. We define (M1, h1) ≤ (M2, h2) iff
(M1 ⊆ M2) and (h2|M1

= h1). By standard application of Zorn’s lemma, we see P has
a maximal element. We claim if (M1, h1) is maximal then we must have M1 = M .

Suppose M1 ̸= M , then take x ∈ M\M1, and define a = {r ∈ R : r x ∈ M1}. Then
we get

φ : a
r 7→r x
,−−→ M1

h1−→ I
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By assumption we can extendφ to φ̃ : R→ I . Now let h2 : M2→ I where M2 = M1+Rx
and

h2(x1 + r x) = h1(x1) + φ̃(r)

By definition of φ we see h2 is well-defined, and thus (M2, h2)> (M1, h1), a contradic-
tion. Thus we are done.

Now let us study injective and projective objects in Z-modules.

Definition 9.3

Let A be Z-module. Then A is divisible if n ̸= 0 implies nA= A.

Lemma 9.4

An Z-module I is divisible if and only if I is injective Z-module.

Proof. Let n ̸= 0, then we see we get

HomZ(Z, I) HomZ(nZ, I)

I I

restriction

φ 7→φ(1)∼= φ 7→φ(n)∼=

a 7→na

is commutative. Because non-zero ideals of Z are given by nZ, now just apply Propo-
sition 9.2.

Lemma 9.5

Every Z-module A can be embedded into injective Z-module.

Proof. Represent A as Z⊕X/N for some index set X . Now consider embedding

Z⊕X/N →Q⊕X/N

and note Q⊕X/N is divisible.

Corollary 9.5.1

The category (AbGrp) has enough injectives.
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Now recall given ring R and S, left S-module N and (S, R)-bimodule P, we can give
Hom(S-Mod)(P, N) a left R-module structure by

p(r f ) = (pr) f , p ∈ P, r ∈ R, f : P → N

Lemma 9.6

Let R, S be rings, N ∈ (S-Mod), P ∈ (S-Mod-R). If N is injective S-module, P
is flat right R-module (i.e. right R-module), then Hom(S-Mod)(P, N) is injective left
R-module.

Proof. Ntoe we have natural isomorphism

Hom(R-Mod)(−,Hom(S-Mod)(P, N))
∼
−→ Hom(S-Mod)(P ⊗R −, N)

where we used adjunction of hom and tensor. But the assumption says the functor on
the right is exact.

Theorem 9.7

Every R-module M can be embedded into injective R-module.

Proof. View M as left Z-module embedded into injective left Z-module J . View R as
(Z, R)-bimodule. Then we see Hom(Z-Mod)(R, J) is injective by Lemma 9.6. Thus

M
∼

−−−−−−→
x 7→(r 7→r x)

Hom(R-Mod)(R, M)→ Hom(Z-Mod)(R, M)→ Hom(Z-Mod)(R, J)

are all embedding of R-modules.

Corollary 9.7.1

Let R be a ring, then (R-Mod) has enough injectives.

From the above, we can actually extract the following lemma.

Lemma 9.8: Injective Production Lemma

Let R be commutative ring, S an R-algebra. If I is an injective R-module, then
HomR(S, I) is an injective S-module.
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Remark 9.9

We note direct product of injective modules is still injective, but direct sum of
injective modules need not be injective.

To end this section, we consider a minimal way to embed M into injective I . This
E(M) will be called injective envelope or injective hull.

Definition 9.10

Let M ⊆ E be R-modules. We say M is essential submodule if E ∩ E0 ̸= 0 for all
submodules E0 ̸= (0) in E.

For example, Z is essential in Q.

Proposition 9.11

1. If M ⊆ E and E is injective, then we can find a minimal F ⊆ E containing M
such that M ⊆ F is essential.

2. The F above will be injective.
3. If we pick another such F ′, then we get F ∼= F ′.

Example 9.12

Let M = Z/pZ for some prime p, then E(M) = Z[ 1
p]/Z.

10 Complexes

A huge portion of this and next few section are from a book by Jean Gallier in 2022
(homology, cohomology, and sheaf cohomolog

We begin with a little bit motivation on why we need cohomology/homology.

We know Hom(−, M) is not exact. We want to measure how far it is away from
being exact, and the way we do it is by (co)homology. Let us see this in action.

Let Γ be a group, we say M is Γ -module if it is an abelian group together with an
action of Γ from the left. Then, we get a functor I : (Γ -Mod)→ (AbGrp) by sending

M 7→ M Γ := {m ∈ M : γm= m,∀γ ∈ Γ }

This functor is not left exact, i.e. given

0→ M ′→ M → M ′′→ 0 (Eq. 10.1)

then we only get 0→ (M ′)Γ → M Γ → (M ′′)Γ .

Now we look at why we fail to get surjection at the end. Well, if we pick m′′ ∈
(M ′′)Γ , then we want to know why this is not in the image of M Γ . Since we have Eq.
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10.1, we know for sure we can find m ∈ M that maps to m′′. The problem is we cannot
ascertain this m is Γ -invariant, i.e. it may not be in M Γ .

However, what we know is that, given such m, for all γ ∈ Γ , the difference

m′
γ

:= m− γm ∈ M ′

when we view M ′ as a subset of M . In other word, we get an assignment

Γ → M
γ 7→ m′

γ
:= m− γm

that satisfies m′
γ1
+ γ1m′

γ2
= m′

γ1γ2
. Call such a map Γ → M ′ satisfying this relation a

1-cocycle. Then the set of all 1-cocycles forms an abelian group, and we denote this
by Z1(Γ , M ′).

The key observation is that our element m ∈ M lies in M Γ if and only if the cocycle
m′
γ
= m−γm= 0. In particular, if Z1(Γ , M ′) is zero, then we know our functor M 7→ M Γ

is exact at the short exact sequence Eq. 10.1. Equivalently, Z1(Γ , M ′) measures how
far away is I from left exact.

Next, we note there might be more than one element in M that maps to m′′. How-
ever, all such choices will be related by an element m′ of M ′. That is, m1 and m2 both
maps to m′′ iff m1 = m2 + m′ for some m′ ∈ M ′. In other word, to know how bad
the functor M 7→ M Γ is not exact (on the left), we want to quotient Z1(Γ , M ′) by all
the 1-cocycles γ 7→ bγ for which we can find m′ ∈ M ′ so bγ = m′ − γm′. Denote this
subgroup by B1(Γ , M ′)

Thus, at this point, we see the element m′′ ∈ (M ′′)Γ defines an element in Z1(Γ , M ′),
which is well-defined up to B1(Γ , M ′), i.e. we get a map

M ′′→ H1(Γ , M ′) := Z1(Γ , M ′)/B1(Γ , M ′)

that fits into the exact sequence 0→ (M ′)Γ → M Γ → (M ′′)Γ , and H1(Γ , M ′) measures
whether this short exact sequence is exact or not.

Now let us move to general theory. Note by Mitchell embedding, we can assume
the abelian category we are working with will be some R-modules. The convention we
are using will be that chain complexes have indices at bottom, and maps going down,
while cochain complexes have indices at top, and maps going up.

Definition 10.1

Let A be an abelian category. We define the category (Chain)(A) as follows:

1. objects of (Chain)(A) will be a sequence (Cn, dn)n∈Z, where Cn ∈ A and
dn : Cn → Cn−1, such that dn+1 ◦ dn = 0 for all n. The map dn is called the
nth differential, and an element of (Chain)(A) is called a chain complex.

2. morphisms from (Cn, dn) to (Bn, bm) are given by ( fn)n∈Z so that it makes
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the following diagram commutes:

... Cn+1 Cn Cn−1 ...

... Bn+1 Bn Bn−1 ...

dn+1 dn

bn+1 bn

fn+1 fn fn−1

The category of cochain complexes in A is defined to be the category of chain com-
plexes of Aopp.

Definition 10.2

Given a chain complex C• = (Cn, dn) in A, we define the ith homology object to
be

Hi(C•) := Zi(C•)/Bi(C•), where Zi(C•) := ker(dn), Bi(C•) = im(dn+1)

Similarly, we define the ith cohomology object of cochain complex (Cn, dn)n∈Z to be

H i(C•) := ker(dn)/ im(dn−1)

where we also use the notation Zn(C•) := ker(dn) and Bn(C•) := im(dn−1).

Remark 10.3

We will call the elements of Zn(A•) as n-cycles, and elements of Bn(A•) as n-
boundaries. Similarly elements of Zn(A•) are called n-cocycles, and elements of
Bn(A•) as n-coboundaries.

We said (Chain)(A) is a category, but we will not check it. It is actually an abelian
category, we will also not check it. For example, its not hard to see C• ⊕ B• = (Cn ⊕
Bn, dn ⊕ bn) and so on.

Definition 10.4

A chain complex is bounded above if Cn = 0 for n ≫ 0, and bounded below if
Cn = 0 for n≪ 0. It is called bounded if it is both bounded above and bounded
below.

The situation for cochain complexes is dual to the case of chain complexes. We will
use (Chain)b(A) to denote the bounded chain complexes, which forms an abelian
subcategory of (Chain)(A).

Now we note the assignment Hi is in fact a functor. Indeed, let f : A• → B•, then
f induces a map Hi(A•) → Hi(B•). Indeed, take x ∈ ker(an), then it maps to 0 by
an : An → An−1. On the other hand, since f is a morphism of chains, we see fn(x)
must be mapped to 0 by bn. In other word, fn : ker(an)→ ker(bn), and hence we see
ker(an)/ im(an+1)→ ker(bn)/ im(bn+1) defined by [x] 7→ [ fn(x)] is well-defined. We
denote this map by Hi( f ) : Hi(A•)→ Hi(B•).

Now let us work out snake lemma.
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Lemma 10.5: Snake Lemma

In (R-Mod), suppose we have

M ′ M M ′′ 0

0 N ′ N N ′′a b

d ′ d ′′

f

d

g

with all the rows exact. Then, we have an exact sequence

ker(d ′) ker(d) ker(d ′′)

coker(d ′) coker(d) coker(d ′′)

δ

Proof. We have

ker(d ′) ker(d) ker(d ′′)

M ′ M M ′′ 0

0 N ′ N N ′′

coker(d ′) coker(d) coker(d ′′)

We need to do a diagram chase. The exactness for the ker and coker are easy, so
we will not do it in detail. To define ker(d ′)→ ker(d), take m′ ∈ ker(d ′), which means
d ′(m′) = 0 ∈ N ′, and thus a(d ′(m′)) = 0 ∈ N , and thus we see d( f (m′)) = a(d ′(m′)) =
0, i.e. f (m′) ∈ ker(d). Hence, ker(d ′)→ ker(d) is given by m′ 7→ f (m′). The others
are similar and we wouldn’t check the exactness.

Construction 10.6

Here we define δ. Let m′′ ∈ ker(d ′′) ⊆ M ′′, then since g : M → M ′′ is surjective,
we can find m ∈ M so that g(m) = m′′. However, note d ′′(m′′) = 0 by assumption,
thus by commutativity we must have b(d(m)) = 0 = d ′′(g(m)). In other word,
we see d(m) ∈ ker(b) ⊆ N . However, ker(b) = im(a), thus we can find n′ ∈ N ′

so that a(n′) = d(m). We define δ(m′′) := n′ + im(d ′) ∈ N ′/ im(d ′) = coker(d ′).

We need to show this map δ is well-defined. To that end, if you chase through the
definition, the first place it may cause ambiguity is when we pick m ∈ M such that
g(m) = m′′.

Hence, suppose g(m1) = g(m2) = m′′. But then this means g(m1 −m2) = 0, i.e.
m1 − m2 ∈ ker(g) = im( f ), hence we get m′0 ∈ M ′ so that f (m′0) = m1 − m2. But
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then note a(d ′(m′0)) = d( f (m′0)) = d(m1 − m2) = d(m1) − d(m2) ∈ im(a). Now, by
the above, we can pick n′1, n′2 ∈ N ′ so a(n′1) = d(m1) and a(n′2) = d(m2) as above,
and thus we need to show n′1 + im(d ′) = n′2 + im(d ′), i.e. n′1 − n′2 ∈ im(d ′). But
d(m1)− d(m2) = a(n′1 − n′2) = a(d ′(m′0)). Now observe a is injective, thus we must
have n′1 − n′2 = d ′(m′0) ∈ im(d ′). This shows our map δ is well-defined at the choice
of m ∈ M such that g(m) = m′′.

Next, we also made a choice of n′ such that a(n′) = d(m). Suppose we have
a(n′1) = a(n′2) = d(m), but then since a is injective we must have n′1 = n′2, and so
there is no ambiguity there.

This concludes δ is well-defined. It remains to show we have exact sequence at δ.

The first thing we need to show is im(ker(d)→ ker(d ′′)) = ker(δ). Well,

im(ker(d)→ ker(d ′′))

by definition is given by some m′′ ∈ ker(m′′) such that we can find m ∈ ker(d) so
g(m) = m′′. But if you chase through the definition of δ, we see d(m) = 0 means
δ(m′′) = 0, hence im(ker(d) → ker(d ′′)) ⊆ ker(δ). Next, suppose m′′ ∈ ker(δ), i.e.
m′′ ∈ ker(d ′′) and δ(m′′) = 0. Inherit the notation of 10.6, we see this means n′ ∈
im(d ′), i.e. we can find m′ ∈ M ′ so d ′(m′) = n′. However, note since all the squares
must commute, we have d( f (m′)) = a(d ′(m′)), where we know a(d ′(m′)) = d(m).
Thus, we see d( f (m′) − m) = 0, i.e. f (m′) − m ∈ ker(d). In particular, observe
g( f (m′) − m) = g( f (m′)) − g(m) = m′′, but g( f (m′)) = 0 because all the rows are
exact by assumption. In other word, we see m′′ ∈ im(ker(d)→ ker(d ′′)), as it is the
image of f (m′)−m under the map ker(d)→ ker(d ′′).

To conclude the proof, it remains to show im(δ) = ker(coker(d ′) → coker(d)).
This is done by the following.

Exercise

Show im(δ) = ker(coker(d ′)→ coker(d))

We will use this result to show that given a short exact sequence of chains 0 →
A• → B• → C• → 0, then we get a long exact sequence of homology objects. Before
that, we need the following lemma.

Lemma 10.7

Let 0 → A•
f
−→ B•

g
−→ C• → 0 be a short exact sequence of chain complexes in

(R-Mod). Then we have exact sequence

Hn(A•)
Hn( f )−−−→ Hn(B•)

Hn(g)−−−→ Hn(C•)

for all n ∈ Z.
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Proof. We need to first define Hn( f ), but it is just given by

Hn( f )[a] = [ fn(a)]

We need to check this is well-defined. Suppose a ∈ Zn(A•) = ker(an), then an(a) = 0,
and thus fn−1(an(a)) = bn( fn(a)) ∈ Bn−1, i.e. fn(a) ∈ ker(bn) as desired, i.e. we
get fn : ker(an) → ker(bn). Now we need to show well-defined. For that, suppose
[b] = [a] ∈ Hn(A•), i.e. a− b ∈ Bn(A•). However, this means we can find y ∈ An+1 so
an+1(y) = a− b. But then

fn(a− b) = fn(an+1(y)) = bn+1( fn+1(y))

which shows fn(a) − fn(b) ∈ im(bn+1), i.e. [ fn(a)] = [ fn(b)] in Hn(B•). This shows
Hn( f ) and Hn(g) are well-defined, it remains to show they are exact.

For this purpose, let’s write down the maps at hand:

0 An+1 Bn+1 Cn+1 0

0 An Bn Cn 0

0 An−1 Bn−1 Cn−1 0

fn+1 gn+1

fn gn

fn−1 gn−1

an+1

an

bn+1

bn

cn+1

cn

First we show im(Hn( f )) ⊆ ker(Hn(g)). Observe

Hn(g)(Hn( f )[x]) = Hn(g)([ fn(x)]) = [gn( fn(x))] = [0]

as g f = 0 by assumption.

Now it remains to show ker(Hn(g)) ⊆ im(Hn( f )). Suppose Hn(g)[x] = 0, i.e.
gn(x) ∈ im(cn+1). The goal is to find some [z] ∈ Hn(A•) so [ fn(z)] = [x].

Since gn(x) ∈ im(cn+1), we can find y ∈ Cn+1 so gn(x) = cn+1(y). Since gn+1 is
surjective, we can find x1 ∈ Bn+1 so y = gn+1(x1), and thus we see

gn(bn+1(x1)) = cn+1(gn+1(y)) = gn(x)

Thus we see
gn(bn+1(x1)− x) = 0

and hence bn+1(x1)−x ∈ ker(gn) = im( fn), i.e. we can find z ∈ An so fn(z) = bn+1(x1)−
x . We claim this z in fact lives in ker(an). To see this, it suffices to show an(z) = 0.
However, since f is injective, it suffices to show fn−1(an(z)) = 0. Now observe we have

fn−1(an(z)) = bn( fn(z))

where
fn(z) = bn+1(x1)− x ⇒ bn( fn(z)) = bn(bn+1(x1))− bn(x)

where bn ◦ bn−1 = 0 and bn(x) = 0 as x ∈ ker(bn). Hence we see z ∈ ker(an) and so
[z] ∈ Hn(A•). Now we see

[ fn(z)] = [bn+1(x1)− x] = [x] ∈ ker(bn)/ im(bn+1)
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Theorem 10.8: Zig-Zag Lemma

Let 0 → A•
f
−→ B•

g
−→ C• → 0 be a short exact sequence of chain complexes in

(R-Mod). Then we have a long exact sequence

... Hn(A•) Hn(B•) Hn(C•)

Hn−1(A•) Hn−1(B•) Hn−1(C•) ...

Hn( f ) Hn(g)

δ

Hn−1( f ) Hn−1(g)

Proof. Consider the following sequence

An/ im(an+1) Bn/ im(bn+1) Cn/ im(cn+1) 0

0 ker(an−1) ker(bn−1) ker(cn−1)

f g

an bn cn

Here the vertical arrows are induced by the differentials. For example,

an : An/ im(an+1)→ ker(an−1)

just sends [x] to an(x). This is well-defined because we know im(an+1) ⊆ ker(an). In
addition, we see an([x]) ∈ ker(an−1) because an−1(an[x]) = an−1(an(x)) = 0. Thus we
can apply snake lemma and obtain the following exact sequence

ker(an) ker(bn) ker(cn)

coker(an) coker(bn) coker(cn)

δn

However, we see

ker(an) = ker(an)/ im(an+1) and coker(an)∼= ker(an−1)/ im(an)

and so on. Indeed, note coker(an) = ker(an−1)/ im(an), but im(an) = im(an) almost
by definition. This concludes the proof, as it is not hard to see the vertical arrows are
just Hn( f ) and Hn(g) and Hn−1( f ) and Hn−1(g).

Definition 10.9

Let f , g : A•→ B•, then a chain homotopy between f and g is a family s = (sn)n∈Z
of morphisms sn : An→ Bn+1 such that for all n we have

fn − gn = sn−1 ◦ an + bn+1 ◦ sn
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In terms of diagrams, a chain homotopy is given by a family of arrows as belows,
where we set h= f − g:

... An+1 An An−1 ...

... Bn+1 Bn Bn−1 ...

an+1 an

bn+1 bn

hn+1 hn hn−1
sn sn−1

so that every hn is the sum of arrows on the side of the parallelogram.

Proposition 10.10

Let f , g : A•→ B•, and s is a chain homotopy between f and g. Then Hn( f ) = Hn(g)
for all n ∈ Z.

Proof. Let [x] ∈ Hn(A•), with x ∈ ker(an). Then

(Hn( f )−Hn(g))[x] = [sn−1(an(x))− bn+1(sn(x))]

However, since x ∈ ker(an), we see we get

(Hn( f )−Hn(g))[x] = [sn−1(0)− bn+1(sn(x))]

where bn+1(sn(x)) ∈ im(bn+1), i.e. [bn+1(sn(x))] = [0]. In other word, we get

Hn( f )[x] = Hn(g)[x]

for all [x] ∈ Hn(A•).

Definition 10.11

A homotopy equivalence between chain complexes C• and D• consists of a pair
(g, h) of chain maps g : C → D and h : D→ C such that h ◦ g is chain homotopic
to IdC and g ◦ h is chain homotopic to IdD.

11 Resolutions

y for algebraic topology, algebraic geometry, and differential geometry).

Since (R-Mod) has enough injective and projective, let M be any module, then we
can find projective P0 and a surjection p0 : P0→ M , such that M ∼= P0/ker p0. However,
K0 = ker p0 is not necessarily projective, and thus we might as well take another
projective module P1 and surjection p1 : P1 → K0, with K0

∼= P1
∼= ker p1. However,
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K1 = ker p1 might not be projective, and so on. We can continue this indefinitely,
where by induction, we get

0→ Kn
in−→ Pn

pn−→ Kn−1→ 0

with Pn projective, Kn = ker pn, and in the inclusion map for all n ≥ 1. Overall, this
sequence is illustrated by the following diagram

... P3 P2 P1 P0 M 0

K2 K1 K0

0 0 0 0

d3 d2 d1

i0p1i1p2i2p3

where dn : Pn→ Pn−1 is defined by

dn = in−1 ◦ pn

for all n≥ 1.

Now observe ker dn = ker pn = Kn, and because pn is surjective, we see

im dn = im in−1 = Kn−1

Therefore, im dn+1 = ker dn for all n≥ 1. At the end, we have im d1 = K0 = ker p0 with
p0 surjective, and thus we conclude the above chain complex is exact.

Definition 11.1

Given any R-module M , a projective (resp. free, resp. flat) resolution is a chain
complex P• together with surjective p0 : P0→ M , so that the following sequence

...→ Pn
dn−→ Pn−1→ ...→ P1

d1−→ P0
p0−→ M → 0

is exact, and every Pn is projective (resp. free, resp. flat) module. We will often
write the above exact chain complex as P•

p0−→ M → 0.

Remark 11.2

An exact sequence of the above form where Pn are not necessarily projective (nor
free, nor flat) is called a left acyclic resolution of M .

Since (R-Mod) also has enough injective, we can do the same thing for injective
modules.

Definition 11.3

Given R-module M , a injective resolution is a cochain complex I• together with
injective i0 : M → I0, so that the sequence

0→ M
i0−→ I0 d0

−→ I1 d1

−→ I2→ ...→ I n dn

−→ I n+1→ ...
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is exact, and I n is an injective module. We often write this as 0→ M
i0−→ I•.

Remark 11.4

An exact sequence of the above form where I n are not necessarily injective is
called a right acyclic resolution of M .

Proposition 11.5

Every R-module M admits a projective resolution and an injective resolution.

Now let P• be a projective resolution of A, then we can apply the Hom(−, B) functor
(which is left exact and contravariant) to this chain complex and get another chain
complex

0→ Hom(P0, B)→ ...→ Hom(Pn−1, B)→ Hom(Pn, B)→ ...

Definition 11.6

For any two R-modules A and B, the nth Ext group Extn
R(A, B) is the nth cohomol-

ogy groups of the cochain complex Hom(P•, B), where P• is a projective resolution
of A.

Now, note since Hom(−, B) is left exact, the exact sequence

P1
d1−→ P0

p0−→ A→ 0

gives exact sequence

0→ Hom(A, B)→ Hom(P0, B)→ Hom(P1, B)

This implies
Hom(A, B)∼= ker(Hom(d1, B)) = H0(Hom(P•, B))

That is,
Ext0

R(A, B)∼= Hom(A, B)

Example 11.7

If A itself is projective, then take 0 → A
Id
−→ A→ 0, we see Extn

R(A, B) = 0 for all
n≥ 1.

On the other hand, if R is PID, then every module A admits a free resolution

0→ P1
d1−→ P0

p0−→ A→ 0 and thus Extn
R(A, B) = 0 for all n≥ 2.

Similar to Hom(−, B), for the covariant right exact functor−⊗R B, we can construct
a chain complex P• ⊗R B, i.e. we get

...→ Pn ⊗ B→ Pn−1 ⊗ B→ ...→ P0 ⊗ B→ 0
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Definition 11.8

For any two R-modules A and B, the nth Tor groups Torn
R(A, B) is the nth homology

group of the chain complex P• ⊗ B, where P• is a projective resolution of A.

Since −⊗B is right eaxct, we see TorR
0 (A, B)∼= A⊗B. Also, by the same argument,

if R is PID, then TorR
0(A, B) = 0 for n≥ 2.

By definition, we see Tor(A, B) and Ext(A, B) depends on the choice of projective
resolution. However, as we will see later, any two resolutions P• and Q• give isomor-
phic Tor and Ext.

Before we move into prove this result, let us remark the following.

Observe the functor Hom(A,−) is covariant and left exact, thus for an injective
resolution I• of B, we get cochain complex Hom(A, I•), i.e.

Hom(A, I0)→ Hom(A, I1)→ ...→ Hom(A, I n)→ Hom(A, I n+1)→ ...

Definition 11.9

For any two R-modules A, B, the nth Ext’ group Ext
′n
R (A, B) is the nth cohomology

group of Hom(A, I•), where I• is an injective resolution of B.

Since one can prove Ext
′n
R (A, B) is isomorphic to Extn

R(A, B), we will not distinguish
those two and just call them the Ext group of A and B.

Our next task is to show the Ext’s and Tor’s are isomorphic when we choose two
different projective resolutions. To be more precise, there is a chain homotopy equiv-
alence between two projective resolutions P• and P ′• of A (where a similar result holds
for injective resolutions).

Theorem 11.10: Projective Comparison Theorem

Let A, B be two R-modules. If:

1. P•
ε
−→ A→ 0 is a chain complex with all Pn projective, and

2. X•
ε′

−→ B→ 0 is an exact sequence.

Then any R-linear map f : A→ B lifts to a morphism g from P• to X•, and any two
morphisms from P• to X• lifting f are chain homotopic.

What the last sentence means is that, if we have h : P• → X• which also satisfies
f ◦ε= h0◦ε′, then we must have g in the above theorem and h being chain homotopic.

Also, before we start to prove this result, let us just remark a general lifting proce-
dure. Suppose we have the following commutative diagram

P

A B C
φ ψ

f 0
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with bottom row exact and P projective, then we can find s : P → A which makes the
whole diagram commute. To see this, just note ψ ◦ f = 0 implies im( f ) ⊆ kerψ =
imφ, and thus im( f ) ⊆ im(φ), and so we can replace B by the image of φ, and get

P

A im(φ) 0
φ ψ

f

where we can apply the definition of projective modules.

Proof. We prove the existence of the lift, stepwise, by induction. Since we have ε :
P0→ A and f : A→ B, we get diagram

P0

X0 B 0

f ◦ε

ε′

As P0 is projective, the map g0 : P0→ X0 exists and make the above diagram commutes.
Assume the lift exists up to level n. We have the diagram

Pn+1 Pn Pn−1 ...

Xn+1 Xn Xn−1 ...

dP
n+1 dP

n

dX
n+1 dX

n

gn gn−1 (Eq. 11.1)

so we get map gn ◦ dn+1P : Pn+1→ Xn and a diagram

Pn+1

Xn+1 Xn Xn−1

gn◦dP
n+1

dX
n+1 dX

n

where the bottom row is exact and dX
n ◦ (gn ◦ dP

n+1) = 0. Indeed, by commutativity of
Eq. 11.1, we get

dX
n ◦ gn ◦ dP

n+1 = gn−1 ◦ dP
n ◦ dP

n+1 = 0

Now replace Xn by the image of gn ◦ dP
n+1, then Xn−1 becomes 0, and we can apply the

fact Pn+1 is projective and get a lifting gn+1 : Pn+1→ Xn+1, which makes the diagram

Pn+1

Xn+1 Xn Xn−1

gn◦dP
n+1

dX
n+1 dX

n

gn+1

commutes.

It remains to show that if we have two liftings g and h, then they are chain homo-
topic. We will do this by induction.
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For the base case, we have diagram

P0 A 0

X1 X0 B 0
dX

1

ε′

ε

g0 h0

∃s0

As ε′(g0− h0) = ( f − f )ε= 0, the lower row is exact and P0 is projective, thus we get
s0 : P0→ X1 with g0 − h0 = dX

1 ◦ s0.

Assume, for the induction step, we have s0, ..., sn−1. Write ∆n = gn − hn, then we
get the diagram

Pn Pn−1 Pn−2 ...

Xn+1 Xn Xn−1 Xn−2 ...
dX

n

∆n−1

dP
n

∆n ∆n−2sn−1 (Eq. 11.2)

This gives a map ∆n − sn−1 ◦ dP
n : Pn→ Xn and a diagram

Pn

Xn+1 Xn Xn−1dX
n+1 dX

n

∆n−sn−1◦dP
n

the bottom row is exact. If we can show dX
n ◦ (∆n − sn−1 ◦ dP

n ) = 0, then we can get a
lift sn : Pn→ Xn+1 making the diagram

Pn

Xn+1 Xn Xn−1dX
n+1 dX

n

∆n−sn−1◦dP
n

sn

commute and we are done. By commutativity of Eq. 11.2, we see dX
n ◦∆n =∆n−1 ◦ dP

n
and so

dX
n (∆n − sn−1 ◦ dP

n ) =∆n−1 ◦ dP
n − dX

n ◦ sn−1 ◦ dP
n

By induction hypothesis, we have

∆n−1 = gn−1 − hn−1 = sn−2 ◦ dP
n−1 + dX

n ◦ sn−1

and therefore

∆n−1 ◦ dP
n − dX

n ◦ sn−1 ◦ dP
n

= sn−2 ◦ dP
n−1 ◦ dP

n + dX
n ◦ sn−1 ◦ dP

n − dX
n ◦ sn−1 ◦ dP

n

= 0

This concludes the existence of sn and we are done.

As an immediate result of this theorem, we see that:
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Corollary 11.10.1

Given any R-linear map f : A→ B, if P• and P ′• are projective resolutions of A and B
respectively. Then f has a lift g from P• to P ′•. Furthermore, any two lifts of f are
chain homotopic.

Theorem 11.11

Given any R-modules A, if P•
ε
−→ A→ 0 and P ′•

ε′

−→ A→ 0 are two projective resolu-
tions of A. Then P• and P• are homotopy equivalent.

Proof. By Proposition 11.10.1, the identity map IdA : A→ A has a lift g from P• to P ′•,
and a lift h from P ′• to P•. Thus h◦ g is a lift of IdA from P• to P•, and since the identity
map IdP• is also a lift of IdA, by Proposition 11.10.1 we get a chain homotopy from
h ◦ h to IdP• . A similar argument shows g ◦ h is chain homotopic to IdP ′•

.

A dual result holds for injective resolutions, and all the proofs are similar. All we
need to note is the following: if we have commutative

A B C

I

ψ

0

φ

f

with I injective, the upper sequence exact, then there is a map θ : C → I which lifts
f . In this case, just note f ◦ψ = 0, so imψ ⊆ ker f , but kerφ = imψ ⊆ im f and
so kerφ ⊆ ker f , i.e. we get unique map f : B/kerφ → I , and now we back to the
definition of injective module to get our desired θ .

We record the result here, as well as its implication.

Theorem 11.12: Injective Comparison Theorem

Given any R-linear map f : A→ B in (R-Mod), injective resolutions 0 → A→ I•,
0→ B→ I ′•. Then f has a lift g from I• to I ′•. Furthermore, any two lifts of f are
chain homotopic.

From this, we get dual results to Theorem 11.10, and in particular the following
result:

Theorem 11.13

Given any R-modules A, if 0→ A
ε
−→ I• and 0→ A

ε′

−→ I ′• are two injective resolutions.
Then I• and I ′• are homotopy equivalent.
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Now we are move towards the definition of derived functors, but before that, we
need some results about exact sequences of chain complexes.

Proposition 11.14: Projective Horseshoe Lemma

Let A be an abelian category, and exact short sequence 0 → A′
φ
−→ A

ψ
−→ A′′ → 0.

Suppose we have projective resolution P′ := P ′•
ε′

−→ A′ → 0 and P′′ : P ′′• (A)P
′′
•

ε′′

−→
A′′ → 0. Then there is a projective resolution P : P•

ε
−→ A→ 0 of A and chain maps

f : P′→ P and g : P→ P′′ such that the sequence

0→ P′→ P→ P′′→ 0

is exact.

Speaking in terms of diagrams, what we are saying is that, given diagram

... ...

P ′0 P ′′0

0 A′ A A′′ 0

0 0

φ ψ

we can find projective resolution P•, f and g so we get

... ... ...

0 P ′1 P1 P ′′1 0

0 P ′0 P0 P ′′0 0

0 A′ A A′′ 0

0 • 0

φ ψ

f0 g0

ε′ ε ε′′

f1 g1

with all the rows exact. Observe here if P ′n → Pn → P ′′n , then it is necessary that
Pn
∼= P ′n ⊕ P ′′n , i.e. this short exact sequence splits.
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Proof. By induction, it suffices to complete

0 0

K ′0 K ′′0

P ′0 P ′′0

0 A′ A A′′ 0

0 0

φ ψ

ε′ ε′′

where the rows and columns are exact and P ′0, P ′′0 are projective. Define P0 = P ′0⊕ P ′′0 ,
f0 : P ′0 → P0 by x ′ 7→ (x ′, 0) and g0 : P0 → P ′′0 by (x ′, x ′′) 7→ x ′′. It is clear P0 is
projective and

0→ P ′0
f0−→ P0

g0−→ P ′′0 → 0

is exact. Since P ′′0 is projective, there is a map σ : P ′′0 → A with pσ = ε′. Define
ε : P0→ A by

ε(x ′, x ′′) = φε′(x ′) +σ(x ′′)

One verify this does the job and the entire diagram commutes and all the rows are
exact.

We also have a dual result about injective resolutions.

Proposition 11.15

Given short exact sequence 0 → A′
φ
−→ A

ψ
−→ A′′ → 0 in abelian category A, and

injective resolutions 0→ A′→ I ′• and 0→ A′′→ I ′′•, then we get injective resolution

I• of A, f : I ′•→ I , and g : I•→ I ′′•, such that 0→ I ′•
f
−→ I•

g
−→ I ′′•→ 0 is exact.

Finally, we need a generalization of Horseshoe lemma for chain maps of exact
sequences.

Lemma 11.16
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Consider the commutative cube

K ′ K

L′ L

C ′ C

D′ D

A′ A

B′ B

in which L′, K ′, L, K are kernels of the arrows. Then the dashed arrows exist and
every new square commutes.

Proof. Existence of dashed arrows is easy. It remains to show commutativity of the
top dashed square. To that end, just note K ′ → L′ → L → D and K ′ → K → L → D
coincide as one should verify, but L→ D is monic, and thus we get K ′→ L′→ L equal
K ′→ K → L.

Proposition 11.17

Assume we have commutative diagram of modules with exact rows

0 A′ A A′′ 0

0 B′ B B′′ 0

i s

j t

f ′ f f ′′

Also suppose we have projective resolutions P′,P′′,Q′,Q′′ of the corners A′, A′′, B′, B′′,
respectively, and chain maps F ′ : P′→ Q′ over f ′, and F ′′ : P′′→ Q′′ over f ′′. Then
there exist projective resolutions P of A and Q of B, and a chain map F : P→ Q over
f giving commutative diagram of complexes with exact rows

0 P′ P P′′ 0

0 Q′ Q Q′′ 0

F ′ F F ′′

We will not prove this, but mention the proof is 3D diagram chasing. Clearly we should
expect the dual version to be true as well, which we will just call it the injective version
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of Proposition 11.17.

12 Derived Functors

Now let C and D be two abelian categories, and let T : C→D be an additive functor.

Assume C has enough injectives. For any A ∈ C, if 0 → A
ε
−→ I• is an injective

resolution of A, then if we apply T to I•, then we obtain the cochain complex

0→ T (I0)
T (d0)
−−−→ T (I1)

T (d1)
−−−→ T (I2)→ ...→ T (I n)

T (dn)
−−−→ T (I n+1)→ ... (Eq. 12.1)

denoted T (I•). If T : C → D is a contravariant functor and if we apply T to I• we
obtain the chain complex

...→ T (I n+1)
T (dn)
−−−→ T (I n)→ ...→ T (I1)

T (d0)
−−−→ T (I0)→ 0 (Eq. 12.2)

also denoted T (I•).

Now assume C has enough projectives. For any A∈ C, if P•
ε
−→ A→ 0 is a projective

resolution of A, then if we apply T to P• we get chain complex

...→ T (Pn)
T (dn)−−→ T (Pn−1)→ ...→ T (P1)

T (d1)−−→ T (P0)→ 0 (Eq. 12.3)

denoted T (P•). If T is contravariant functor and if we apply T to P• we get cochain
complex

0→ T (P0)
T (d1)−−→ T (P1)→ ...→ T (Pn−1)

T (dn)−−→ T (Pn)→ ... (Eq. 12.4)

also denoted T (P•).

Definition 12.1

Let C and D be abelian categories, T : C→D an additive functor.

1. Assume C has enough injectives, and we are in the case of Eq. 12.1, then
we define the corresponding right derived functor is defined by

RnT (I•) := Hn(T (I•))

2. Assume T : C → D is contravariant and C has enough injective, and we
are in the case of Eq. 12.2, then the corresponding left derived functor is
defined by

LnT (I•) := Hn(T (I
•))

3. Assume C has enough projective, and we are in the case of Eq. 12.3, then
the corresponding left derived functor is defined by

LnT (P•) = Hn(T (P•))

4. Assume T : C → D is contravariant and C has enough projective, and we
are in the case of Eq. 12.4, then the corresponding right derived functor
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is defined by
RnT (P•) = Hn(T (P•))

Observe the naming scheme here is solely based on whether the resulting complex is
cochain complex or chain complex, i.e. if we have a chain complex after applying T ,
then we get a left derived functor, and otherwise right derived functor.

As the name suggests, those things are actually functors. To be exact, they are from
either the category of injective resolutions or projective resolutions, to the category D.

Let us describe how those functors act on morphisms.

Suppose we have f : A→ B and injective resolutions I• and I ′• of A and B respec-
tively, i.e. we get

0 A I0 I1 ...

0 B I ′0 I ′1 ...

f

Then by Proposition 11.12, we can find a lift g : I• → I ′•. Since T is a functor, T (g)
is a chain map from T (I•) to T (I ′•), and in particular T (g) induces a homomorphism
of cohomology Hn(T (gn)) : Hn(T (I•))→ Hn(T (I ′•)) for all n ≥ 0. Furthermore, if h
is another lift of f , since by Proposition 11.12 any two lifts of f are chain homotopic,
say by (sn)n≥0. Since T is additive, by applying T to the equation

gn − hn = sn+1 ◦ dn
I + dn−1

I ′ ◦ sn

we obtain
T (gn)− T (hn) = T (sn+1) ◦ T (dn

I ) + T (dn−1
I ′ ) ◦ T (sn)

which shows (T (sn))n≥0 is a chain homotopy between T (g) and T (h). In other word,
Hn(T (gn)) : Hn(T (I•)) → Hn(T (I ′•)) is independent of the lift g of f . Thus, for
any arrow f : A → B in the category of injective resolutions with 0 → A → I• and
0→ B→ I ′•, we define

RnT (I•, I ′•)( f ) = Hn(T (gn))

Similarly we define LnT (?, ?)( f ) = Hn(T (gn)), where the (?, ?) can be injective or
projective resolutions, depend on T .

Theorem 12.2

Let 0 → A
εA−→ I• and 0 → A

ε′A−→ I ′• be two injective resolutions for any A ∈ C. If
T : C→D is any additive functor, then there is natural transformation

ηn
A : RnT (I•)→ RnT (I ′•)

for all n ≥ 0 that depend only on A and T. Similar results hold for other derived
functors.

Proof. By Theorem 11.13 the complexes I• and I ′• are homotopy equivalent, which
means there are chain maps g : I•→ I ′• and h : I ′•→ I• both lifting IdA such that h◦ g
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is chain homotopic to IdI• and g ◦ h is chain homotopic to IdI ′• . Since T is additive,
T (h)◦T (g) is chain homotopic to IdT (I•) and T (g)◦T (h) is chain homotopic to IdT (I ′•).
These chain maps induce cohomology homomorphisms for all n≥ 0, where

HnT (hn) ◦HnT (gn) = IdT (I•)

HnT (gn) ◦HnT (hn) = IdT (I ′•)

Thus HnT (gn) is an isomorphism of cohomology.

We still have to show this map depends only on T and A. This is because by Propo-
sition 11.12, any two lifts g and g ′ of IdA are chain homotopic, so T (g) and T (g ′) are
chain homotopic. However, this implies HnT (gn) = HnT (g ′n). As a consequence, it is
legitimate to set ηn

A = HnT (gn), a well-defined isomorphism ηn
A : RnT (I•)→ RnT (I ′•).

It remains to show ηn
A is a natural transformation. For any f : A→ B we need to

show we have

RnT (I•A) RnT (I ′•A )

RnT (I•B) RnT (I ′•B )

ηn
A

RnT (I•A,I•B)( f ) RnT (I ′•A ,I ′•B )( f )

ηn
B

The map ηn
A is given by a lifting gA of IdA from I•A to I ′•A and the map RnT (I ′•,I

′•
B

A )( f ) is
given by a lifting h′ of f from I ′•A to I ′•B . Thus h′ ◦ gA is a lifting of f ◦ IdA = f . Similarly
gB ◦ h is a lifting of IdB ◦ f = f . Thus we see T (h′) ◦ T (gA) and T (gB) ◦ T (h) are both
lifts of T ( f ), and so by Proposition 11.12 they are chain homotopic, which concludes
the commutativity.

In conclude, we see Rn and Ln are indeed functors, where we map an arrow f :→ B
to, for example, RnT (I•A, I•B)( f ).

Here are some basic properties of derived functors.

Proposition 12.3

Let C,D be abelian categories and T : C→D be additive functor.

1. If T is left exact then R0T is naturally isomorphic to T . If T is right exact and
contravariant then L0T is naturally isomorphic to T .

2. If T is right exact then L0T is naturally isomorphic to T . If T is left exact and
contravariant then R0T is naturally isomorphic to T .

Proof. We only do (1). Suppose 0→ A
ε
−→ I• is an injective resolution of A. Since T is

left exact we have
0→ T (A)→ T (I0)→ T (I1)

Since T (ε) is injective, T (A) ∼= im T (ε) = ker T (d0). Thus the chain complex T (I•)
gives

R0T (A) = H0(T (I•)) = ker T (d0)
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so T (A) is isomorphic to R0T (A).

Example 12.4

Take the functor T to be TB(A) := Hom(A, B). Then we see

Extn
R(A, B) = (RnTB)(A)

with Ext0
R(A, B) ∼= Hom(A, B) as Hom(−, B) is left exact. Similarly, if we take

TB(A) = A⊗R B, then we get back to Tor, and since this functor T is right exact,
TorR

0(A, B) = A⊗ B.

Proposition 12.5

Let C and D be two abelian categories, and T : C→D be additive functor. Then:

1. For every injective object I , RnT (I) = (0) for all n≥ 1, and T (I) is isomorphic
to R0T (I). If T is contravariant, LnT (I) = (0) for all n ≥ 1 and L0T (I) ∼=
T (I).

2. For every projective object P, LnT (P) = 0 for n ≥ 1 and T (P) ∼= L0T (I). If T
is contravariant, RnT (P) = 0 for n≥ 1 and T (P)∼= R0T (P).

Proof. We only show (1). If I is injective, then consider

0→ I
Id
−→ I → 0

This gives 0→ T (I)→ 0 which shows R0T (I) = H0(T (I•)) = T (I) and 0 for n≥ 1.

The following result shows that short exact sequence gives long exact sequence of
cohomology or homology. A similar result also holds for all other cases.

Theorem 12.6

Let C be abelian with enough injectives. Let 0 → A′ → A → A′′ → 0 be an eaxct
sequence in C, and T : C→D an additive left-exact functor.

1. For every n ≥ 0, there is a map (RnT )(A′′)
δn

−→ (Rn+1T )(A′) and makes the
cochain complex

0→ T (A′)→ T (A)→ ...→ (RnT )(A′′)
δn

−→ (Rn+1T )(A′)→ ...

exact.
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2. If we have

0 A′ A A′′ 0

0 B′ B B′′ 0

with all rows eaxct, then the induced diagram

0 T (A′) ... RnT (A′′) Rn+1T (A′) ...

0 T (B′) ... RnT (B′′) Rn+1T (A′) ...

δn
A

δn
B

commutes.

We will prove this after some examples, where from places to places we used this result
implicitly.

In what follows we will spend a little bit time compute some functors, before pro-
ceed to more theory.

Example 12.7

Let R be commutative, then TorR
1(R/xR, M) = {m ∈ M : xm = 0}, where x is not

zero-divisor. To see this, consider the resolution

0→ Rx → R→ R/Rx → 0

and so we get

0→ TorR
1(M , R/Rx)→ M ⊗ Rx → M → M ⊗ R/Rx → 0

where ker(M ⊗ Rx → M) ∼= TorR
1(M , R/Rx) = {m ∈ M : xm = 0}, where we used

the identification R-module we see Rx ∼= R and so M ⊗ Rx ∼= M ⊗ R∼= M .

Example 12.8

We have TorR
1(R/I , R/J) = I ∩ J/I J , which in some sense measures how far away

we are from “nice” intersection. Consider

0→ J → R→ R/J → 0

This gives

0→ Tor1(R/I , R/J)→ R/I ⊗ J → R/I → R/(I + J)→ 0

where we recall R/I ⊗ J ∼= J/I J . Thus we get

0→ Tor1→ J/I J → R/I → R/(I + J)→ 0

where the J → I J → R/I is given by j + I J 7→ j + I . In other word, the kernel is
given by I ∩ J/I J , and it is equal Tor1.
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As a result of this, we see if I + J = R then I J = I ∩ J . Indeed, just note we
have

0→ Tor1→ J/I J → R/I → R/(I + J)→ 0

where R/(I + J) = 0.

Example 12.9

Let R be local Noetherian, with k = R/m the residue field. Then we have a mini-
mal resolution of M (meaning im(φi) ⊆ mRbi−1), where the resolution is

...→ Rb2
φ2−→→ Rb1

φ1−→ Rb0 → M → 0

Then Tori(k, M)∼= kbi , and the bi are called the Betti numbers of M .

Example 12.10

Let us compute Tor and Ext for f.g. Z-modules. To that end, note

G ∼=
⊕

Z⊕
⊕

i

Z/niZ

and thus by functoriality, it suffices to compute Ext and Tor for the pairs (Z/nZ,Z),
(Z/nZ,Z/mZ) (Z,Z).

First, for Ext(Z,Z), since Z itself is projective, we are done by one of the above
result, i.e. Extn(Z,Z) = 0 for n≥ 1.

Next, to compute Ext1(Z/nZ,Z), consider

0→ Z
·n
−→ Z→ Z/nZ→ 0

and apply Hom we get

0← Ext1(Z/nZ,Z)← Z
·n
←− Z← Hom(Z/nZ,Z)← 0

This shows Ext1(Z/nZ,Z) = coker(Z
·n
−→ Z) = Z/nZ.

For Ext(Z/nZ,Z/mZ), consider

0→ Z
·n
−→ Z→ Z/nZ→ 0

Applying Hom we get

0→ Hom(Z/nZ,Z/mZ)→ Z/mZ
·n
−→ Z/mZ→ Ext1→ 0

Taking homology groups this gives

Ext(Z/nZ,Z/mZ)∼= (Z/mZ)/n(Z/mZ)∼= Z/dZ

with d = gcd(n, m).
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We will end with computing Tor(Z/nZ,Z/mZ), and leave the Tor(Z/nZ,Z) as
exercise. To that end, consider the same projective resolution

0→ Z
·n
−→ Z→ Z/nZ→ 0

This gives
0→ Z⊗Z/m→ Z⊗Z/mZ→ Z/nZ⊗Z/mZ→ 0

which is the same as

0→ Z/mZ→ Z/mZ→ Z/(n+m)Z→ 0

Now take homology we get Tor(Z/nZ,Z/mZ) = Z/dZ, where d is the gcd of m, n.

Proof of Theorem 12.6. We have injective resolutions 0→ A′
ε′

−→ I•A′ and 0→ A′′
ε′′

−→ I•A′′ .
Thus by Horseshoe Lemma 11.15 we get

... ... ...

0 I1
A′ I1

A I1
A′′ 0

0 I0
A′ I0

A I0
A′′ 0

0 A′ A A′′ 0

0 0 0

This gives short exact sequence

0→ I•A′ → I•A→ I•A′′ → 0

Now, to compute RnT , we actually already have an injective resolution Î•A of A, but by
Theorem 12.2 we see those two will yield the same derived functor, and so we might
as well assume our injective resolution is induced by the Horseshoe Lemma 11.15.
Now apply T , we get

0→ T (I•A′)→ T (I•A)→ T (I•A′′)→ 0

This is because 0 → I n
A′ → I0

A → I0
A′′ → 0 splits and T is additive. However, now by

(cohomology version of) Zig-Zag Lemma 10.8, we get the desired result. To prove
naturality, just use the injective version of Proposition 11.17.

A similar result holds for left derived functors, in the appropriate setting.

To conclude this section, we will record some properties of Tor and Ext.
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Proposition 12.11

Let R be a ring, M an R-module. Then the following are equivalent:

1. M is flat over R
2. TorR

i (M ,−) is zero for all i ≥ 1
3. TorR

1(M ,−) is zero
4. For all ideals I ⊆ R, TorR

1(M , R/I) = 0
5. For all f.g. ideals I ⊆ R, TorR

1(M , R/I) = 0

Proposition 12.12

Let R be Noetherian, M , N be finite R-modules. Then TorR
p(M , N) is finite R-module

for all p.

Proposition 12.13

Let P be R-module. Then the following are equivalent:

1. P is projective over R
2. Ext1(P,−) = 0
3. Exti(P,−) = 0 for all i ≥ 1

13 δ-Functors

We will conclude this section by T -acyclic resolutions (this is used to compute derived
functors) and universal δ-functors (this is a little bit hard to explain, but it is a type
of uniqueness result).

Definition 13.1

Let T : C → D be left exact additive functor. An object J ∈ C a (right) T -acyclic
if RnT (J) = 0 for all n≥ 1.

Proposition 13.2

If 0→ A
f
−→ B

g
−→ C is exact and T is left exact, then ker T (g)∼= T (ker g).

Proof. Exercise.
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Proposition 13.3

Given left eaxct additive functor T : C → D, for any A ∈ C, suppose there is exact
sequence

0→ A
ε
−→ J0 d0

−→ J1 d1

−→ J2→ ... (Eq. 13.1)

in which every J n is right T-acyclic (we denote the 0→ J0→ J1→ ... as J•A and call
it a right T-acyclic resolution). Then for all n ≥ 0, we have isomorphism between
RnT (A) and Hn(T (J•A)).

Proof. Since Eq. 13.1 is exact and T is left-exact, we get exact sequence

0→ T (A)→ T (J0)→ T (J1)

which implies
R0T (A)∼= T (A)∼= ker T (d0) = H0(T (J•A))

Let Kn = ker dn for all n ≥ 1, then Eq. 13.1 implies im dn = ker dn+1 = Kn+1 and the
surjection pn : J n→ Kn+1 has kernel Kn so we have short exact sequence

0→ Kn→ J n pn

−→ Kn+1→ 0 (Eq. 13.2)

for all n≥ 1. We also have

0→ A→ J0 p0

−→ K1→ 0 (Eq. 13.3)

If we denote the injection of Kn+1 into J n+1 by εn+1, then we get

dn = εn+1 ◦ pn

Now apply T we get
T (dn) = T (εn+1) ◦ T (pn)

Since εn+1 is injective, 0→ Kn+1 εn+1

−−→ J n+1 dn+1

−−→ J n+2 is exact, and since T is left exact,
we see 0→ T (Kn+1)→ T (J n+1)→ T (J n+2) is also exact. This means the restriction of
T (εn+1) to im T (pn) is an isomorphism onto the image of T (dn). Thus we see

im T (dn)∼= im T (pn), n≥ 0

By definition of Kn = ker dn, we have

0→ Kn→ J n dn

−→ J n+1

so by Proposition 13.2 we get

ker T (dn)∼= T ker(dn)

Now apply Theorem 12.6 to Eq. 13.3 we get long exact sequence begins with

0→ T (A)→ T (J0)→ T (K1)→ R1T (A)→ R1T (J0) = 0

which gives

R1T (A)∼= T (K1)/ im T (p0) = T (ker d1)/ im T (p0)
∼= ker T (d1)/ im T (d0)

= H1(T (J•A))
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This concludes R1T (A)∼= H1(T (J•A)).

It remains to prove n ≥ 2 case. For that, note by Theorem 12.6 on Eq. 13.3, we
also get eaxct sequence

Rn−1T (J0)→ Rn−1T (K1)→ RnT (A)→ RnT (J0)

where Rn−1T (J0) = RnT (J0) = 0 since J•A is right T -acyclic resolution. Therefore we
get

Rn−1T (K1)∼= RnT (A), n≥ 2

Now use the long exact sequence (from Theorem 12.6) induced by Eq. 13.2, we get

Rn−i−1T (J i)→ Rn−i−1T (K i+1)→ Rn−i T (K i)→ Rn−i T (J i)

and since J i is T -acyclic, we get

Rn−i−1T (K i+1)∼= Rn−i T (K i), 1≤ i ≤ n− 2

Now apply induction we conclude

Rn−1T (K1)∼= R1T (Kn−1), n≥ 2

where we know Rn−1T (K1)∼= RnT (A), i.e. we have

RnT (A)∼= Rn−1T (K1)∼= R1T (Kn−1)

The long exact sequence applied to Eq. 13.2 gives

T (J n−1)→ T (Kn)→ R1T (Kn−1)→ R1T (J n−1) = 0

and thus by first isomorphism theorem and Proposition 13.2 we get

RnT (A)∼= R1T (Kn−1)
∼= T (Kn)/ im T (pn−1)
∼= T (ker dn)/ im T (pn−1)
∼= ker T (dn)/ im T (dn−1)
= Hn(T (J•A))

This concludes the proof.

The above result can also be proved using the following proposition.

Proposition 13.4

Let T : C → D be additive left eaxct functor. For any T-acyclic exact cochain X • :
0→ X 0→ X 1→ ..., we have T (X •) is also exact.

All the above results also holds for left T -acyclic resolutions and left derived functors
LnT .

81



Definition 13.5

Given two abelian categories C and D, a δ-functor consists of a countable family
T = (T n)n≥0 of additive functors T n : C → D, and for every short exact sequence
0→ A′→ A→ A′′→ 0 in C and n≥ 0, we have a map

T n(A′′)
δn

−→ T n+1(A′)

such that:

1. The sequence 0→ T 0(A′)→ ...→ T n(A′′)
δn

−→ T n+1(A′)→ ... is eaxct.
2. If we have commutative diagram

0 A′ A A′′ 0

0 B′ B B′′ 0

with all the rows eaxct then the induced diagram

... T n(A) T n(A′′) T n+1(A′) ...

... T n(B) T n(B′′) T n+1(B′) ...

also commutes.

Clearly the left and right derived functors are δ-functors. What is non-trivial is that
every δ-functor is isomorphic to some derived functors (such δ-functor is called uni-
versal).

The collection of δ functors from C to D forms a category, and the morphism is the
obvious one.

Definition 13.6

A δ-functor T = (T n)n≥0 is universal if for every δ-functor S = (Sn) and every
natural transformationφ : T 0→ S0, there is a unique η : T → S such that η0 = φ.

As you would expect, in the above situation, we say η lift φ, if for every short exact
sequence 0→ A′→ A→ A′′→ 0, we have

... T 0(A′′) T 1(A′) T 1(A) T 1(A′′) T 2(A′) ...

... S0(A′′) S1(A′) S1(A) S1(A′′) S2(A′) ...

φA′′ η1
A′

δ1
T

δ1
S
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Proposition 13.7

If S = (Sn) and T = (T n) are both universal δ-functors and there is an isomorphism
φ : S0→ T 0. Then there is a unique isomorphism η : S→ T lifting φ.

In short, this result tells us a universal δ-functor is completely determined by the T 0

component. Next, we show that δ-functors exists.

Theorem 13.8

Assume C has enough injectives. For every additive left exact functor T : C → D,
the family (RnT )n≥0 of right derived functors of T is a δ-functor. Furthermore, T is
isomorphic to R0T.

Proof. This is just restate things we proved above.

Dual to δ-functors, we also have a notion of ∂ -functors, which mimics LnT . We leave
as an exercise for the readers to figure out the definitions of ∂ -functors and the mor-
phisms between them, as well as the dual results to the above.

The next goal is to show the derived functors are universal δ-functors. To that end,
we will need the notion of erasable/effaçable functors. The term effaçable functors
are used by Grothendieck, but we will stick to erasable.

Definition 13.9

An additive functor T : C→D is erasable if for every object A∈ C there is MA ∈ C
with monic u : A→ MA such that T (u) = 0.

If T is erasable, then we always have T (MA) = 0 in D. Also, we have a dual notion of
co-erasable, where we require every A∈ C to have a MA ∈ C and epic u : MA→ A such
that T (u) = 0.

In many cases, the MA can be in fact choosen to be injective (or in co-erasable case
choosen to be projective). In this case we say T is erasable by injective (or co-erasable
by projective). However, this is not always desirable.

Proposition 13.10

1. Suppose C is abelian with enough injectives. For every additive left exact T :
C→D, the right derived functor RnT is erasable by injectives for all n≥ 1.

2. Suppose C is abelian with enough projective. For every additive right exact
T : C → D, the left derived functors LnT are co-erasable by projectives for all
n≥ 1.

83



Definition 13.11

Let C be abelian. For every A∈ C, an injective erasing of A is a monic u : A→ M
such that for every monic g : B → C and any map f : B → A, there is some map
f̃ : C → M making the following diagram commute

0 B C

0 A M

g

f f̃

u

If C has enough injective then u : A→ I with I injective is always an injective erasing
of A.

The following result shows some relationship between erasibility and injective
erasing.

Proposition 13.12

Suppose T : C→D is additive functor.

1. If T is erasable then for any injective erasing u : A→ M, T (u) = 0
2. If every A ∈ C has injective erasing then T is erasable iff T (u) = 0 for all

injective erasing u : A→ M
3. If T is erasable then T (I) = 0 for all injective object I
4. If C has enough injectives, then T is erasable iff T (I) = 0 for all injective object

I

Proof. Mostly check definitions.

Now we are ready to state one of the big result on δ-functors.

Theorem 13.13: Grothendieck

Let T = (T n) be a δ-functor between C and D. If every A ∈ C has injective erasing
v : A→ MA such that T n(v) = 0 for all n≥ 1, then T is a universal δ-functor.

Proof. The proof presented here is not due to Grothendieck. It can be found in Jean
Gallier’s book, where it states this proof is essentially due to Steve Shatz.

We will do induction on n, and only do the case n= 1, as the rest is similar.

Step 1: Construction of the lift map u1.

Let S = (Sn) be another δ-functor and let u0 : T 0→ S0 be a given map of functors.
If A is an object of C, injective erasing of A for T 1 shows we have exact sequence

0→ A
v
−→ MA

p
−→ A′′→ 0 (Eq. 13.4)
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with A′′ = coker(v), such that δ0
T0 in the induced sequence

T 0(MA)→ T 0(A′′)→ T 1(A)→ T 1(MA)

is surjective (since T 1(v) = 0). Since T is a δ-functor, we have commutative diagram

T 0(MA) T 0(A′′) T 1(A) T 1(MA)

S0(MA) S0(A′′) S1(A)

u0(MA) u0(A′′) u1

Since kerδ0
T0 = im T 0(p), since the left square commutes

u0(A
′′) ◦ T 0(p) = S0(p) ◦ u0(MA)

and since the bottom row is exact, we get

δ0
S0 ◦ u0(A

′′) ◦ T 0(p) = δ0
S0 ◦ S0(p) ◦ u0(MA) = 0

This shows
kerδ0

T0 ⊆ ker(δ0
S0 ◦ u0(A

′′))

Since δ0
T0 is surjective, we define u1 = T 1(A)→ S1(A) as follows: for any a ∈ T 1(A),

pick any b ∈ T 0(A′′) such that a = δ0
T0(b), and set

u1(a) = (δ
0
S0 ◦ u0(A

′′))(b) (Eq. 13.5)

This map is well-defined, because if a = δ0
T0(b′) for some b′ ∈ T 0(A′′), then δ0

T0(b) =
δ0

T0(b′), so δ0
T0(b − b′) = 0, i.e. b − b′ = c ∈ kerδ0

T0 ⊆ ker(δ0
S0 ◦ u0(A′′)). This shows

b′ = b+ c with c ∈ ker(δ0
S0 ◦ u0(A′′)), which implies

(δ0
S0 ◦ u0(A

′′))(b′) = (δ0
S0 ◦ u0(A

′′))(b+ c)

= (δ0
S0 ◦ u0(A

′′))(b)

Thus, the map u1 : T 1(A) → S1(A) making the second square commute is uniquely
defined. It remains to check u1 has the required properties and it does not depend on
the choice of the exact sequence Eq. 13.4

Step 2: Independence of the choice A→ MA.

Suppose we have 0→ Ã
ṽ
−→ÝMA

p̃
−→ fA′′ → 0 where ṽ is injective erasing, and fA′′ =

coker(ṽ). By hypothesis, T (ṽ) = 0. Assume we have g : A→ Ã. Since ṽ is injective
erasing and v is monic, there is a map θ extending ṽ◦ g making the following diagram

0 A MA A′′ 0

0 Ã ÝMA
fA′′ 0

g θ

commute. Now the diagram

A MA A′′ 0

Ã ÝMA
fA′′ 0

g θ
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is similar to the commutative diagram used in the construction of u1 in Step 1, and it
has exact row, so the same argument shows there is a θ : A′′ →fA′′ making the above
diagram commute. Now Theorem 12.6 applied to the above with T and S yields the
two commutative diagram

T 0(MA) T 0(A′′) T 1(A) 0

T 0(ÝMA) T 0(fA′′) T 1(Ã) 0

T1(g)

since T 1(v) = 0 and T 1(ṽ) = 0, and

S0(MA) S0(A′′) S1(A)

S0(ÝMA) S0(fA′′) S1(Ã)

We can also apply Theorem 12.6 to the two commutative diagrams involved in the
construction of u1 and ũ1 as in Step 1. This gives a diagram

T 0(M) T 0(A′′) T 1(A) 0

T 0(ÝMA) T 0(fA′′) T 1(eA) 0

S0(MA) S0(A′′) S1(A)

S0(ÝMA) S0(fA′′) S1(eA)

where all the top, bottom, front and back squares are commutative, and the two left
hand vertical squares also commute by naturality of u0. Since δ0

T0(A′′) : T 0(A′′)→ T 1(A)
is surjective, if we can show the two compositions T 0(A′′)→ T 1(A)→ T 1(Ã)→ S1(Ã)
and T 0(A′′)→ T 1(A)→ S1(A)→ S1(Ã) are equal, i.e. we have

ũ1 ◦ T 1(g) ◦δ0
T0(A′′) = S1(g) ◦ u1 ◦δ0

T0(A′′)

then we can conclude ũ1 ◦ T 1(g) = S1(g) ◦ u1, which concludes the entire diagram is
commutative. The verification is left as an exercise, but you should use commutative
of the other five faces of the rightmost cube, in the order: top, front, left, bottom,
back.

Thus, at this point, we see the above 3D diagram is commutative. Now set A= Ã
and g = Id, we see ũ1 = u1, and thus u1 is independent of MA.

Step 3: Prove u1 is functorial.

Let g : A→ Ã, u1 and ũ1 be as in Step 1. We need to show

T 1(A) T 1(Ã)

S1(A) S1(Ã)

T1(g)

u1 ũ1

S1(g)
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is commutative. However, this is precisely the commutativity of the rightmost face in
the above 3D diagram, and thus we are done.

Step 4: We need to show for any short exact sequence 0→ A′
φ
−→ A

ψ
−→ A′′→ 0, the

diagram

T 0(A′′) T 1(A′)

S0(A′′) S1(A′)

δ0
T0

u0(A′′) u1

δ0
S0

is commutative. Here we need to be careful as ψ is not necessarily erased, so the
previous construction does not work. However, there is an injective erasing

0→ A′
v
−→ MA′

p
−→ X → 0

and as before we get

0 A′ A A′′ 0

0 A′ MA′ X 0

φ

IdA′

ψ

θ θ̃

v p

Since T is a δ-functor, we obtain the commutative diagram

T 0(A′′) T 1(A′)

T 0(X ) T 1(A′)

T0(θ ) Id

We also get similar diagram for S as S is also a δ-functor. Next, since u0 is a natural
transformation, we get

T 0(A′′) T 0(X )

S0(A′′) S0(X )

T0(θ )

u0(A′′) u0(X )

S0(θ )

The construction of u1 in Step 1 gives

T 0(X ) T 0(A′)

S0(X ) S0(A′)

δ0
T0

u0(X ) u1

δ0
S0

We leave it as an exercise to check the cube formed by the four above diagrams is a
commutative cube. However, the cube is commutative implies the diagram we need
to show in Step 4 is commutative, and thus we are done.

There are other conditions that tells T is universal δ-functor, which we record
below.
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Theorem 13.14

Let T be a δ-functor between C and D.

1. If T n are erasable for all n≥ 1 then T is universal δ-functor
2. If C has enough injectives and T n(I) = 0 for all injective I and all n≥ 1, then

T is universal δ-functor.

Theorem 13.15

Suppose C has enough injectives. For every additive left-exact T : C → D, the right
derived functors (RnT )n≥0 is a universal δ-functor such that T ∼= R0T. Conversely,
every universal δ-functor T = (T n)n≥0 is isomorphic to the right derived δ-functor
(RnT 0)n≥0.

Proof. The first statement is 13.13, Proposition 13.10, and Theorem 13.8 together.
The converse is Proposition 13.7.

The dual results on ∂ -functors and co-erasable by projective Tn also holds, we leave
it to the readers to figure out the claims.

Theorem 13.16

If C has enough projectives. Then for every additive right exact T : C→D, (LnT )n≥0

is universal ∂ -functor such that T ∼= L0T. Conversely, every universal ∂ -functor
T = (Tn) is isomorphic to (LnT0)n≥0.

To conclude this section, we mention one (very important) application of universal
δ-functor. The main point of δ-functors is to show two cohomology theories agree.
For example, for paracompact spaces the Čech cohomology Ȟ∗(X ,F ) is isomorphic
to H∗(X ,F ), where the second cohomology is sheaf cohomology. The way we prove
this is to show both cohomologies are universal δ-functors, but they agree on the 0th
pieces, i.e. Ȟ0(X ,F ) = H0(X ,F ) = Γ (X ,F ) and hence by the above results, they
must agree overall.

14 Spectral Sequences

The exposition we take here mostly follow from the book “differential forms in alge-
braic topology”, as well as course notes. Since we can embed things into R-modules,
we will work with those instead of general abelian categories.

One of the motivation of spectral sequence is as follows: we want to compute
cohomology H(M), where M has a filtration, but cohomology is hard to compute. On
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the other hand, maybe the cohomology for its filtration is easy to compute (its contains
smaller pieces anyway). Thus, we ask when is the cohomology of its filtration is equal
the cohomology of M . This gives spectral sequence. Thus, in some sense, spectral
sequence is the thing we use to approximate cohomology groups based on smaller
pieces. Each step of the approximation is called a page, and the infinite page will
hopefully be the original cohomology, but it is not always the case.

This construction of a spectral sequence by exact couples is due to Massey (see his
paper “exact couples in algebraic topology I,II” in Ann of Math).

Definition 14.1

An exact couple (A, B) is an exact sequence of objects in abelian A of the form

A A

B

i

jk

Given exact couple (A, B) we can define d : B → B by d = j ◦ k, and it is obvious
d2 = jk jk = 0 as im( j) = ker(k) and so k j = 0. Thus, we can speak of the cohomology
group H(B) = ker(d)/ im(d).

Construction 14.2

Let (A, B) be an exact couple, we can construct its derived couple

A′ A′

B′

i′

j′k′

by:

1. A′ = i(A), B′ = H(B)
2. i is induced by i, i.e. i′(i(a)) = i2(a)
3. j′(a′) = ja+ im(d) ∈ ker(d)/ im(d) if a′ = ia ∈ A′

4. k′ is induced by k, i.e. if [b] = b+ im(d) lies in H(B) = B′, then k′[b] = kb.
This lies in i(A) because [b] ∈ H(B) then jkb = 0 and hence kb = ia for
some a ∈ A.

Right, in the above, we need to check j′ is well-defined. To that end, suppose we have
a′ = ia0 and a′ = ia1 for a1, a0 ∈ A. Then 0 = i(a0 − a1) we see a0 − a1 = kb for
some b ∈ B. Thus ja0 − ja1 = jkb = d b, which shows j′(a′) is well-defined up to
an element in im(d), i.e. its well-defined in ker(d)/ im(d). As you would expect, this
derived couple is also an exact couple, which we left as an exercise.

In the following, we are going to talk about some spectral sequences, and for that
we will first define what they are.
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Definition 14.3

A (homological) spectral sequence E = {E r , dr} consists of a sequence of Z-
bigraded R-modules E r = {E r

p,q}r≥1 with differential

d r : E r
p,q→ E r

p−r,q+r−1

such that E r+1 ∼= H∗(E r).

A morphism f : E → E′ of spectral sequences is a family of morphisms of complexes
f r : E r → E′r such that f r+1 is the morphism H∗( f r) induced by f r .

Dually we have cohomological spectral sequence.

Definition 14.4

A (cohomological) spectral sequence E = {Er , dr} consists of a sequence of Z-
bigraded R-modules Er = {Ep,q

r }r≥1 with differential

dr : Ep,q
r → Ep+r,q−r+1

r

such that Er+1
∼= H∗(Er)

Observe by setting Ep,q
r = E r

−p,−q, those two are just the same.

From an exact couple

A A

B

i

jk

we can form a spectral sequence by repeatedly taking derived couples. That is, let
E1 = (A, B), and let E r = (Ar , Br) be after taking derived couple r times on E1. Then
{Br , j r ◦ kr} forms a spectral sequence (you actually need to prove this!).

14.1 Bockstein Spectral Sequence

Let C = C• be a torsion free chain complex over Z. By tensor with C on the short exact

sequence 0→ Z
×p
−→ Z→ Z/pZ→ 0 we get

0→ C → C → C ⊗Z/pZ→ 0

Now take the induced homology sequence of this short exact sequence, we get

H∗(C) H∗(C)

H∗(C ⊗Z/pZ)
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and hence get an associated spectral sequence. This resulting sequence is called mod
p Bockstein spectral sequence, with d r : E r

n → E r
n−1 for all r ≥ 1, and we have short

exact sequence

0→ (pr−1Hn(C))⊗Z/pZ→ E r
n→ Tor(pr−1Hn−1(C),Z/pZ)→ 0

When r = 1, this is just the universal coefficient exact sequence.

We can describe this spectral sequence as follows. Let Σn be the functor on graded
abelian groups given by (ΣnA)q+n = Aq. For a cyclic abelian group π, we have Z-free
resolution C(π) given by Z in degree 0 if π = Z and by copies of Z in degrees 0 and
1 with differential ×qs if π= Z/qs. Assume H∗(C) is of finite type and write Hn(C) as
direct sum of cyclic groups. For each cyclic summand, choose a representative cycle x
and, if π= Z/qs, a chain y such that d(y) = qs x . For each summand π, these choices
determine a chain map ΣnC(π)→ C . Summing over the cyclic summands and over n,
we obtain a chain complex C ′ and a chain map C ′→ C that induces an isomorphism
on homology and on Bockstein spectral sequences.

The Bockstein spectral sequences {E r} of ΣnC(π) are easy to compute. When
π = Z, E r

n = Z and E r
m = 0 for all m ̸= n and all r. When π = Z/qs for q ̸= p, E r

n = 0
for all n and r. When π = Z/ps, E1 = Es is Fp in degrees n and n+ 1, d s : Es

n+1 → Es
n

is an isomorphism, and E r = 0 for r > s. Returning to C , we see

E∞ ∼= (H∗(C)/T H∗(C))⊗ Fp

where T (π) denotes the torsion subgroup of π. Moreover, there is one summand Z?ps

in H∗(C) for each summand Fp in the vector space d sEs.

Remark 14.5

The homology group H∗(C) can be computed by the mod p Bockstein spectral
sequences where p range over all the primes p.

14.2 Spectral Sequence of Filtered Complex

Let K be a differential complex with differential operator D. A subcomplex K ′ of K is
a subobject(e.g. submodule) such that DK ′ ⊆ K ′. A sequence of subcomplexes

K = K0 ⊇ K1 ⊋ K2 ⊋ K3 ⊋ ...

is called a filtration on K . This makes K into a filtered complex.

Remark 14.6

Normally we will also have a grading on K , i.e. K =
⊕

z∈Z C k, and we assume D
has degree one, i.e. D|Ck : C k→ C k+1. However, this is not necessary.
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Definition 14.7

Let K be a filtered complex, say K = K0 ⊋ K1 ⊋ K2..., then we define its associated
graded complex

gr(K) =
∞
⊕

p=0

Kp/Kp+1

For notational reason (since we are indexing stuff with Z), we will extend the filtration
to negative indices by setting Kp = K if p < 0.

Example 14.8

Let K =
⊕

p,q K p,q be a double complex with horizontal operator δ and vertical
operator d. Then we can form a single complex by setting K =

⊕

k C k where
C k =

⊕

p+q=k K p,q. The differential D : C k → C k+1 is defined by D = δ+ (−1)pd.
In this case, we get a filtration Kp by

Kp =
⊕

i≥p

⊕

q≥0

K i,q

Now, suppose we have filtered complex K with differential D, we can define

A=
⊕

p∈Z
Kp

and thus its a differential complex with D. Now we can define i : A → A by the
inclusion Kp+1 ,→ Kp and B be the cokernel of i, i.e. we get

0→ A
i
−→ A

j
−→ B→ 0
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where j is the projection to the quotient A/ im(i). Its not hard to see

B = gr(K) =
∞
⊕

p=0

Kp/Kp+1

Now, each of the term in the above short exact sequence 0→ A→ A→ B→ 0 is also
a complex with differential induced from D.

Since we have a short exact sequence of complexes, we get induced long exact
sequence on cohomology, i.e. we get

0→ H0(A)
i1−→ H0(A)

j1−→ H0(B)
k1−→ H1(A)

i1−→ H1(A)
j1−→ H1(B)

k1−→ ...

In other word, we get an exact couple

H(A) H(A)

H(B)

i1

j1k1

Let us set A1 = H(A) and B1 = H(B), and just write i instead of i1 here, as we are going
to repeat the above process over and over. Now, from this above exact couple

A1 A1

B1

i

j1k1

we can take its derived couple and get

A2 A2

B2

i

j2k2

and so on.

Example 14.9

Suppose our filtered complex terminates after K3, i.e. we have

...= K−1 = K0 ⊋ K1 ⊋ K2 ⊋ K3 ⊋ 0

Thus we see
A= ...⊕ K0 ⊕ K0 ⊕ K1 ⊕ K2 ⊕ K3

and by taking cohomology we get

0→ H(K3)→ H(K2)→ H(K1)→ H(K)→ H(K)→ H(K)

and thus A1 is the direct sum of all the terms above. Now A2 is obtained by taking
A1 and apply i to it, i.e. A2 is the direct sum of all the terms in the following
sequence

0→ iH(K3)→ iH(K2)→ iH(K1)→ H(K)→ H(K)→ ...
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Similarly A3 is obtained by apply two i to the sequence of A1, and A4 is the direct
sum of terms in the sequence

0→ iiiH(K3)→ iiH(K2)→ iH(K1)→ H(K)→ H(K)→ ...

Now, since i pushes the (p+1)th pieces to pth pieces, and we only have 3 pieces,
when applying i three times, we just get an inclusion iiiH(K3) → iiH(K2), and
so on, i.e. all the arrows in the last sequence is just inclusion. This means An

actually also equal A4, for all n ≥ 4. Now, since i : A4 → A4 is inclusion and we
have an exact couple, the map k4 : B4→ A4 must be the zero map, i.e.

B4 = B5 = B6 = ...

Since the An and Bn becomes stationary, we will just denote this by A∞ and
B∞, and we have exact couple

A∞ A∞

B∞

i∞

j∞k∞

and A∞ is the direct sum of all the cohomology objects/groups

0 ⊆ iiiH(K3) ⊆ iiH(K2) ⊆ iH(K1) ⊆ H(K) = H(K) = ...

In this case, B∞ is just the associated graded complex of the filtered complex
H(K).

In general, suppose we have filtration of subcomplexes K = K0 ⊋ K1 ⊋ K2 ⊋ ...,
then we get a sequence of cohomology objects

...H(K3)
i
−→ H(K2)

i
−→ H(K1)

i
−→ H(K)→ H(K)→ ...

Take Fp be the image of H(Kp) in H(K), we get a filtration of H(K) by those Fp’s, i.e.

H(K) = F0 ⊋ F1 ⊋ F2 ⊋ F3 ⊋ ...

We call this the induced filtration on H(K).

If the filtration on K is bounded below, i.e. only finitely many non-zero terms
going down (we say K has finite length, and call the number l such that Kl ̸= 0 and
0= Kl+1 = Kl+2 = ... as the length), then by the exact same argument as in the above
example, we see Ar and Br will be eventually stationary, and the value of B∞ is just
gr(H(K)), where H(K) is filtered by the Fp.

In the above, we often write Er instead of Br , and the differentials are given by
dr = jr ◦ kr , where we see Er = H(Er−1).

Definition 14.10

Let {Er , dr} be a spectral sequence with E∞ exists. If E∞ is equal to the associ-
ated graded group of some filtered group H, then we say the spectral sequence
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converges to H.

Now we suppose K comes with a grading K =
⊕

n∈Z Kn, and to distinguish the
grading degree n from the filtration degree p, we call n the dimension of Kn. The
filtration {Kp} on K induces a filtration in each dimension, i.e. denote Kn

p := Kn ∩ Kp,
then {Kn

p } is a filtration on Kn.

Theorem 14.11

Let K =
⊕

n∈Z Kn be a graded filtered complex with filtration {Kp} and H∗D(K) the
cohomology of K with filtration given by the image of H(Kp) in H(K). Suppose
for each dimension n the filtration {Kn

p } has finite length (i.e. only finitely many
non-zero terms going down). Then the short exact sequence

0→
⊕

p

Kp+1→
⊕

p

Kp→ gr(K)→ 0

induces a spectral sequence which converges to H∗D(K).

Proof. By treating the convergence question one dimension at a time, this proof re-
duces to the ungraded situation. Indeed, as before,

Ar =
⊕

p∈Z
i r−1H(Kp)

if r ≥ p+ 1, then i r H(Kp) = Fp and

i : i r H(Kp+1)→ i r H(Kp)

is an inclusion. With a grading on each derived couple, i and j preserve the dimension,
but k increases the dimension by 1. Given n, let ℓ(n) be the length of {Kn

p } and let
r ≥ ℓ(n+ 1) + 1. Then for any integer p,

i r Hn+1(Kp+1) = F n+1
p+1

and
i : i r Hn+1(Kp+1)→ i r Hn+1(Kp)

is an inclusion. Thus
ir : An+1

r → An+1
r

is an inclusion and
kr : Bn

r → An+1
r

is the zero map. Therefore, as r →∞, the group Bn
r becomes stationary and we can

define Bn
∞ as this stationary value. Note

An
∞ =

⊕

p

F n
p

and that i∞ sends F n
p+1 into F n

p for every n. Because i∞ :
⊕

p Fp+1 →
⊕

p Fp is an
inclusion, B∞ is the associated graded complex

⊕

p Fp/Fp+1 of H∗D(K).

95



14.3 Spectral Sequence of Double Complex

Now take K =
⊕

K p,q be double complex with a filtration {Kp} as in Example 14.8.
In this subsection we will focus on this particular case and obtain refined version of
Theorem 14.11.

Observe that A=
⊕

Kp is also a double complex, and we can form a single complex
A=

⊕

Ak by summing the bidegrees, i.e. Ak consists of all elements of A whose total
degree is k. We get inclusion i : Ak→ Ak by

i : Ak ∩ Kp+1→ Ak ∩ Kp

The single complex A inherits the differential operator D = δ+ (−1)pd from K . Sim-
ilarly, B =

⊕

Kp/Kp+1 can be made into a single complex with opeartor D. Note the
differential operator D on B is (−1)pd. Thus

E1 = HD(B) = Hd(K) (Eq. 14.1)

Recall the coboundary operator k1 : H(B) → H(A) is the coboundary operator of

the short exact sequence 0→ A
i
−→ A

j
−→ B → 0 and hence is defined by the following

diagram
... ... ...

0 Ak+1 ∩ Kp+1 Ak+1 ∩ Kp Bk+1 ∩ Kp/Kp+1 0

0 Ak ∩ Kp+1 Ak ∩ Kp Bk ∩ Kp/Kp+1 0

... ... ...

(3)

(1)

D (2) D (Eq. 14.2)

Let b in Ak ∩ Kp represent a cocycle [b] in Bk ∩ Kp/Kp+1. This correspond to the (1) in
the above. To get k1([b]) we need to go through (2) and (3) above, which correspond
to compute Db and take its inverse under i.

Since b represents an element of E1 = HD(B) = Hd(K) such that d b = 0, we see
Db = δb+(−1)pd b = δb. Thus, k1[b] = [δb], and so the differential d1 = j1k1 on E1

is given by δ. Consequently,
E2 = HδHd(K) (Eq. 14.3)

We now compute d2 on E2. Observe an element of E2 = HδHd(K) is represented by an
element b in K such that d b = 0 and δb = −D′′c for some c ∈ K , where D′′ = (−1)pd,
i.e. we have
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We will denote the class of b in Er , if it is defined, by [b]r . From the definition of
derived couples we see

d2[b]2 = j2k2[b]2 = j2k1[b]1
To compute j2k1[b]1, we need to find a such that k1[b]1 = i[a]1. Then j2k2[b]2 =
[ j1a]2. Since k1 b is in Ak+1 ∩ Kp+1, a lies in Ak+1 ∩ Kp+2. To find a we use not b but
b+ c in Ak ∩Kp to represent [b]2 in (1) of the diagram Eq. 14.2. This is possible since
b and b+ c have the same image under the projection Kp→ Kp/Kp+1. Then

k1(b+ c) = D(b+ c) = δc

and thus
d2[b]2 = [δc]2 (Eq. 14.4)

Thus the differential d2 is given by the δ of the tail of the zig-zag which extends b, i.e.

It is easy to show δc represents an element of HδHd(K) and that the definition of
d2[b]2 is independent of the choice of c.

Now, observe that if d2[b]2 = 0, then we can find c1, c2 such that b can be extended
to a zig-zag as shown

where D′′b = 0, δb = −D′′c1 and δc1 = −D′′c2.

We say that an element b in K lives to Er if it represents a cohomology class in Er ,
i.e. b is a cocycle in E1, E2, ..., Er−1. From the discussion above, we see b lives to E2

if it can be extended to a zig-zag of length 2, where the length being the number of
terms in it, i.e.

97



with d b = 0, δb = −D′′c and d2[b]2 = [δc]2. It lives to E3 if it can be extended to a
zig-zag of length 3, i.e.

with d b = 0, δb = −D′′c1 and dc1 = −D′′c2. To compute d3[b]3, we use b + c1 + c2

in Ak ∩ Kp to represent [b] ∈ Bk ∩ (Kp/Kp+1) in (1) of Eq. 14.2, so k3[b]3 is given by
D(b+ c1+ c2) = δc2 and d3[b]3 = [δc2]3. In general, parallel to the discussion above,
an element b ∈ K p,q lives to Er if it can be extended to a zig-zag of length r, i.e.

and the differential dr on Er is given by δ of the tail of the zig-zag

dr[b]r = [δcr−1] (Eq. 14.5)

Thus, we see the bidegrees (p, q) of the double complex K =
⊕

K p,q persist in the
spectral sequence

Er =
⊕

p,q

Ep,q
r
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and dr shifts the bidegrees by (r,−r + 1):

dr : Ep,q
r → Ep+r,q−r+1

r

The filtration on H(K) =
⊕

Hn(K):

H(K) = F0 ⊋ F1 ⊋ F2 ⊋ F3 ⊋ F4...

induces a filtration on each component Hn(K), the successive quotients of the filtration
being E0,n

∞ , E1,n−1
∞ ,...,En,0

∞ :

Hn(K) = (F0 ∩Hn) ⊋ (F1 ∩Hn) ⊇ (F2 ∩Hn) ⊋ ... ⊋ (Fn ∩Hn) ⊋ 0 (Eq. 14.6)

with E0,n
∞ = (F0∩Hn)/(F1∩Hn), E1,n−1

∞ = (F1∩Hn)/(F2∩Hn) and so on. In other word,
we have

In short, we have proved the following result:

Theorem 14.12

Given a double complex K =
⊕

p,q≥0 K p,q, there is a spectral sequence {Er , dr} con-
verging to the total cohomology HD(K) such that each Er has a bigrading with

dr : Ep,q
r → Ep+r,q−r+1

r

and
Ep,q

1 = H p,q
d (K), Ep,q

2 = H p,q
δ

Hd(K)

Furthermore, the associated graded complex of the total cohomology is given by

gr(Hn
D(K)) =

⊕

p+q=n

Ep,q
∞ (K)

Now, observe instead of using the filtration in Example 14.8, we can define a fil-
tration on K by

Kq =
⊕

j≥q

⊕

p≥0

K p, j

This gives spectral sequence {E′r , d ′r} also converging to the total cohomology HD(K),
but with

E′1 = Hδ(K), E′2 = Hd Hδ(K)
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and
d ′r : E′p,q

r → E′p−r+1,q+r
r

Example 14.13

Let M be a manifold with good cover U . Consider double complex K =
⊕

K p,q

with
K p,q =

∏

a0<...<ap

Ωq(Ua0
∩ ...∩ Uap

) =: C p(U ,Ωq)

where Ωq(X ) is the q-forms on X . Then, the rows of K are the Mayer-Vietoris
sequences (e.g. if M = U ∪ V is a good cover then its Mayer-Vietoris sequence is
0→ Ω∗(U ∪ V )→ Ω∗(U)⊕Ω∗(V )→ Ω∗(U ∩ V )→ 0). Thus, the E1 term of the
second spectral sequence (i.e. we use the filtration Kq =

⊕

j≥q
⊕

p≥0 K p, j) E′1 = Dδ
is given by

Thus, E2 is taking H on E1, and by definition this is the de Rham cohomology, i.e.
E′2 = Hd Hδ is equal

In general, a spectral sequence is said to be degenerate at Er if dr = dr+1 = ...= 0.
For such a spectral sequence, Er = Er+1 = Er+2 = ... = E∞. The degeneration of
the second spectral sequence {E′r , d ′r} at E2 concludes that we have an isomor-
phism

Hk
dR(M) =

⊕

p+q=k

H p,q
D {C

∗(U ,Ω∗)}
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Now consider the spectral sequence we obtained by the filtration of Example
14.8. Its E1 term this time is

Ep,q
q =

∏

a0<...<ap

Hq(Ua0
∩ ...∩Hap

) =

¨

0 if q > 0

C p(U ,R) if q = 0

where C p(U ,R) consists of locally constant functions on (p+1)-fold intersections
Ua0
∩...∩Uap

. By taking the E2 page, we are taking the cohomology on the cochain

complex C p(U ,R), which is just the Čech cohomology. That is, E2 = HδHd is given
by

The degeneration of this spectral sequence gives

Hk(U ,R) =
⊕

p+q=k

Ep,q
2 =

⊕

p+q=k

Ep,q
∞ = Hk

D(C
∗(U ,Ω∗))

Together we concluded

Hk
dR(M) = Hk(U ,R) for all integers k

In particular, what this means is that the de Rham cohomology is isomorphic to
the Čech cohomology, and the Čech cohomology does not depend on the choice
of good cover (as its isomorphic to Hk

dR(M)).
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