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The goal of this note is to go through the book “height in dio geo”, chapter 10, 11
and 14. In particular,

1. chapter 10 is based on chapter 8 and 9.
2. chapter 11 is based on chap 2, 8,9, 10.
3. chapter 14 is based on chap 12 (abc conjecture), chap 13 (Nevanlinna theory).

Hence, we organize the study into a brief introduction to the naive height theory,
without going as deep as the subspace theorem. Then, we immediately begin study
chapter 8 and 9, and then proceed to the three main chapters I want to cover.
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Chapter 1

Heights

Throughout the book, it is safe to assume we are working with number fields only (so
no function fields).

In particular, this chapter is more detailed than necessary for our purpose, just so
that we start slowly.

1.1 A Bit Algebraic Number Theory

Definition 1.1.1

A place v is an equivalence class of non-trivial absolute value on K , where two
absolute values v ∼ v′ if they induce the same topology.

Remark 1.1.2

Recall two absolute values | · |1 and | · |2 are equivalent if and only if there is real
number s > 0 so |x |1 = |x |s2 for all x ∈ K .

Let L/K be a field extension, and w be a place on L and v a place on K , then we
write w | v to mean v|K = w, or more precisely, any representative of w restrict to K is
a representative of v.

Definition 1.1.3

The completion of K with respect to the place v is an extension field Kv with place
w of K , such that:

1. w | v
2. The topology of Kv induced by w is complete
3. K is dense subset of Kv in the above topology

Let K =Q, then the ordinary absolute value | · | := | · |∞ gives R as its completion.
On the other hand, for prime number p define |m/n|p := p−a, where a is the unique
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number such that m/n = pa · (m′/n′) with gcd(m′, p) = 1 = gcd(n′, p). Equivalently,
| · |p is uniquely determined by the condition

|q|p :=

¨

1 for primes q ̸= p
1
p if p = q

The completion of this is the p-adic numbers and we denote by Qp.

Recall we call an absolute value non-archimedean if |x + y| ≤max(|x |, |y|) for all
x , y ∈ K . Thus, if |x + y| <max(|x |, |y|) for some x , y ∈ K then we call this absolute
value archimedean.

Theorem 1.1.4

The only complete archimedean fields are R and C.

Recall that for fintie extension L/K , we define the norm NL/K and trace TL/K as
follows. Each a ∈ L determines a K-linear map m : L→ L by x 7→ ax , and we define

NL/K(a) = det(ma), TL/K(a) := tr(ma)

Example 1.1.5

If L/K is Galois extension, then

NL/K(a) =
∏

σ∈Gal(L/K)

σ(a)

Explicitly, if L =Q(
p

2) over Q, then N(a+ b
p

2) = (a+ b
p

2)(a− b
p

2) because
the Galois group in this case has order 2, and its generated by the element which
sends

p
2 to −

p
2.

Not Relevant

More generally, for f : X → Y finite locally free morphism of schemes of rank k >
0, we can define a norm NX/Y : Pic(X )→ Pic(Y ) as follows. By assumption, f∗OX

is finite locally free OY -algebra, and thus we can define a morphism of sheaves
Nf∗OX /OY

: f∗OX → OY by Nf∗OX /OY
(V )(b) := det(mb), where for b ∈ Γ (V, f∗OX ) we

define mb : Γ (V, f∗OX )→ Γ (V, f∗OX ) as the multplication by b.

Then for line bundle L on X , we see f∗L is an invertible f∗OX -module and
thus we can find open cover V = (Vi) of Y so f∗L is given by Čech 1-cocycle (gi j)
of ( f∗OX )×, i.e. gi j ∈ Γ (Vi∩Vj, ( f∗OX )×) and gk j g ji = gki on the triple intersection.
Then one checks (Nf∗OX /OY

(gi j)) is a Čech 1-cocycle of O×Y , i.e. it defines a line
bundle on Y . This is the global norm map.

Proposition 1.1.6

Let K be a field which is complete with respect to place v and L/K finite extension.
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Then there is a unique extension w of | · |v on L, such that

|x |w := |NL/K(x)|1/[L:K]
v

In particular, L is complete with respect to | · |w.

For K with non-archimedean place v and L a finite extension of K , define

Rv := {x ∈ K : |x |v ≤ 1}

This is a local ring with unique maximal ideal mv := {x ∈ K : |x |v = 1}. In particular,
we have residue field κ(v) := Rv/mv.

Definition 1.1.7

Let L/K be a finite extension and v a non-archimedean place on K and w extends
v. Then we define:

1. the residue degree fw/v of L/K in w is the dimension of κ(w) over κ(v).
2. the ramification index ew/v of L/K is defined to be the index of the sub-

group |K×|v in |L×|w.

A place v is called discrete if |K×|v is cyclic. In this case, mv is a principal ideal and
any generator is called a uniformizer.

Lemma 1.1.8: Hensel Lemma

Let K be a complete non-archimedean field with place v. Let f ∈ K[t] be monic
with reduction f (t) = g(t)h(t) in κ(v)[t], where g and h are monic and coprime.
Then there are monic G, H ∈ Rv[t] with f (t) = G(t)H(t) and G(t) = g(t) and
H(t) = h(t).

Theorem 1.1.9: Approximation Theorem

Let v1, ..., vn be inequivalent non-trivial absolute values on a field K. Then for
x1, ..., xn ∈ K and ε > 0 there is x ∈ K so

|x − xk|vk
< ε

for k = 1, ..., n.

The next result classifies absolute values on finite extension L/K extending place
v on K .

Proposition 1.1.10

Let L be a fintie extension of K and K is generated by a single element ξ. Let f (t) be
the monic minimal polynomial of ξ and f (t) = f k1

1 (t)... f
kr

r (t) be the decomposition
into different irreducible monic factors f j(t) ∈ Kv[t]. Then:
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1. for each 1≤ j ≤ r there is an injective morphism

ι : L→ K j := Kv[t]/( f j(t))

of field extensions over K, given by ξ 7→ t, so that K j is the completion of L
with respect to | · | j and ι

2. there is a unique extension | · | j of Kv to K j, and they are pairwise inequivalent
3. for any absolute value | · |w extending | · |v to L, there is unique 1 ≤ j ≤ r so
| · | j on K j restrict to L is | · |w

Corollary 1.1.10.1

If L is finite separable extension of K, then
∑

w|v

[Lw : Kv] = [L : K]

where w is sum over all palces w of L with w | v.

In particular, we call the number [Lw : Kv] the local degree of L/K in w.

Corollary 1.1.10.2

Let L/K be finite Galois extension with G = Gal(L/K), and w0, w two absolute
values on L extending v on K. Then there is σ ∈ G such that

|x |w = |σ(x)|w0

for all x ∈ L. The completions Lw and Lw0
are isomorphic over Kv (but need not be

isomorphic over L).

For K with non-trivial absolute value w, and L/K with w | v, we define

∥x∥w = |NLw/Kv
(x)|v

for x ∈ L and
|x |w := |NLw/Kv

(x)|1/[L:K]
v

By Proposition 1.1.6 we know the restriction of |NLw/Kv
(x)|1/[L:K]

v to L is a representative
of w extending v. This absolute value is the normalization of v.

Lemma 1.1.11

Let x ∈ K\{0} and y ∈ L\{0}. Then
∑

w|v

log |x |w = log |x |v

∑

w|v

log∥y∥w = log |NL/K(y)|v
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Next we talk about the product formula.

Let K be a field, MK a set of non-trivial places such that the set

{| · |v ∈ MK : |x |v ̸= 1}

is finite for any x ∈ K\{0}. Then we say MK satisfies the product formula if
∏

v∈MK

|x |v = 1

for all x ∈ K\{0}.

Now suppose MK satisfies product formula, and let ML be the set of places on L
defined by the normalizations, i.e. ML = {|NLw/Kv

(·)|1/[L:K]
v : v ∈ MK , w | v}.

Proposition 1.1.12

The set of places ML as above also satisfies product formula, if MK does.

Now, for Q we define

MQ = {| · |p : p a prime or p =∞}

where we take the usual representatives, i.e. |p|p = 1/p for p a prime, or the usual
absolute value when p =∞. Then, for any number field K , we define MK as the set
of places and normalized absolute values, obtained by the above construction to the
extension K/Q. In other words, for any number field K , we always define

MK = {|NKw/Qp
(·)|1/[K:Q]

p : p ∈ MQ, w | p}

Proposition 1.1.13

If K be a number field, then MK (defined as above) satisfies the product formula.

The proof of this can be reduced to the fact every integer can be factored uniquely
into product of prime numbers.

Convention

In this note, whenever we talk about MK for a number field K , it will always be
the the of places over MQ defined as above. In particular, for MQ we will always
use the normalized absolute values, i.e. |p|p = 1/p for all primes and |x |∞ the
usual absolute value. Specifically, MK consists of places v so that v | p and

|x |v = |NKv/Qp
(x)|1/[K:Q]

p

for x ∈ K .

By the product formula, we obtain a refinement of the approximation theorem for
number fields.
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Theorem 1.1.14

Let (|·|v)v∈S be representatives for a fintie set S of non-archimedean places of number
field K, xv ∈ Kv for every v ∈ S, and let ε > 0. Then there is x ∈ K with |x−xv|v < ε
for all v ∈ S and |x |v ≤ 1 for all non-archimedean v /∈ S.

We will spend the remaining of this section investigate MK for number field K more
closely.

Given number field K of degree n, we know MK consists of places v |∞, and v | p
for some prime number p.

First assume v extends ∞. In this case, observe Kv must be either R or C, as
Q∞ = R. By field theory we konw there are n many embeddings σ : K ,→ C, and
we see each can define an absolute value by |x |σ := |σ(x)|∞, where | · |∞ is the
usual absolute value on R or C, depends on im(σ) lies in C or R. In particular, we
see if im(σ) is not real, then σ and the conjugate σ defines the same absolute value.
On the other hand, if im(σ) ⊆ R then it gives one place. Thus, we see if (r1, r2) is
the signature of K (i.e. r1 is the number of real embeddings and 2r2 the number of
complex embeddings), then we have r1 + r2 many distinct places in MK extending
∞∈ MQ.

Next, let p be a prime of OK , the ring of integers of K . Then p lies over some prime
number p. Then, we can define a valuation on OK via ordp(x) be the exponent of p
in the factorization of the fractional ideal xRk. This extends to a map ordp : K×→ Z,
and thus we obtain a place associated to p. The normalization here is given by

|x |p = p−ordp(x)/ep

where ep is the ramification index of p over Q.

In particular, we can prove those are all the places in MK , i.e. MK consists of two
parts, one obtained by just computing all embeddings K ,→ C, and one obtained by
computing all primes in OK lying over p, as p range over all primes of Z.

1.2 Heights In Projective and Affine Spaces

Let Q be a choice of algebraic closure of Q, and Pn = Pn
Q

the projective space with
global coordinates x = (x0 : x1 : ... : xn). Let P ∈ Pn, we will now define a function,
called height, on algebraic points of Pn

Q
. This should be thought as a measure of the

algebraic complication needed to describe the point P.

Let P ∈ Pn be represented by homogeneous coordinate (P0 : ... : Pn), where
P0, ..., Pn ∈ K for some number field K . Then we define

h(P) :=
∑

v∈MK

max
j

log |Pj|v
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Lemma 1.2.1

h(P) is independent of the choice of K.

Proof. Let L be another number field containing the coordinates P0, ..., Pn of P. We can
assume K ⊆ L. Then

∑

w∈ML

max
j

log |Pj|w =
∑

v∈MK

∑

w|v

max
j

log |Pj|w

Now by Lemma 1.1.11 we see
∑

w|v log |x |w = log |x |v for any x ∈ K\{0} ⊆ L\{0},
which concludes our proof.

Lemma 1.2.2

h(P) is independent of the choice of coordinates.

Proof. Let Q be another coordinate representing the same point of Pn
Q

. By the above,
we may assume Q, P ∈ Pn

K for number field K . Thus, there is λ ∈ K\{0} so Q = λP.
Thus

h(Q) =
∑

v∈MK

log |λ|v +
∑

v∈MK

max
j

log |Pj|v

where
∑

v∈MK
log |λ|v = 0 by product formula, and we are done.

Definition 1.2.3

We call h(P) the absolute log height (briefly, height) of P. We also define the
multiplicative height H(P) := eh(P).

Example 1.2.4

Let α be an algebraic integer in a number field K of degree n.

We can identify α as the point (α : 1) in P1
K , and compute its height. In

particular, we see
h(α) =
∑

v∈MK

log(max(|α|v, 1))

Then note αOK factors as a bunch of prime ideals of OK with all exponents, and
thus almost all |α|p should be less than 1, except one of them equal 1 (here we
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are using the fact α lies in OK). Hence, we see

h(α) =
∑

v|∞

log(max(|α|v, 1))

For example, if we take α = i, then we have two embeddings of C ,→ C, the
trivial one and the conjugate. Hence

h(i) = log(max(|i|∞, 1)) + log(max(| − i|∞, 1)) = 0

Similarly, if we take
p

2+ 1 ∈Q[
p

2], then we have two embeddings and so

h(
p

2+ 1) = log(max(|1+
p

2|∞, 1)) + log(max(|1−
p

2|∞, 1))

=
1
2

log(1+
p

2)

More generally, if α ∈ K is an algebraic number, and write αOK = b/c for
relative prime ideals of OK . Then

h(α) = N(b) +
∑

v|∞

log(max(|α|v, 1))

where N(b) is the absolute norm of the ideal b.

Remark 1.2.5

Let S ⊆ MK be a finite set of places, which includes the set S∞ of all archimedean
places of K . Then we say x ∈ K is an S-integer if |x |v ≤ 1 for all v /∈ S. The
S-integers of K form a subring OS,K of K . The units in OS,K are called the S-units
of K , and form a group US,K . An element x ∈OS,K is S-unit if and only if |x |v = 1
for all v /∈ S.

In particular, we can show S∞-integers is the same as an algebraic integer.
Indeed, x is S∞-integer, then |x |v ≤ 1 for all non-archimedean places, i.e. xOK

decomposes as a bunch of primes with only positive exponents, i.e. x ∈OK .

Theorem 1.2.6: Kronecker

The height of ξ ∈Q
×

is zero if and only if ξ is a root of unity.

Proof. Let K be a number field and ξ ∈ K×. If ξ is a root of unity, then its absolute
values are all equal 1 and hence its height is 0.

Conversely, suppose h(ξ) = 0, then |ξ|v ≤ 1 for every v ∈ MK , i.e. ξ is alge-
braic integer. Let d be the degree of ξ and x = (ξ1, ...,ξd) a full set of conjugates
of ξ. Then, consider, for every integer m > 0, the elementary symmetric functions
si(ξm

1 ,ξm
2 , ...,ξm

d ), for i = 0, ..., d. Since ξ is an algebraic integer, we see si(ξm
1 , ...,ξm

d ) ∈
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Z, as we have equality

(x − ξm
1 )...(x − ξ

m
d ) =

d
∑

i=0

(−1)isi(ξ
m
1 , ...,ξm

d )x
d

where the LHS lies in Z[x] as its the minimal polynomial of ξm.

Since |ξ j|v ≤ 1 for every j and v and since si(ξm
1 , ...,ξm

d ) is the sum of
�d

i

�

terms
each of which is a product of factors not excedding 1 in absolute value, its not clear

d
∑

i=0

|si(ξ
m
1 , ...,ξm

d )| ≤
d
∑

i=0

�

d
i

�

= 2d

This means that for the set {(ξm
1 , ...,ξm

d ) : m≥ 1} there are only finitely many possible
values for
∑

i |si(ξm)|. Hence there must be two distinct integers m and n, so

d
∑

i=0

|si(ξ
m
1 , ...,ξm

d )|=
d
∑

i=0

|si(ξ
n
1, ...,ξn

d)|

This happens iff (ξm
1 , ...,ξm

d ) = (ξ
n
σ(1), ...,ξn

σ(d)) for some permutation σ. Now repeat
this argument ord(σ) many times we can assume σ = Id and the proof follows.

Detour

Consider φ : US,K → R|S| given by x 7→ (log |x |v)v∈S in category of groups. By
taking log of the product formula, we see im(φ) is contained in the hyperplane
∑

v∈S yv = 0. By Kronecker’s theorem, the kernel of φ is the group µK of roots of
unity in K . This is part of the Dirichlet’s unit theorem.

Next, recall the Segre embedding Pn × Pm → P(n+1)(m+1)−1, given coordinate wise
by

(x,y) = ((x0 : ... : xn), (y0 : ... : ym)) 7→ x⊗ y := (x i y j)

where the (i j) are ordered, e.g. lexicographically. This shows

h(x⊗ y) = h(x) + h(y)

using maxi j |x i y j|v =maxi |x i|v ·max j |y j|v.

For local computations, its often convenient to introduce the following function
log+(x) :=max(0, log(x)). In particular, we see for any point P ∈ An+1, which identi-
fied as (1, P1, ..., Pn) ∈ Pn, we have

h(P) = h(1 : P1 : ... : Pn) =
∑

v∈MK

max
j

log+ |x j|v
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Proposition 1.2.7

Let P1, ..., P r be points of An, then

h(P1 + ...+ P r)≤ h(P1) + ...+ h(P r) + log r

Proof. WLOG we may assume P i ∈ An
K for some number field K . Then

h(P1 + ...+ P r) =
∑

v∈MK

max
j

log+ |P1
j + ...+ P r

j |v

If v is non-archimedean, then

|P1
j + ...+ P r

j |v ≤max
k
|Pk

j |v

If v is archimedean, by triangle inequality we see

|P1
j + ...+ P r

j |v ≤ |r|v ·max
k
|Pk

j |v

but then
∑

v|∞ log |r|v = log r. Thus we see

h(P1 + ...+ P r)≤ log r +
∑

v∈MK

max
j,k

log+ |Pk
j |v ≤ log r +
∑

k

max
j

log+ |Pk
j |v

The following result says the height is invariant under Galois action.

Proposition 1.2.8

Let P ∈ Pn
Q

and σ ∈ Gal(Q/Q), then h(P) = h(σ(P)).

This result follows from the observation that σ induces a permutation on MK .

Lemma 1.2.9

If α ∈ K\{0} and λ ∈Q, then h(αλ) = |λ| · h(α). In particular, h(1/α) = h(α).

This result follows from the observation that log |α|v = log+ |α|v−log+ |1/α|v, and now
sum over all the places, we get 0= h(α)− h(1/α).

Let S ⊆ MK be a finite set of places. For α ∈ K\{0}, we have
∑

v∈S

log |α|v ≤ h(α)

If we use 1/α instead of α, then the above lemma shows
∑

v∈S

log |α|v ≥ −h(α)
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This concludes the so-called fundamental inequality

−h(α)≤
∑

v∈S

log |α|v ≤ h(α) (Eq. 1.2.1)

The next theorem is a very important result, namely:

Theorem 1.2.10: Northcott’s Theorem

There are only finitely many algebraic numbers of bounded degree and bounded
height.
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Chapter 2

Weil Heights

In this chapter, we will look at heights from a geometric point of view. In particu-
lar, we will define local Weil heights associated to a Cartier divisor on projective X ,
and studying their properties. Then we move to the global case, and we will prove
Northcott’s property in this case.

2.1 Review: Cartier Divisors

2.2 Local Heights
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