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The goal of this note is to go through the book “height in dio geo”, chapter 10, 11
and 14. In particular,

1. chapter 10 is based on chapter 8 and 9.
2. chapter 11 is based on chap 2, 8,9, 10.
3. chapter 14 is based on chap 12 (abc conjecture), chap 13 (Nevanlinna theory).

Hence, we organize the study into a brief introduction to the naive height theory,
without going as deep as the subspace theorem. Then, we immediately begin study
chapter 8 and 9, and then proceed to the three main chapters I want to cover.
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Chapter 1

Heights

Throughout the book, it is safe to assume we are working with number fields only (so
no function fields).

In particular, this chapter is more detailed than necessary for our purpose, just so
that we start slowly.

1.1 A Bit Algebraic Number Theory

Definition 1.1.1

A place v is an equivalence class of non-trivial absolute value on K , where two
absolute values v ∼ v′ if they induce the same topology.

Remark 1.1.2

Recall two absolute values |·|1 and |·|2 are equivalent if and only if there is real
number s > 0 so |x |1= |x |s2 for all x ∈ K .

Let L/K be a field extension, and w be a place on L and v a place on K , then we
write w | v to mean w|K= v, or more precisely, any representative of w restrict to K is
a representative of v.

Definition 1.1.3

The completion of K with respect to the place v is an extension field Kv with place
w of K , such that:

1. w | v
2. The topology of Kv induced by w is complete
3. K is dense subset of Kv in the above topology

Let K = Q, then the ordinary absolute value |·|:= |·|∞ gives R as its completion.
On the other hand, for prime number p define |m/n|p:= p−a, where a is the unique
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number such that m/n = pa · (m′/n′) with gcd(m′, p) = 1 = gcd(n′, p). Equivalently,
|·|p is uniquely determined by the condition

|q|p:=

¨

1 for primes q ̸= p
1
p if p = q

The completion of this is the p-adic numbers and we denote by Qp.

Recall we call an absolute value non-archimedean if |x + y|≤ max(|x |, |y|) for all
x , y ∈ K . Thus, if |x + y|< max(|x |, |y|) for some x , y ∈ K then we call this absolute
value archimedean.

Theorem 1.1.4

The only complete archimedean fields are R and C.

Recall that for fintie extension L/K , we define the norm NL/K and trace TL/K as
follows. Each a ∈ L determines a K-linear map m : L→ L by x 7→ ax , and we define

NL/K(a) = det(ma), TL/K(a) := tr(ma)

Example 1.1.5

If L/K is Galois extension, then

NL/K(a) =
∏

σ∈Gal(L/K)

σ(a)

Explicitly, if L =Q(
p

2) over Q, then N(a+ b
p

2) = (a+ b
p

2)(a− b
p

2) because
the Galois group in this case has order 2, and its generated by the element which
sends

p
2 to −

p
2.

Not Relevant

More generally, for f : X → Y finite locally free morphism of schemes of rank k >
0, we can define a norm NX/Y : Pic(X )→ Pic(Y ) as follows. By assumption, f∗OX

is finite locally free OY -algebra, and thus we can define a morphism of sheaves
Nf∗OX /OY

: f∗OX → OY by Nf∗OX /OY
(V )(b) := det(mb), where for b ∈ Γ(V, f∗OX ) we

define mb : Γ(V, f∗OX )→ Γ(V, f∗OX ) as the multplication by b.

Then for line bundle L on X , we see f∗L is an invertible f∗OX -module and
thus we can find open cover V = (Vi) of Y so f∗L is given by Čech 1-cocycle (gi j)
of ( f∗OX )×, i.e. gi j ∈ Γ(Vi∩Vj, ( f∗OX )×) and gk j g ji = gki on the triple intersection.
Then one checks (Nf∗OX /OY

(gi j)) is a Čech 1-cocycle of O×Y , i.e. it defines a line
bundle on Y . This is the global norm map.

Proposition 1.1.6

Let K be a field which is complete with respect to place v and L/K finite extension.
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Then there is a unique extension w of |·|v on L, such that

|x |w:= |NL/K(x)|1/[L:K]
v

In particular, L is complete with respect to |·|w.

For K with non-archimedean place v and L a finite extension of K , define

Rv := {x ∈ K : |x |v≤ 1}

This is a local ring with unique maximal ideal mv := {x ∈ K : |x |v< 1}. In particular,
we have residue field κ(v) := Rv/mv.

Definition 1.1.7

Let L/K be a finite extension and v a non-archimedean place on K and w extends
v. Then we define:

1. the residue degree fw/v of L/K in w is the dimension of κ(w) over κ(v).
2. the ramification index ew/v of L/K is defined to be the index of the sub-

group |K×|v in |L×|w.

Geometrically, the ramification index keep track of how the prime ideal associated
with v splits in L, i.e. say w1, ..., wr are all the places induced by prime ideals q1, ...,qr

lying over the prime ideal p of v, then pOL =⨿e1
1 ...⨿er

r where ei := ewi/v.

A place v is called discrete if |K×|v is cyclic. In this case, mv is a principal ideal and
any generator is called a uniformizer.

Lemma 1.1.8: Hensel Lemma

Let K be a complete non-archimedean field with place v. Let f ∈ K[t] be monic
with reduction f (t) = g(t)h(t) in κ(v)[t], where g and h are monic and coprime.
Then there are monic G, H ∈ Rv[t] with f (t) = G(t)H(t) and G(t) = g(t) and
H(t) = h(t).

Theorem 1.1.9: Approximation Theorem

Let v1, ..., vn be inequivalent non-trivial absolute values on a field K. Then for
x1, ..., xn ∈ K and ε > 0 there is x ∈ K so

|x − xk|vk
< ε

for k = 1, ..., n.

The next result classifies absolute values on finite extension L/K extending place
v on K .

Proposition 1.1.10

Let L be a fintie extension of K and K is generated by a single element ξ. Let f (t) be
the monic minimal polynomial of ξ and f (t) = f k1

1 (t)... f
kr

r (t) be the decomposition
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into different irreducible monic factors f j(t) ∈ Kv[t]. Then:

1. for each 1≤ j ≤ r there is an injective morphism

ι : L→ K j := Kv[t]/( f j(t))

of field extensions over K, given by ξ 7→ t, so that K j is the completion of L
with respect to |·| j and ι

2. there is a unique extension |·| j of Kv to K j, and they are pairwise inequivalent
3. for any absolute value |·|w extending |·|v to L, there is unique 1≤ j ≤ r so |·| j

on K j restrict to L is |·|w

Corollary 1.1.10.1

If L is finite separable extension of K, then
∑

w|v

[Lw : Kv] = [L : K]

where w is sum over all palces w of L with w | v.

In particular, we call the number [Lw : Kv] the local degree of L/K in w.

Corollary 1.1.10.2

Let L/K be finite Galois extension with G = Gal(L/K), and w0, w two absolute
values on L extending v on K. Then there is σ ∈ G such that

|x |w= |σ(x)|w0

for all x ∈ L. The completions Lw and Lw0
are isomorphic over Kv (but need not be

isomorphic over L).

For K with non-trivial absolute value w, and L/K with w | v, we define

∥x∥w = |NLw/Kv
(x)|v

for x ∈ L and
|x |w:= |NLw/Kv

(x)|1/[L:K]
v

By Proposition 1.1.6 we know the restriction of |NLw/Kv
(x)|1/[L:K]

v to L is a representative
of w extending v. This absolute value is the normalization of v.

Lemma 1.1.11

Let x ∈ K\{0} and y ∈ L\{0}. Then
∑

w|v

log|x |w= log|x |v
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∑

w|v

log∥y∥w = log|NL/K(y)|v

Proof. Corollary 1.1.10.1 gives the first statement. Now we prove the second. By
primitive element, we know there is ξ ∈ L so L = K(ξ). With the notation of 1.1.10,
we have k1 = ...= kr = 1 and an isomorphism

L ⊗K Kv
∼
−→

r
∏

j=1

Kv[t]/( f j(t))

of Kv-algebra, given by ξ 7→ (t) j=1,...,r . By Proposition 1.1.10 we get

NL/K(y) =
∏

w|v

NLw/Kv
(y)

which concludes the second claim.

Next we talk about the product formula.

Let K be a field, MK a set of non-trivial places such that the set

{|·|v∈ MK : |x |v ̸= 1}

is finite for any x ∈ K\{0}. Then we say MK satisfies the product formula if
∏

v∈MK

|x |v= 1

for all x ∈ K\{0}.

Now suppose MK satisfies product formula, and let ML be the set of places on L
defined by the normalizations, i.e. ML = {|NLw/Kv

(·)|1/[L:K]
v : v ∈ MK , w | v}.

Proposition 1.1.12

The set of places ML as above also satisfies product formula, if MK does.

Now, for Q we define

MQ = {|·|p: p a prime or p =∞}

where we take the usual representatives, i.e. |p|p= 1/p for p a prime, or the usual
absolute value when p =∞. Then, for any number field K , we define MK as the set
of places and normalized absolute values, obtained by the above construction to the
extension K/Q. In other words, for any number field K , we always define

MK = {|NKw/Qp
(·)|1/[K:Q]

p : p ∈ MQ, w | p}
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Proposition 1.1.13

If K be a number field, then MK (defined as above) satisfies the product formula.

The proof of this can be reduced to the fact every integer can be factored uniquely
into product of prime numbers.

Convention

In this note, whenever we talk about MK for a number field K , it will always be
the the of places over MQ defined as above. In particular, for MQ we will always
use the normalized absolute values, i.e. |p|p= 1/p for all primes and |x |∞ the
usual absolute value. Specifically, MK consists of places v so that v | p and

|x |v= |NKv/Qp
(x)|1/[K:Q]

p

for x ∈ K .

By the product formula, we obtain a refinement of the approximation theorem for
number fields.

Theorem 1.1.14

Let (|·|v)v∈S be representatives for a fintie set S of non-archimedean places of number
field K, xv ∈ Kv for every v ∈ S, and let ε > 0. Then there is x ∈ K with |x− xv|v< ε
for all v ∈ S and |x |v≤ 1 for all non-archimedean v /∈ S.

We will spend the remaining of this section investigate MK for number field K more
closely.

Given number field K of degree n, we know MK consists of places v |∞, and v | p
for some prime number p.

First assume v extends ∞. In this case, observe Kv must be either R or C, as
Q∞ = R. By field theory we konw there are n many embeddings σ : K ,→ C, and
we see each can define an absolute value by |x |σ:= |σ(x)|∞, where |·|∞ is the usual
absolute value on R or C, depends on im(σ) lies in C or R. In particular, we see
if im(σ) is not real, then σ and the conjugate σ defines the same absolute value.
On the other hand, if im(σ) ⊆ R then it gives one place. Thus, we see if (r1, r2) is
the signature of K (i.e. r1 is the number of real embeddings and 2r2 the number of
complex embeddings), then we have r1 + r2 many distinct places in MK extending
∞∈ MQ.

Next, let p be a prime of OK , the ring of integers of K . Then p lies over some prime
number p. Then, we can define a valuation on OK via ordp(x) be the exponent of p
in the factorization of the fractional ideal xRk. This extends to a map ordp : K×→ Z,
and thus we obtain a place associated to p. The normalization here is given by

|x |p= p−ordp(x)/ep

where ep is the ramification index of p over Q.
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In particular, we can prove those are all the places in MK , i.e. MK consists of two
parts, one obtained by just computing all embeddings K ,→ C, and one obtained by
computing all primes in OK lying over p, as p range over all primes of Z.

1.2 Heights In Projective and Affine Spaces

Let Q be a choice of algebraic closure of Q, and Pn = Pn
Q

the projective space with
global coordinates x = (x0 : x1 : ... : xn). Let P ∈ Pn, we will now define a function,
called height, on algebraic points of Pn

Q
. This should be thought as a measure of the

algebraic complication needed to describe the point P.

Let P ∈ Pn be represented by homogeneous coordinate (P0 : ... : Pn), where
P0, ..., Pn ∈ K for some number field K . Then we define

h(P) :=
∑

v∈MK

max
j

log|Pj|v

Lemma 1.2.1

h(P) is independent of the choice of K.

Proof. Let L be another number field containing the coordinates P0, ..., Pn of P. We can
assume K ⊆ L. Then

∑

w∈ML

max
j

log|Pj|w=
∑

v∈MK

∑

w|v

max
j

log|Pj|w

Now by Lemma 1.1.11 we see
∑

w|v log|x |w= log|x |v for any x ∈ K\{0} ⊆ L\{0}, which
concludes our proof.

Lemma 1.2.2

h(P) is independent of the choice of coordinates.

Proof. Let Q be another coordinate representing the same point of Pn
Q

. By the above,
we may assume Q, P ∈ Pn

K for number field K . Thus, there is λ ∈ K\{0} so Q = λP.
Thus

h(Q) =
∑

v∈MK

log|λ|v+
∑

v∈MK

max
j

log|Pj|v

where
∑

v∈MK
log|λ|v= 0 by product formula, and we are done.
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Definition 1.2.3

We call h(P) the absolute log height (briefly, height) of P. We also define the
multiplicative height H(P) := eh(P).

Example 1.2.4

Let α be an algebraic integer in a number field K of degree n.

We can identify α as the point (α : 1) in P1
K , and compute its height. In

particular, we see
h(α) =
∑

v∈MK

log(max(|α|v, 1))

Then note αOK factors as a bunch of prime ideals of OK with all exponents, and
thus almost all |α|p should be less than 1, except one of them equal 1 (here we
are using the fact α lies in OK). Hence, we see

h(α) =
∑

v|∞

log(max(|α|v, 1))

For example, if we take α = i, then we have two embeddings of C ,→ C, the
trivial one and the conjugate. Hence

h(i) = log(max(|i|∞, 1)) + log(max(|−i|∞, 1)) = 0

Similarly, if we take
p

2+ 1 ∈Q[
p

2], then we have two embeddings and so

h(
p

2+ 1) = log(max(|1+
p

2|∞, 1)) + log(max(|1−
p

2|∞, 1))

=
1
2

log(1+
p

2)

More generally, if α ∈ K is an algebraic number, and write αOK = b/c for
relative prime ideals of OK . Then

h(α) = N(b) +
∑

v|∞

log(max(|α|v, 1))

where N(b) is the absolute norm of the ideal b.

As an very silly case of the above example, we see h(a/b) = log(max(|a|, |b|)) for
rational number a/b ∈Q with gcd(a, b) = 1. In particular, this implies there are only
finitely many points in Q so that h(a/b) ≤ B for a fixed B. It is not hard to convince
oneself the same claim holds for points in Pn(Q).

Remark 1.2.5

Let S ⊆ MK be a finite set of places, which includes the set S∞ of all archimedean
places of K . Then we say x ∈ K is an S-integer if |x |v≤ 1 for all v /∈ S. The
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S-integers of K form a subring OS,K of K . The units in OS,K are called the S-units
of K , and form a group US,K . An element x ∈OS,K is S-unit if and only if |x |v= 1
for all v /∈ S.

In particular, we can show S∞-integers is the same as an algebraic integer.
Indeed, x is S∞-integer, then |x |v≤ 1 for all non-archimedean places, i.e. xOK

decomposes as a bunch of primes with only positive exponents, i.e. x ∈OK .

Theorem 1.2.6: Kronecker

The height of ξ ∈Q
×

is zero if and only if ξ is a root of unity.

Proof. First, if ξ is a root of unity, then its absolute values are all equal to 1, and hence
its height is 0. Thus it suffices to show the converse.

Suppose h(ξ) = 0, then we must have |ξ|v≤ 1 for all v ∈ MK . This implies ξ
must be algebraic integer because |ξ|v≤ 1 for all finite places indicates ξOK factors as
positive product of primes in OK , i.e. ξ ∈OK .

Now let d be the degree of ξ, and denote x := (ξ1, ...,ξd) be a vector consists of
all the conjugates of ξ. We write xm to denote (ξm

1 , ...,ξm
d ).

Now let si be the ith elementary symmetric polynomial with d variables. This gives

(x − ξm
1 )...(x − ξ

m
d ) =

d
∑

i=0

(−1)isi(x
m)x d−i

and in particular since ξ ∈OK we see si(xm) ∈ Z.

Now, |ξ j|v≤ 1 for all j and v, and si consists of
�d

i

�

monomials, we see

d
∑

i=0

|si(x
m)|≤

d
∑

i=0

�

d
i

�

= 2d

The above bound says that {(s0(xm), ..., sn(xm)) : m≥ 1}must be a finite set, and hence
by pigeonhole principle, there exists m ̸= n, so si(xm) = si(xn) for i = 0, ..., d. By
defining property of elementary symmetric functions, we see this happens if and only
if xm = σ(xn) for some permutation σ on d letters. WLOG assume m> n. Repeat this
argument ord(σ) many times, we may assume σ = Id, and this gives ξmord(σ)

= ξnord(σ)
,

showing ξ is a root of unity.

Detour

Consider φ : US,K → R|S| given by x 7→ (log|x |v)v∈S in category of groups. By
taking log of the product formula, we see im(φ) is contained in the hyperplane
∑

v∈S yv = 0. By Kronecker’s theorem, the kernel of φ is the group µK of roots of
unity in K . This is part of the Dirichlet’s unit theorem.
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Theorem 1.2.7

Let S be as above. The image of φ is a lattice of maximal rank |S|−1 in the hyper-
plane
∑

v∈S yv = 0. Hence US,K
∼= µK ×Z|S|−1

Next, recall the Segre embedding Pn × Pm → P(n+1)(m+1)−1, given coordinate wise
by

(x,y) = ((x0 : ... : xn), (y0 : ... : ym)) 7→ x⊗ y := (x i y j)

where the (i j) are ordered, e.g. lexicographically. This shows

h(x⊗ y) = h(x) + h(y)

using maxi j|x i y j|v=maxi|x i|v·max j|y j|v.

For local computations, its often convenient to introduce the following function
log+(x) :=max(0, log(x)). In particular, we see for any point P ∈ An, which identified
as (1, P1, ..., Pn) ∈ Pn, we have

h(P) = h(1 : P1 : ... : Pn) =
∑

v∈MK

max
j

log+|x j|v

Proposition 1.2.8

Let P1, ..., P r be points of An, then

h(P1 + ...+ P r)≤ h(P1) + ...+ h(P r) + log r

Proof. WLOG we may assume P i ∈ An
K for some number field K . Then

h(P1 + ...+ P r) =
∑

v∈MK

max
j

log+|P1
j + ...+ P r

j |v

If v is non-archimedean, then

|P1
j + ...+ P r

j |v≤max
k
|Pk

j |v

If v is archimedean, by triangle inequality we see

|P1
j + ...+ P r

j |v≤ |r|v·max
k
|Pk

j |v

but then
∑

v|∞ log|r|v= log r. Thus we see

h(P1 + ...+ P r)≤ log r +
∑

v∈MK

max
j,k

log+|Pk
j |v≤ log r +
∑

k

max
j

log+|Pk
j |v

The following result says the height is invariant under Galois action.
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Proposition 1.2.9

Let P ∈ Pn
Q

and σ ∈ Gal(Q/Q), then h(P) = h(σ(P)).

This result follows from the observation that σ induces a permutation on MK .

Lemma 1.2.10

If α ∈ K\{0} and λ ∈Q, then h(αλ) = |λ|·h(α). In particular, h(1/α) = h(α).

This result follows from the observation that log|α|v= log+|α|v− log+|1/α|v, and now
sum over all the places, we get 0= h(α)− h(1/α).

Let S ⊆ MK be a finite set of places. For α ∈ K\{0}, we have
∑

v∈S

log|α|v≤ h(α)

If we use 1/α instead of α, then the above lemma shows
∑

v∈S

log|α|v≥ −h(α)

This concludes the so-called fundamental inequality

−h(α)≤
∑

v∈S

log|α|v≤ h(α) (Eq. 1.2.1)

The next theorem is a very important result, namely:

Theorem 1.2.11: Northcott’s Theorem

There are only finitely many algebraic numbers of bounded degree and bounded
height.

Proof. To make the statement above more precise, we will show the following. For
any B, D ≥ 0, the set

{P ∈ Pn
Q

: H(P)≤ B and [Q(P) :Q]≤ D}

is finite. In particular, for any fixed number field K , {P ∈ Pn
k : H(P) ≤ B} is finite. In

the above, Q(P) is the minimal number field containing all coordinates of P.

Now let P = (P0 : ... : Pn) where we assume some Pi = 1. Then for any absolute
value v and index i we have

max(∥P0∥v , ...,∥Pn∥v)≥max(∥Pi∥v , 1)

Hence, we see
H(P)≥ H(Pi)
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for all 0 ≤ i ≤ n. Further, its clear Q(P) ⊇ Q(Pi), hence it suffices to prove for each
1≤ d ≤ D, the set

{x ∈Q : H(x)≤ B and [Q(x) :Q] = d}

is finite.

Let ξ ∈Q have degree d and k =Q(x). We write x := (ξ1, ...,ξd) for the conjugates
of ξ over Q, and we let

Fξ(x) =
d
∏

j=1

(x − x j) =
d
∑

r=0

(−1)rsr(x)x
d−r

the minimal polynomial of x over Q. However, we see

|sr(x)|v =

�

�

�

�

�

∑

1≤i1<...<ir≤d

ξi1 ...ξir

�

�

�

�

�

v

≤ c(v, r, d) max
1≤i1<...<ir≤d

|ξi1 ...ξir |v

≤ c(v, r, d)max
1≤i≤d
|ξi|rv

where c(v, r, d) =
�d

r

�

≤ 2d if v is archimedean, and 1 if v is non-archimedean.

Thus we see

max(|s0(x)|v, ..., |sd(x)|v)≤ c(v, d)
d
∏

i=1

max(|ξi|v, 1)d

where c(v, d) = 2d if v is archimedean and 1 otherwise.

Now multiply this inequality over all v ∈ MK , where K =Q(x), and take [K :Q]th
root, we see

H(s0(x), ..., sd(x))≤ 2d
d
∏

i=1

H(x i)
d

But the x i ’s are conjugates, and we know heights are invariant under Galois action,
thus H(x i)’s are all equal. This shows

H(s0(x), ..., sd(x))≤ 2d H(x)d
2

Now suppose x is in the set

{x ∈Q|H(x)≤ B and [Q(x) :Q] = d}

Then we just proven x is the root of a polynomial Fx(T ) whose coefficients s0, ..., sd

are bounded by 2d Bd2
. However, it is easy to see Pd(Q) has only finitely many points

of bounded height, so there are only finitely many possibilities for Fx(T ), and we are
done.
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Chapter 2

Weil Heights

In this chapter, we will look at heights from a geometric point of view. In particu-
lar, we will define local Weil heights associated to a Cartier divisor on projective X ,
and studying their properties. Then we move to the global case, and we will prove
Northcott’s property in this case.

2.1 Review: Cartier Divisors

One of the main goal of introduce divisors is to ask, given zero and pole configura-
tion on an open cover, whether these configurations are induced from global rational
functions.

There are two ways to do this, one is explicitly keep track of where they have pole
and zero, on codimension 1 pieces. This gives Weil divisor, i.e. a Weil divisor is a
formal linear combination of

∑n
i=1 niYi where Yi are irreducible closed subschemes of

codimension 1. The other definition is Cartier divisors, which roughly says a config-
uration is an equivalence class of rational functions where f ∼ g iff f = ug for some
u ∈ Γ(U ,OX )×. The later is less geometric, but it defines on wider range of schemes.

For us we will just work with integral schemes (otherwise the discussion will be
longer than I want).

Say X is integral, the function field K(X ) is well-defined. Denote HX the constant
sheaf with value K(X ). Then a Cartier divisor D on X is a tuple (Ui, fi) where Ui form
an open cover of X and where fi ∈ K(X )× are elements with fi f

−1
j ∈ Γ(Ui∩U j,O

×
X ) for

all i, j. We denote this set by Div(X ), and it forms an abelian group with the obvious
addition (i.e. (Ui, fi) + (Vi, gi) = (Ui ∩ Vi, fi gi)).

A Cartier divisor is principal if it is equal (X , f ), and two divisors D, E are equivalent
(and write D ≡ E) if D− E is principal. This gives an equivalence relation and hence
we get CDiv(X ) := Div(X )/≡, i.e. we have exact sequence

1→ Γ(X ,OX )
×→ K(X )×→ Div(X )→ CDiv(X )→ 0

Next, we say a divisor (Ui, fi) is effective if fi lies in OX instead, i.e. they are not

16



rational, but regular.

Given a Cartier divisor D = (Ui, fi) we can define associated line bundle OX (D)
defined by

Γ(V,OX (D)) := { f ∈ K(X ) : fi f ∈ Γ(Ui ∩ V,OX ) for all i}

for V open in X . Now take open cover Ui in the definition of D, then we see OX (D) is
locally of a free OX -module of rank 1. Explicitly, over Ui, OX (D) is isomorphic to the
rank 1 submodule of HX generated by f −1

i , i.e. it is a line bundle. In particular, this
map is an isomorphism of abelian groups.

For a Cartier divisor D, we define

supp(D) = {x ∈ X : ( fi)x /∈ O×X ,x for some i with x ∈ Ui}

Now for a more geometric view, assume X is in addition Noetherian. For C ⊆ X
closed irreducible, we see C = {ξ} for generic point ξ, and in particular recall

codimX (C) = dimOX ,ξ

Now define Z1(X ) be the free abelian group generated by all codimension 1 closed
irreducible subsets of X , and we call an element of that a Weil divisor.

Then, we can define cyc : Div(X )→ Z1(X ) as follows.

For f ∈ Γ(U ,HX ), we need to define the order ordC( f ) along prime Weil divisor C
(meaning C is a codimension 1 closed irreducible subset). If OX ,ξ is DVR, where ξ is
the generic point of C , then fC is a non-zero element in Frac(OX ,ξ), and thus we just
set ordC( f ) = vC( fC), where vC( f ) is the normalized discrete valuation of f ∈ K given
by OX ,ξ.

Now for Cartier divisor D ∈ Div(X ), say represented by (Ui, fi), and prime Weil
divisor C , we define ordC(D) as follows. Choose i so that the generic point ξC of C is
contained in Ui. Let f ∈ Frac(OX ,ξC

) be the germ of fi at ηC , then f does not depend
on the choice of presentation (Ui, fi) or on i up to a unit of OX ,ξC

. Thus

ordC(D) := ordOX ,ξC
( f )

depends only on D and C .

This particular quantity is called the order of vanishing of D at C .

Then, we simply define

cyc(D) :=
∑

C

ordC(D)[C]

as we sum over all prime Weil divisors C . Now, for f ∈ Γ(X ,HX )× an invertible rational
function, we define ÷( f ) :=

∑

C ordC( f )C , and we define

Cl(X ) := Z1(X )/



÷( f ) : f ∈ Γ(X ,HX )
×
�

ordC( f ) = ordC(÷( f )) and we simply write cyc( f ) to mean cyc(÷( f )).

and we have the following result:
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Theorem 2.1.1

Let X be Noetherian scheme.

1. If X is normal, then cyc is injective, and thus we have injection CDiv(X ) ,→
Cl(X )

2. If X is locally factorial, then cyc is bijective, and we have isomorphism CDiv(X )∼=
Cl(X )

Notation/Convention

So, for X nice enough,

line bundles+a rational section= Cartier divisors= sheaf of sections

For a line bundle L and a section s : X → L, we can define its associated Cartier
divisor by D(s) := (Ui,φi ◦ s) where Ui is a choice of trivialization (Ui,φi) of L.
On the other hand, given Cartier divisor D = (Ui, fi), we see gi j = fi/ f j is a unit
in OX (Ui ∩ U j). Let O(D) be the line bundle on X given by transition functions
gi j, i.e. we glue trivial bundles Ui×A1 along the isomorphisms given by gi j. This
gives a trivialization of O(D) over Ui, and we consider fi as rational/meromorphic
sections of Ui ×A1, then fi = gi j f j, i.e. we obtain a section sD of O(D) and we
see D 7→ (O(D), sD) is the inverse of the above map.

Example 2.1.2

Let X = SpecOK , where K is a number field and OX its ring of integers. Then
Cl(X ) = Pic(X ) is in fact just the divisor class group studied in algebraic number
theory. In particular, the exact sequence

1→ Γ(X ,OX )
×→ K(X )×→ Div(X )→ CDiv(X )→ 0

becomes
1→O×K → K×→ Div(OK)→ Pic(OK)→ 1

Now by basic result from number theory, we see Pic(OK) is a finite group and
O×K ∼= µ(K)×Z

r+s−1, where (r, s) is the signature of K and µ(K) the roots of unity
in K .

2.2 Local Heights

From now on, we will assume X is projective variety.

In this case, if we want to define a reasonable notion of height on X , the most
basic definition would be embed X into PN , then apply the height for projective space.
However, this is bad because we have more than one way to embed. Thus, in order to
get a sensible notion of heights, we must also keep track of how we embed X into Pn,
i.e. we need to define heights relative to divisors and the sections on them.
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To define local Weil heights, we need information beyond the divisor D itself.
Namely, we need a realization O(D) = O(D+) ⊗ O(−D−), where O(D±) are base-
point-free line bundles coming with given set of generating global sections. The set of
Cartier divisors with these additional data forms a monoid, and the local heights so
defined will behave functorially with respect to this structure. This removes the need
of working modulo bounded functions when studying Weil heights, a point of crucial
importance for applications as it allows precise estimates.

Convention

Throughout this section, we will let K be a field and |·| a fixed absolute value on
K .

Let X be a projective variety over K , which for simplicity we assume its irreducible.
Let D = (Ui, fi) be a Cartier divisor on X with associated line bundle O(D) and mero-
morphic section sD, where sD is obtained using fi. Then there are base-point free line
bundles L ,M on X such that O(D) =L ⊗M −1. Now choose generating global sec-
tions s= (s0, ..., sn) of L and t= (t0, ..., tm) of M , we call the data D = (sD, L, s, M , t) a
presentation of D.

Remark 2.2.1

To see why every line bundle D can be written as L M −1, we work with divisors.
Let D be a Cartier divisor, then let H be a very ample divisor on X (such divisor
exists as X is projective), and we set D1 = mH + D and D2 = mH. For m large
enough, D1, D2 will be ample, while D1 − D2 clearly equal D.

Definition 2.2.2

For P /∈ supp(D), we define the local height (with respect/relative to D) to be

λD(P) :=max
k

min
l

log

�

�

�

�

sk

t lsD
(P)

�

�

�

�

In the above, we use the notation t lsD for t l⊗sD and sk/s
′ for sk⊗(s′)−1, i.e. sl/(t lsD) is a

rational function on X . In addition, if D is a Cartier divisor with a presentation D, then
we also (by abuse of notation) write λD(P) and say local height with respect/relative
to D.

This local height depends on the choice of sD, L, M as well as their generating
sections.

Example 2.2.3

Let f be non-zero rational function on X with Cartier divisor D = D( f ). Then
O(D) = OX and f is a meromorphic section of O(D). Thus there is a local height
λ f relative to D, given by the presentation ( f ,OX , 1,OX , 1). For P /∈ supp(D), we
have

λ f (P) = − log| f (P)|
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If g is another non-zero rational function on X , then λ f g = λ f + λg and λ f −1 =
−λ f .

Let D1 and D2 be Cartier divisors with presentations Di = (sDi
,Li, si,Mi, ti) nad

local heights λDi
. Then s1s2 = (s1ks2k′) and t1t2 = (t1l t2l ′) are generating sections of

L1 ⊗L2 and L2 ⊗M2 respectively. Thus we can define λD1+D2
as the local height

relative to the presentation

D1 +D2 = (sD1
sD2

,L1 ⊗L2, s1s2,M1 ⊗M2, t1t2)

By definition we see
λD1+D2

(P) = λD1
(P) +λD2

(P)

for P /∈ supp(D1)∪ supp(D2). Thus, we see the space of local heights admits an addi-
tion operation. Next, for λD with presentation (sD,L , s,M , t), we can define λ−D by
(s−1

D ,M , t,L , s). This makes the space of local heights an monoid.

Next, let D = (sD,L , s,M , t) be a presentation of D, then for π : Y → X a domi-
nant morphism of irreducible projective varieties over K , we can pullback the presen-
tation to get π∗D := (π∗sD,π∗L ,π∗s,π∗M ,π∗t). In particular, λπ∗D(P) = λD(π(P))
for well-defined P, i.e. we require P ∈ Y , π(P) /∈ supp(D).

Our next goal is compare how the presentation would affect our local height, and
the conclusion is that it affects the computation by a constant.

Definition 2.2.4

Let U be a closed variety of An. A set E ⊆ U(K) is bounded in U if for any
f ∈ K[U] = K[t1, ..., tn]/I(U), the function | f | is bounded on E.

Lemma 2.2.5

Let { f1, ..., fN} be a generators of K[U], the set of regular functions on affine closed
U. If

sup
P∈E

max
j=1,...,N

| f j(P)|<∞

then E is bounded.

Proof. Let f ∈ K[U], then we can write f = p( f1, ..., fN ) with p a polynomial in K[U].
Let C be the number of monomials in p and d the degree of p. Define

δ =

¨

1 if the absolute value is archimedean

0 otherwise

Then, for a place v define
|p|v=max

j
|aj|v

where the max is taken over all coefficients of p. Then we see

sup
P∈E
| f (P)|≤ Cδ|p|·max

�

1, sup
P∈E

max
j=1,..,N
| f j(P)|
�d

<∞
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Lemma 2.2.6

If {Ui} be a finite affine open cover of affine K-variety U and E bounded in U. Then
there are bounded subsets Ei of Ui such that E =

⋃

i Ei.

Proof. It suffices to prove this claim after passing to a refinement of Ui. Thus we might
assume there are regular functions hi on U so Ui = {x ∈ U : hi ̸= 0}. By partition of
unity, we see there are regular functions gi so

∑

i gihi = 1. If C is the cardinality of
the cover and δ is defined as in the proof of Lemma 2.2.5. Then we see

inf
P∈E

max
i
|hi(P)|≥ C−δ
�

sup
P∈E

max
i
|gi(P)|
�−1

> 0 (Eq. 2.2.1)

We define
Ei = {P ∈ E : |hi(P)|=max

k
|hk(P)|}

Obviously, Ei ⊆ Ui(K) and E =
⋃

Ei. Let fi, ..., fN be a set of generators of K[U], then
f1, ..., fN , 1/hi generates K[Ui]. By Lemma 2.2.5, its enough to show |1/hi| is bounded
on Ei. In fact, the bound

sup
P∈Ei

|1/hi(P)|≤ Cδ sup
P∈E

max
k
|gk(P)|<∞

follows from Eq. 2.2.1.

Theorem 2.2.7

Let X be a projective variety over K and D,D′ be two presentations of Cartier divisor
D. Then

|λD −λD′ |≤ γ

for some constant γ <∞.

Proof. Note λD − λD′ = λD−D′ . This means λD − λD′ is a local height with respect to
D− D. Thus, it suffices to prove the claim for D and assume one of the presentation,
say D′, is equal (1,L, 1,M, 1). Then, D has the form (1,L , s,M , t). We need to find
γ so that

−γ≤max
k

min
l

log

�

�

�

�

sk

t l
(P)

�

�

�

�

≤ γ

To that end, it suffices to only prove

max
k

min
l

log|sk/t l(P)|≤ γ

as we can interchange the role of s and t.

Now choose closed embedding X into PN
K with coordinates (x0 : ... : xN ), and

Ui := {x ∈ X : x i ̸= 0} be affine open, and Uil be the affine open {x ∈ Ui : t l(x) ̸= 0}.
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The restriction of gkl := sk/t l to Uil are regular functions. The functions fi j = x j/x i,
for j = 0, ..., N , generate K[Ui]. Then define sets Ei by

Ei = {P ∈ X (K) : |x i(P)|=max
j
|x j(P)|}

Its clear that if P ∈ Ei we have
max

j
| fi j(P)|= 1

hence Ei is bounded in Ui by Lemma 2.2.5. Thus we can apply Lemma 2.2.6 to Ui, Ei

and the covering {Uil}, obtaining bounded subsets Eil of Uil such that Ei =
⋃

l Eil and

sup
P∈Eil

max
k
|gkl(P)|<∞

Since Eil covers X (K), we are done.

2.3 Global Heights

In the previous section, we defined the local height with respect to a Cartier divisor
D, for a fixed field K and fixed absolute value on K . Now we will consider summing
those local heights together to get the global one.

Convention

Throughout this section, we will let K be a number field.

Now let X be irreducible projective variety over K with Cartier divisor D and pre-
sentation (sD,L , s,M , t). Let F/K an algebraic extension. Then for P ∈ X (F)\supp(D)
we define the local height

λD(P, v) :=max
k

min
l

log

�

�

�

�

sk

t lsD
(P)

�

�

�

�

v

for v ∈ MF normalized.

Now let p be the place lying below v, and u an absolute value on K extends v, then
we see

λD(P, v) =
[Fv :Qp]

[F :Q]
λD(P, u)

Now note u is an absolute value on the algebraic closure K , and hence λD(P, u) reduces
to the case we studied above for local heights. Thus, we see by the above computation,
we can apply results from above to λD(P, v) as well, since this quantity is related to
λD(P, u) by a constant.
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Example 2.3.1

Consider the Cartier divisor {x0 = 0} in Pn
K , with presentation

D = (x0,O(1), {x0, ..., xn},O , 1)

For P ∈ Pn(F) with x0(P) ̸= 0 and v ∈ MF , the corresponding local height is

λD(P, v) =max
k

log|
xk

x0
(P)|v

and the product formula becomes

h(P) =
∑

v∈MF

λD(P, v)

where h(P) is the naive height we defined before.

LetλD be a local height relative to the presentationD = (sD,L , s,M , t) of a Cartier
divisor D on X . For P ∈ X there are s j and t l such that s j(P) ̸= 0 and t l(P) ̸= 0. Thus,
we can find non-zero meromorphic section s of O(D) such that P is not contained in
the support of the Cartier divisor D(s). Then D(s) = (s,L , s,M , t) is a presentation
of D(s) and we have

λD(s) = λD +λ f

where f is the rational section s/sD.

If F is a finite extension K ⊆ F ⊆ K such that P ∈ X (F), the local height λD(s)(P, v)
is finite for any v ∈ MF because P is not in the support of D(s).

Definition 2.3.2

In the situation above, we define the global height of P relative to λ= λD by

hλ(P) :=
∑

v∈MF

λD(s)(P, v)

The following result justifies the definition.

Proposition 2.3.3

The global height hλ is independent of the choice of F and of the section s.

Proof. By Lemma 1.1.11, the global height is independent of F .Its independence from
the choice of s can be verified as follows. Let t be another non-zero meromorphic
section of O(D) with P /∈ supp(D(t)). Then by previous sections we see

λD(s)(P, v)−λD(t)(P, v) = λs/t(P, v)

for any v ∈ MF . On the other hand, the product formula shows the global height of P
relative to λs/t is 0, hence we are done.

23



As an immediate consequence, the global height relative to the natural local height
of a non-zero rational function is identically 0. Its also clear the map λ 7→ hλ is a group
homomorphism.

Theorem 2.3.4

Let λ,λ′ be local heights relative to Cartier divisor D, D′ with D − D′ a principal
divisor. Then hλ − hλ′ is a bounded function.

Proof. Since D−D′ is a principal divisor, it suffices to prove our theorem for D = D′ = 0
and λ′ = 0. Hence we need only to show hλ is a bounded function for any local height
relative to the zero divisor. By Theorem 2.2.7 we can find a family {γv}v∈MK

of non-
negative real numbers, almost all 0, so

|λ(P, u)|u≤ γv

for any P ∈ X and any place u on K with u | v. As before, let F be a finite extension
K ⊆ F ⊊ K so P ∈ X (F). Then we see

|λ(P, w)|≤
[Fw :Qp]

[F :Q]
γv

for any w ∈ MF , which divides v ∈ MK and p ∈ MQ. By Corollary 1.1.10.1, we have
∑

w|v

[Fw : Kv] = [F : K]

and thus

|hλ(P)|≤
∑

w∈MF

|λ(P, w)|≤
∑

v∈MK

[Kv :Qp]

[K :Q]
γv <∞

Now let L be a line bundle, then we see it correspond to some Cartier divisor D,
and hence we get a local height λ relative to D, i.e. we get a function X → R. If we
choose two different Cartier divisors associated to the same line bundle, then by the
above hλ − hλ′ differ by a bounded function. Thus a line bundle L determines an
unique element in RX/O(1), the space of real functions from X to R mod the set of
bounded functions.

This construction of global height, although it is functorial (Theorem 2.3.5 be-
low), but we lose the finer control for estimations needed to prove deeper results in
Diophantine geometry. On the other hand, Weil heights, which we will define later,
does give us the refined control over things.
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Theorem 2.3.5

The map
h : Pic(X )→ RX/O(1)

described above is a homomorphism. If φ : Y → X is a morphism of irreducible
projective varieties over K, then

hφ∗L = hL ◦φ

for any L ∈ Pic(X ).

This claim follows from Theorem 2.3.4 and definition of pullback.

Next, we observe that a base-point-free line bundle has always a non-negative
height function. The following is a generalization.

Proposition 2.3.6

Let D be an effective Cartier divisor on X . Then there is a local height λ relative to
D such that, for P /∈ supp(D) and for any place u of K, it holds λ(P, u)≥ 0.

Proof. There are base-point free line bundles L ,M on X so O(D)∼=L⊗M −1. Choose
generating global sections t0, ..., t l of M , we can complete sD t0, ..., sD t l to a family s :=
(s0, ..., sk) of generating global sections of L . The local height given by presentation

D = (sD.L , s,M , t)

is non-negative outside the support of D.

Remark 2.3.7

1. Our results in this section and last section extends to non-irreducible vari-
eties.

2. Global heights can be defined over any field with product formula as long
as we work with properly normalized absolute values.

3. We may replace K by K , as we are just working with varieties and properties
are geometric.

2.4 Weil Heights

In this section we consider global heights given by a morphism X → Pn. In fact, we
will see that any global height is the difference of two Weil heights.

Let X be projective over Q.

25



Definition 2.4.1

Let φ : X → Pn
Q

be a morphism over Q. The Weil height of P ∈ X (Q) relative to
φ is defined by hφ(P) = h ◦φ(P), with h the usual height on Pn

Q
.

Construction: Join

Let φ : X → Pn
Q

and ψ : X → Pm
Q

, then we define the join φ#ψ as the morphism

sn,m ◦ (φ × Id) ◦ G(ψ)

where sn,m is the Segre embedding, φ × Id fiber product, G(ψ) the graph of ψ.
More explicitly, φ#ψ is the morphism

X → P(n+1)(m+1)−1

Q
, x 7→ (φi(x)ψ j(x))

where the index (i, j) are ordered lexicographically.

If φ is closed embedding, then φ#ψ is closed embedding. Indeed, G(ψ) is always
closed embedding as we are working with separated schemes (separated=closed di-
agonal=closed graph=closed equalizer). The Segre embedding is always closed, and
closed immersion is stable under base change, hence φ ⊗ Id is also closed.

Proposition 2.4.2

If φ : X → Pn
Q

and ψ : X → Pm
Q

are morphisms over Q, then

hφ#ψ = hφ + hψ

This follows from the relation between Segre embedding and heights on Pn.

Next, we claim every Weil height may be viewed as a global height defined in
previous section. Indeed, there is a linear form ℓ = ℓ0 x0 + ...+ ℓn xn which does not
vanish identically on any irreducible component of X . Then we see hφ is given by the
global height associated with φ∗(ℓ,OPn(1), x0, ..., xn,OPn , 1).

Conversely, we will show every global height is a difference of two Weil heights.
Suppose hλ is the global height relative to the presentation D = (s,L , s,M , t). Then
we get two morphisms φ and ψ, induced by (L , s) and (M , t), respectively. Then it
follows from the independence of hλ from s that

hλ = hφ − hψ

Theorem 2.4.3

If φ : X → Pn
Q

and ψ : X → Pm
Q

are morphisms over Q with φ∗OPn(1)∼=ψ∗OPm(1),
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then hφ − hψ is a bounded function.

The proof is immediate.

Theorem 2.4.4: Northcott’s Theorem

Let X be a projective variety defined over the number field K and hL a height function
associated with ample L ∈ Pic(X ). Then the set

{P ∈ X (K) : hL (P)≤ C , [K(P) : K]≤ d}

is finite for any constant C , d ∈ R.

Proof. There is m ∈ N so L ⊗m is very ample. By Theorem 2.3.5, mhL is a height
function associated with L ⊗m. Thus we can assume WLOG L is very ample. By
Theorem 2.4.3 it suffices to prove the statement for X = Pn

Q
and L = OPn(1), i.e.

for standard height on Pn
Q

. But then this follows almost immediately from Theorem
1.2.11.

In the rest of this section, we will derive some explicit bounds on Weil heights.
This will be techinical. Let us fix a situation below for the rest of the section.

Setup 2.4.5

Let X be irreducible projective overQ of dimension r. Then there is aQ-morphism

π : X → Pr+1
Q

so X is mapped birationally onto a hypersurface (to see this, note K(X ) is sep-
arable over K , hence K(X ) is finite dimension K( f1, ..., fr)-vector space, with fi

algebraically independent. Thus K(X ) is generated over K( f1, ..., fr) by a rational
function fr+1. Now let p be the minimal polynomial of fr+1 over K( f1, ..., fr), and
assume p = q( f1, ..., fr) with q ∈ K[x1, ..., x r+1], then V (q) is a birational model
of X .). We denote by z0, ..., zr+1 the standard coordinates of Pr+1

Q
. Then we may

assume the hypersurface is given by irreducible homogeneous polynomial f of
degree d of the form

f (z0, ..., zr+1) = f0 + f1zr+1 + ...+ fd−1zd−1
r+1 + zd

r+1

with fi ∈ Q[z0, ..., zr] homogeneous of degree d − i, f (0, ..., 0, 1) ̸= 0 and d the
degree of X with respect to π∗OPr+1(1).

Now let S be the homogeneous coordiante ring of π(X ). We have

S =Q[z0, ..., zr+1]/J

where J is the homogeneous ideal generated by f . Let z i be the image of zi in S
(0 ≤ i ≤ r + 1) and note z r+1 is integral over Q[z0, ..., z r]. The variables z0, ..., z r are
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algebraically independent, because the transcendence degree of Q(π(X )) = Q(X ) is
r. By abuse of notation, we denote them by z0, ..., zr again. The minimal polynomial
of z r+1 over Q[z0, ..., zr] is f (z0, ..., zr), since

0= f0 + f1z r+1 + ...+ fd−1zd−1
r+1 + zd

r+1 (Eq. 2.4.1)

The elements 1, z r+1, z2
r+1, ..., zd+1

r+1 forms a basis of S over Q[z0, ..., zr] and so we have
an isomorphism of Q-vector spaces

S
∼
−→ {p ∈Q[z0, ..., zr+1] : degzr+1

(p)< d}

By means of this map, we define the height of an element of S as the height of the
corresponding polynomial (defined below).

Definition 2.4.6

The height of a polynomial

f (t1, ..., tn) =
∑

( j1,..., jn)

a( j1,..., jn) t
j1
1 ...t jn

n =
∑

j

aj t
j

with coefficients in a number field K is the quantity

h( f ) =
∑

v∈MK

log| f |v

where
| f |v:=max

j
|aj|v

is called the Gauss norm.

Now, for l ∈ N, there are uniquely determined ql j ∈Q[z0, ..., zr] for j = 0, ..., d − 1
so

z l
r+1 =

d−1
∑

j=0

ql jz
j
r+1 (Eq. 2.4.2)

The polynomials ql j are homogeneous of degree l− j (elements of negative degree are
0), and ql j = δl j for 0≤ l ≤ d − 1, where δl j is Kronecker delta. We may now assume
l ≥ d. Then equation Eq. 2.4.1 shows

z l
r+1 = −

d−1
∑

k=0

fkzk+l−d
r+1 = −

d−1
∑

j=0

d−1
∑

k=0

fkqk+l−d, jz
j
r+1

leading to recursive formula

ql j = −
d−1
∑

k=0

fkqk+l−d, j (Eq. 2.4.3)

where j = 0, ..., d − 1.

Now let F be a number field containing the coefficients of f0, ..., fd−1 and for v ∈ MF

define δv be 1 if v is archimedean and 0 otherwise. The recursion Eq. 2.4.3 gives

|ql j|v≤
�

�

�

�

�

d + r + 1
r + 1

�

�

�

�

�

δv

v

· | f |v max
l ′=l−d,...,l−1

|ql ′ j|v
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for the Gauss norms. Here we used the fact fk has
�d−k+r

r

�

summands and

d
∑

k=0

�

d − k+ r
r

�

=
�

d + r + 1
r + 1

�

(Eq. 2.4.4)

By induction we obtain

|ql j|v≤
�

�

�

�

�

d + r + 1
r + 1

�

�

�

�

�

(l−d)δv

v

· | f |l−d+1
v (Eq. 2.4.5)

and thus Lemma 1.1.11 leads to

h(ql j)≤ (l − d + 1)h( f ) + (l − d) log
�

d + r + 1
r + 1

�

Let φ : X → Pn
Q

be a closed embedding and x0, ..., xn be the standard coordinates
on Pn. Let p be a vector with entries pi ∈ S (here S is defined below Setup 2.4.5),
i = 0, ..., n, homogeneous of degree d(p).

Definition 2.4.7

The vector p is said to be a presentation of φ if the following conditions are
satisfied:

1. If l ∈ {0, ..., n} and x l |X ̸= 0, then pl ̸= 0
2. If l as in (1) and i ∈ {0, ..., n}, then

pi

pl
=

x i

x l
|X

in Q(X )

The number d(p) is called the degree of presentation p. Consider the vector whose
entries are given by all the coefficients of p0, ..., pn. The height of the corresponding
point in appropriate projective space is called the height of p.

Lemma 2.4.8

Let φ j : X → Pn j

Q
, j = 1, ..., k, be closed embeddings with presentations p(i) and

n= (n1 + 1)...(nk + 1)− 1. Then:

1. the join φ1#...#φk gives a closed embedding φ : X → Pn
Q

.
2. φ has a presentation defined by

pi := p(1)i1
...p(k)ik

of degree d(p) =
∑

i d(p(i)) and height

h(p)≤
k
∑

j=1

h(p( j)) + r
k−1
∑

j=1

log

�

6+
6d(p( j)

r

�

+ C(k− 1)
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with C = (d − 1)h( f ) + d(d + r + 1).

Proof. Since φ j are closed immersions, their join is also closed immersion. Also, p is a
presentation of φ of degree

∑

d(p(i)). It remains to prove the estimation on heights,
and we will do this by induction. In fact, it suffices to prove the claim for k = 2.

We have decomposition

p( j)i j
=

d−1
∑

m=0

p( j)i j ,m
zm

r+1

whence

pi =

�

d−1
∑

m1=1

p(1)i1,m1
zm1

r+1

��

d−1
∑

m2=0

p(2)i2,m2
zm2

r+1

�

Then, Eq. 2.4.2 leads to decomposition

pi =
d−1
∑

m=0

pi,mzm
r+1

with

pi,m :=
∑

m1+m2=m

p(1)i1,m1
p(2)i2,m2

+
2d−2
∑

l=d

∑

m1+m2=l
m1,m2≤d−1

p(1)i1,m1
p(2)i2,m2

qlm

Let F be a number field extension of Q containing the coefficients of f0, ..., fd−1 and
of all p( j)i j ,m j

for j = 1,2, and for v ∈ MF define δv = 1 for archimedean places and 0
otherwise. Then we see

|pi,m|v≤ |B|δv
v ·|p

(1)
i1
|·|p(2)i2
|v· max

l=d,...,2d−2
(1, |qlm|v) (Eq. 2.4.6)

where B is an upper bound for

m
∑

m1=0

�

r + d(p(1))−m1

r

�

+
2d−2
∑

l=d

d−1
∑

m1=l−d+1

�

r + d(p(1))−m1

r

��

r + l −m
r

�

Thereby we have used the fact the number of monomials of degree D in r+1 variables
is equal to
�r+D

D

�

. We use the estimate

�

r + d(p(1))−m1

r

�

≤
1
r!
(r + d(p(1)))r <

�

3+
3d(p(1))

r

�r

and
�

r + l −m
r

�

≤ r r+l−m

to conclude

B = d2r+2d

�

3+
3d(p(1))

r

�r

is such an upper bound. For Eq. 2.4.5 and Eq. 2.4.6 we see

h(p)≤ h(p(1)) + h(p(2)) + log B + (d − 1)h( f ) + (d − 2) log
�

r + d + 1
d + 1

�
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With the above value of B, we see

h(p)≤ h(p(1)) + h(p(2)) + r log(6+ 6d(p(1))/r) + C

with
C = (d − 1)h( f ) + d(d + r + 1)

Notations

For any list of elements in additive abelian group G, say a= (a1, ..., an) ∈ Gn, we
use |a|=
∑

ai. For any list of integers a = (a1, ..., an) and a list of elements in a
multiplicative abelian group G, say x ∈ Gn, we define

xa = x a1
1 ...x an

n

For closed subvariety Y of PN , we denote I (Y ) the ideal sheaf of Y .

Proposition 2.4.9

Let φ : X → Pn
Q

, ψ : X → Pm
Q

be closed embeddings over Q, with corresponding
presentations p,q. We assume

φ∗OPn(1)∼=ψ∗OPm(1)

There is a positive integer kψ such that if k ≥ kψ, then

H1(Pm
Q

,I (ψX )⊗OPm(k)) = 0

If k ≥ kψ and χ(k) := dim(H0(X ,ψ∗OPm(k))) and P ∈ X , then

hφ(P)− hψ(P)≤ (n+ 1)χ(k) · (Ap,q + Bp,q + C)

where
Ap,q = h(p) + h(q)

Bp,q = r log
�

6+
6d(p)

r

�

+ r log
�

6+
6d(q)

r

�

C =
1
k

log((n+ 1)χ(k)) + (d − 1)h( f ) + d(d + r + 1)

Proof. The existence of kψ is just Kodaira vanishing. There is short exact sequence

0→I (ψX )→ OPm →ψ∗OX → 0

of coherent sheaves on Pm. Tensor with OPm(k) we have

0→I (ψX )⊗OPm(k)→ OPm(k)→ (ψ∗OX )⊗OPm(k)→ 0
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The projection formula gives

(ψ∗OX )⊗OPm(k)∼=ψ∗ψ∗OPm(k)

Consider the induced long exact sequence of cohomology, we get

0 H0(Pm,I (ψX )⊗OPm(k)) H0(Pm,OPm(k))

H0(X ,ψ∗OPm(k)) H1(Pm,I (ψX )⊗OPm(k)) ...

The last cohomology is 0 by the choice of k, and we infer that the map

H0(Pm,OPm(k)) H0(X ,ψ∗OPm(k))

is surjection. By assumption, φ∗OPn(1) ∼=ψ∗OPm(1) and we may identify them as the
same. Let x = (x0 : ... : xn) and y = (y0 : ... : ym) be the standard coordinates and
choose B ⊆ {b ∈ Nm+1 : |b|= k} such that

(yb|X )b∈B

is a basis of H0(X ,ψ∗OPm(1)). There are uniquely determined αi,b ∈Q so

x k
i |X=
∑

b∈B

ai,byb|X (Eq. 2.4.7)

Let P ∈ X (Q). Choose a number field F containing x i(P), y j(P) and ai,b for all
i, j,b. By Proposition 2.4.2, we obtain ,for the k-fold ψ(k) =ψ#...#ψ, the equation

k(hφ(P)− hψ(P)) =
∑

v∈MF

logmax
i
|x k

i (P)|v−hψ(k)(P)

=
∑

v∈MF

logmax
i
|x k

i (P)|v−
∑

v∈MF

logmax
|b|=k
|yb(P)|v

By Eq. 2.4.7, the triangle inequality and Lemma 1.1.11, we deduce

hφ(P)− hψ(P)≤
1
k

h(a) +
1
k

logχ(k) (Eq. 2.4.8)

where a is the matrix (ai,b) and h(a) is the height of the matrix viewed as a vector.

We take the ratio of Eq. 2.4.7 with indices i and l and deduce, using the definition
of presentation, that
∑

b∈B

al,bpk
i qb =
∑

b∈B

ai,bpk
l qb for i, l ∈ {0, ..., n} (Eq. 2.4.9)

Conversely, assume (ai,b) is a non-trivial solution of this equation. Then we have

(x i|X )k
∑

b∈B

al,b(y|B)b = (x l |X )k
∑

b∈B

ai,b(y|X )b
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Let i be such that x i|X is not identically 0. Then the last displayed equation shows that
rational function on X defined by

g :=

∑

b∈B ai,byb

x k
i |X

does not depend on the index i. We claim g is constant. To prove this, it suffices to
show g is a regular function (use X is projective). Indeed, since x0, ..., xn generate
OPn(1), we see for any P ∈ X (Q), there is an index i so x i(P) ̸= 0, hence g is regular
at P.

This proves the space of solutions of Eq. 2.4.9 is spanned by the matrix a = (ai,b)
given by Eq. 2.4.7.

Our next task is to estimate h(a). Since a scalar factor does not change the height,
we may estimate the height of any non-trivial solution of Eq. 2.4.9. By Lemma 2.4.8,
we have a natural presentation of φ(k)#ψ(k) in terms of p and q. The elements pk

i qb

of S are entries of that presentation. The decomposition

pk
i qb =

d−1
∑

j=0

cb,i, jz
j
r+1

with uniquely determined cb,i, j ∈Q[z0, ..., zr] leads to the system of equations
∑

b∈B

cb,i, jal,b −
∑

b∈B

cb,l, jai,b = 0 (Eq. 2.4.10)

with i, l ∈ {0, ..., n} and we have j ∈ {0, ..., d − 1}.

Let cb,i, j =
∑

cb,i, j,aza0
0 ...zar

r , so that the coefficients cb,i, j,a of the polynomials cb,i, j

form a matrix c with

h(c)≤ k(h(p) + h(q) + r log(6+ 6d(p)/r) + r log(6+ 6d(q)/r) + C) (Eq. 2.4.11)

again by Lemma 2.4.8. Moreover, Eq. 2.4.10 is equivalent to the linear system of
equations

∑

b∈B

(cb,i, j,aal,b − cb,l, j,aai,b) = 0

indexed by i, j, l,a and unknowns ai,b. Let A denote the matrix associated to this linear
system; its entries are either 0 or ±cb,i, j,a. The numbers of unknowns is (n+1)|B| and,
as remarked before, the space of solutions has dimension 1. Therefore, the rank R of
the matrix A is

R= (n+ 1)χ(k)− 1

Let A′ be a R × (R + 1) submatrix of A of full rank R. Since A and A′ have the same
kernel, we look for a non-zero solution of A′ · a= 0. The estimate

max
ρ=0,...,R

|aρ|v≤ |R! |δv
δ
·max

b,i, j,a
|cb,i, j,a|Rv

and Eq. 2.4.11 lead to

h(a)≤ Rk(h(p) + h(q) + r log(6+ 6d(p)/r) + r log(6+ 6d(q)/r) + C) + log(R! )
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By Eq. 2.4.8 and the definition of R, we now get

hφ(P)− hψ(P)≤ (n+ 1)χ(k)(Ap,q + Bp,q + C)

as desired.

In the above proposition, almost all terms besides χ(k) are quite explicit. The
following lemma estimates χ(k), which solves the problem.

Lemma 2.4.10

Letψ : X → Pm
Q

be a closed embedding overQ with presentation q and k ≥ kψ, χ(k)
be as in Proposition 2.4.9. Then

χ(k)≤
�

kd(q) + r + 1
r + 1

�

−
�

kd(q)− d + r + 1
r + 1

�

Proof. Let y0, ..., ym be the standard coordinates of Pm
Q

. We have seen the linear map

H0(Pm,OPm(k))→ H0(X ,ψ∗OPm(k))

is surjective. Choose B ⊆ {b ∈ Nm+1 : |b|= k} such that (yb|X )b∈B such that is a basis of
H0(X ,ψ∗OPm(k)). The above monomials are linearly independent iff the polynomials
(qb)b∈B are linearly independent, by definition of a presentation. Thus

χ(k)≤ dim Skd(q) =
�

kd(q) + r + 1
r + 1

�

−
�

kd(q)− d + r + 1
r + 1

�

because Skd(q) is isomorphic to the space of homogeneous polynomials p(z0, ..., zr+1)
of degree kd(q) such that degzr+1

(p)< d, and then we apply Eq. 2.4.5.

For the main estimation we want to achieve, we will need the following result.

Lemma 2.4.11

Let Y ⊆ Pm
Q

be irreducible smooth closed and c = min(1 + dim(Y ), codimPm(Y )).
Then

H i(Pm
Q

,IY ⊗OPm(k)) = 0

for i ≥ 1, k ≥ c(deg(Y )− 1)− dim(Y ).
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Lemma 2.4.12

If ψ : X → Pm
Q

be closed immersion with presentation q, then

deg(ψX )≤ d(q)r d

Proof. The Hilbert polynomial of ψX has degree r and its leading coefficient is equal
to deg(ψX )/r!. For large k, the Hilbert polynomial at k equals the left-hand side of the
inequality in Lemma 2.4.10. On the other hand, the right-hand side of that inequality
is also a polynomial of degree r in k, with leading coefficient

d(q)r

(r + 1)!
((r + 1) + · · ·+ 1)−

d(q)r

(r + 1)!
((r + 1− d) + · · ·+ (1− d)) =

d(q)r d
r!

This concludes the proof.

Now we are ready to summarize the explicit bound we worked out, in the previous
lemmas and propositions.

Let X be smooth irreducible projective variety over Q, r = dim X and π : X → Pr+1
Q

a morphism overQ, mapping X birationally to a hypersurface given by a homogeneous
polynomial f of degree d.

Assume φ : X → Pn and ψ : X → Pm are closed Q-immersions with φ∗OPn(1) ∼=
ψ∗OPm(1) and corresponding presentations p and q. We assume d(q)≥ 1.

Theorem 2.4.13

For each P ∈ X , it holds

hφ(P)− hψ(P)≤ C1(n+ 1)d(q)r
2+r(Ap,q + Bp,q + log(n+ 1) + C2)

where

C1 = d
(d + 1)r(r + 1)r

r!
, C2 = (d − 1)h( f ) + d(d + r + 1) + r + 1

Ap,q = h(p) + h(q)

Bp,q = r log
�

6+
6d(p)

r

�

+ r log
�

6+
6d(q)

r

�

Proof. Let k := d(r + 1)d(q)r , then k ≥ kψ by Lemma 2.4.11 and Lemma 2.4.12. We
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have

χ(k)≤
�

kd(q) + r + 1
r + 1

�

−
�

kd(q) + r + 1− d
r + 1

�

≤ d
�

kd(q) + r
r

�

≤
d
r!
(kd(q) + r)r

where the first step comes from Lemma 2.4.10 and the second step uses Eq. 2.4.4.
From the definition of k, we see

χ(k)≤ d
(d + 1)r(r + 1)r

r!
d(q)r

2+r

An easy majorization shows k−1 logχ(k) ≤ r + 1 and the result follows from Proposi-
tion 2.4.9.

2.5 Bounded Subsets

In order to show the differences between the local height of two presentations diff
by a constant, we introduced bounded sets in affine varieties. In this section, we will
extend this notion to arbitrary varieties.

Let K be a field and fix an embedding K ⊆ K . For the moment, we fix an absolute
value |·| on K .

Definition 2.5.1

A subset E ⊆ X (K) is called bounded in X , if there is a finite affine open cover
(Ui)i∈I of X , and sets Ei with Ei ⊆ Ui(K), such that Ei is bounded (as in Definition
2.2.4) in Ui and E =

⋃

i∈I Ei.

Remark 2.5.2

If E is bounded in X , Lemma 2.2.6 shows for any fintie open affine cover {Ui} of
X , there is a subdivision

E =
⋃

i∈I

Ei

with Ei ⊆ Ui(K), such that each Ei is bounded in Ui.

It is easy to show the image of a bounded set under a morphism is again bounded.
Moreover, if Y ⊆ X is closed and E ⊆ Y (K) is bounded, then E is bounded in X .
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Example 2.5.3

Assume K is locally compact with respect to |·| (e.g. the completion of a number
field with respect to a place). We consider X (K) the topology induced locally by
open balls with respect to closed embeddings into affine spaces and maximum
norm. Then the topology is locally compact and independent of the embeddings.
It depends only on the place v represented by |·| and its called the v-topology on
X (K). A subset E of X (K) is bounded in X if and only if E is relatively compact
in X (K).

Example 2.5.4

The set Pn(K) is bounded in the projective space Pn
K . We can use affine cover

X i = {x ∈ Pn
K : x i ̸= 0} and decomposition Ei = {x ∈ Pn

K : |x i|= max j=0,...,n|x j|}
of E. By Remark 2.5.2, the set of K-rational points is bounded in any projective
variety.

Proposition 2.5.5

If X is a complete variety over K, then X (K) is bounded in X . More generally, the
inverse image of a bounded subset under a proper morphism remains bounded.

Proof. By Chow’s lemma, there is projective Y over K and surjective birational Y → X .
Using Remark 2.5.2 and Example 2.5.4, X (K) is bounded in X .

More generally, if φ : X ′→ X is proper over K and E ⊆ X (K) is bounded in X . By
Chow’s lemma, the proof is reduced to the case of a projective morphism and hence
X ′ = X × Pn

K with φ the first projection. By Remark 2.5.2 we can assume X is affine
and the same argument as in Example 2.5.4 shows φ−1(E) is bounded in X × Pn

K .

Remark 2.5.6

Its trivial that any subset of a bounded subset is bounded. However, we may not
pass from X to an open subset. For example, the set E = {x ∈ Pn(K) : x0 ̸= 0}
is bounded but it is certainly not bounded in the affine space {x ∈ Pn

K : x0 ̸= 0}.
Thus the notion of bounded subset is not local and some care is needed.

Definition 2.5.7

A real function f on a K-variety X is locally bounded if f (E) is bounded for every
bounded E in X .
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Setup 2.5.8

To apply this later on the theory of heights, we need a generalization to several
absolute values. Let MK be a set of places on K . For every v ∈ MK , an absolute
value |·|v is fixed in the equivalence class of v. We assume {v ∈ MK : |α|v ̸= 1}
is finite. Let M be a set of places on K . We assume every u ∈ M restricts to a
v ∈ MK and we denote by |·|u the unique extension of |·|v to an absolute value
representing u.

Definition 2.5.9

Let U be affine K-variety and (Eu)u∈M a family of subsets of U(K). The family is
said to be M -bounded in U if for any f ∈ K[U] the quantity

Cv( f ) = sup
u∈M

sup
u|v

sup
P∈Eu
| f (P)|u

is finite for every v ∈ MK and Cv( f )> 1 for only finitely many v.

More generally, if X is K-variety and (Eu)u∈M a family of subsets of X (K). Then
(Eu) is M -bounded if there is finite affine open cover {Ui} so

Eu =
⋃

i∈I

Eu
i , Eu

i ⊆ Ui(K)

such that (Eu
i )u∈M is M -bounded in Ui for all i.

If M has only one element, then E ⊆ U(K) is M -bounded iff E is bounded in U in the
sense we defined before.

Remark 2.5.10

We note Lemma 2.2.5 and Lemma 2.2.6 extend to the situation with several ab-
solute values instead of one.

Definition 2.5.11

A subset E ⊆ X (K) is M -bounded if the constant family (E)u∈M is M -bounded.

Example 2.5.12

The set Pn(K) is M -bounded in Pn
K .

Proposition 2.5.13

A complete K-variety is M-bounded. More generally, the inverse image of an M-
bounded family of subsets under a proper morphism is M-bounded.
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Definition 2.5.14

A real function f on X × M is called locally M -bounded if, for any M -bounded
family (Eu)u∈M in X , there is for every v ∈ MK a non-negative real number γv,
with γv ̸= 0 only for finitely many v ∈ MK , so for all u ∈ M with v | u, we have

| f (Eu, u)|≤ γv
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Chapter 3

Abelian Varieties

In this chapter, we will study basic properties of abelian varieties and Jacobians of
algebraic curves.

3.1 Group Varieties

We let K be a field and K an algebraic closure. We assume all varieties and morphisms
are over K .

After definition, we will prove constancy lemma, which roughly says if φ is con-
stant on X ×Y on one fiber, then φ is constant on all fibers. As an application, we will
show abelian varieties are commutative and every morphism of abelian varieties is a
translation of a homomorphism.

Next, we will show a generic property of a group variety holds everywhere, and
thus prove abelian varieties are smooth, dimension formula and other properties holds
for homomorphisms and that tangent bundle is trivial. Then, we will show a rational
map to an abelian variety is a morphism at all smooth points. Finally, we show complex
abelian varieties are biholomorphic to complex tori with positive definite Riemann
forms.

Definition 3.1.1

Let S be a scheme and G an S-scheme, then we say G is a group scheme (over
S) if there is a factorization of the functor hG : (Sch/S)opp → (Set) through the
forgetful functor (Grp)→ (Set).

By Yoneda’s lemma, the above definition is equivalent to the following two data:

1. For all S-scheme T , there is a group structure on GS(T ) := HomS(T, G) which is
functorial in T (i.e. the morphism GS(T )→ GS(T ′) induced by T ′→ T is always
a group homomorphism)

2. Three S-morphisms m : G×S G→ G, i : G→ G and e : S→ G, which correspond
to multiplication, inverse and unit of the group.
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In particular, if G happends to be a variety, then we say G is a group variety (over
K).

Definition 3.1.2

An abelian variety is a geometrically irreducible and geometrically reduced com-
plete group variety.

Example 3.1.3

Let Mn be the set of n by n matrices. Then this is an irreducible affine group variety
over K . The determinant is a morphism det : Mn → A1

K and thus we have affine
open irreducible subvariety GL(n) defined as the complement of the vanishing
locus of the determinant. In particular, SL(n), which is defined by det(a) = 1, is
a subvariety of GL(n) that is also an affine group variety.

Here are some facts about group varieties:

1. Every affine group variety is isomorphic to a closed subgroup of GL(n).
2. Let G be irreducible group variety over perfect field K , then there is a smallest

irreducible affine closed subgroup H and abelian variety A so we have exact
sequence

0→ H → G→ A→ 0

Thus, to study general group varieties, we have to understant both affine group va-
rieties and abelian varieties. In particular, since the trivial group variety A0

K is the
only complete geometrically irreducible affine variety, no other affine group variety is
abelian variety.

Before we can prove the constancy lemma, we note the following remark.

Remark 3.1.4

Let X be proper irreducible over K and suppose X → Y is a K-morphism with
Y affine of finite type, then this morphism must be constant. To see this, note
we may assume both X , Y are reduced by passing to their underlying reduced
subscheme. Say Y = Spec A, i.e. X → Y is the same as A→ Γ(X ,OX ). Now since
X is proper hence complete, Γ(X ,OX ) is finite dimensional K-vector space (to see
this, X reduced means Γ(X ,OX ) is reduced finite dimensional K-algebra, but X is
also irreducible, thus it must be a field). Hence the image of A in Γ(X ,OX ) must
be a field, say k, then we see X → Y factor through X → Spec k→ Y as desired.

Lemma 3.1.5: Constancy Lemma

Let X , Y, Z be varieties such that X is complete and X , Y geometrically irreducible.
If f : X × Y → Z is a morphism such that f (X × {y0}) = {z0} for some y0 ∈ Y and
z0 ∈ Z, then f (X × {y}) is a point for all y ∈ Y .

Proof. By base change, we may assume K = K is ACF. Let U be open affine around z0.
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The image
C = {y ∈ Y : ∃x ∈ X , f (x , y) ∈ Z\U}

of f −1(Z\U) by the projection X × Y → Y is closed as X is complete. Then

V = Y \C = {y ∈ Y : ∀x ∈ X , f (x , y) ∈ U}

is open neighbourhood of y0 and, for any y ∈ V , we have X → U , given by x 7→
f (x , y). Since X is complete and irreducible and U is affine, the morphism has to be
constant for any y ∈ V , with image f (x0, y) choice of a point x0 ∈ X (Remark 3.1.4
above). Now note

S = {y ∈ Y : | f (X × {y})|= 1}=
⋂

x1,x2∈X

{y ∈ Y : f (x1, y) = f (x2, y)}

is closed in Y . Since it contains the non-empty open subset V of Y and since Y is
irreducible, we conclude S = Y , proving our claim.

Corollary 3.1.5.1

Let X , Y be geometrically irreducible variety with at least one K-rational point. We
assume X is complete. A morphism f : X × Y → G of a product into a group variety
factorizes as f (x , y) = g(x)h(y), for suitable morphism g : X → G and h : Y → G.

Proof. We choose y0 ∈ Y (K) and define g : X → G by g(x) = f (x , y0). The morphism
F : X×Y → G defined by F(x , y)g(x)−1 f (x , y) satisfies F(X×{y0}) = {ε}where ε ∈ G
is the identity of G. Now Constancy Lemma 3.1.5 shows F(X × {y}) is a point, say
h(y), for every y ∈ Y , and f (x , y) = g(x)h(y). In order to verify h is a K-morphism,
note h= f (x0, ·)g(x0)−1 for any x0 ∈ X (K).

Corollary 3.1.5.2

Let φ : A→ G be a morphism of abelian variety A into group variety G. Then the
map

φ : A→ G, a 7→ φ(a)φ(εA)
−1

is a homomorphism of group varieties.

Proof. Apply the Constancy lemma 3.1.5 with f : A× A→ G, given by

(x , y) 7→ψ(x)ψ(y)ψ(x y)−1

and with y0, z0 the identity of A, G, respectively. We conclude the restriction of f to
A× {y} is a constant map for every y . Since f ({εA} × A) = {εG}, we deduce f is
constant, with image the identity of G.
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Corollary 3.1.5.3

An abelian variety is commutative.

Proof. By Corollary 3.1.5.2, the inverse map ι is a homomorphism of group varieties.
This is equivalent to commutativity.

Example 3.1.6

The affine line A1
K is not complete because x y = 1 is closed subvariety of A1×A1,

while its projection on the second factor isA1\{0}, not closed inA1
K . Now consider

the morphism f : A1 × A1 → A1 given by (x , y) 7→ x y . Then f satisfies the
hypothesis of Lemma 3.1.5. This shows constancy lemma does not hold for non-
complete X .

From now on, we will use additive notation for abelian varieties, i.e. m(x , y) =
x+ y , i(x) = −x , and denote the identity by 0. For a ∈ A, we have the translation map
τa(x) = x+a. For n ∈ Z, we denote [n] the endomorphism of A, which is multplication
by n. The kernel of [n] is denoted by A[n], and it forms the torsion subgroups of A.

Remark 3.1.7

In the following, we note if X is locally of finite type and geometrically reduced
scheme over K , then X contains an open dense locus of smooth points.

This problem is local on X , thus assume X is quasi-compact with irreducible
components X i. Then Z =

⋃

i ̸= j X i ∩ X j is nowhere dense, and thus we may re-
place X by X\Z . Thus we may assume X is irreducible as X\Z is disjoint union
of irreducible schemes. Since X is irreducible and reduced, its integral (inte-
gral=irreducible+reduced). Let η ∈ X be its generic point. Then the function
field K(X ) = κ(η) is geometrically reduced over K , hence separable over K . Let
U = Spec A ⊆ X be any nonempty affine open so κ(η) = A(0) is the fraction field
of A. This implies (recall the following: if S is finite type k-algebra, p ∈ Spec S
and κ(p) separable over k, then S is smooth at p over k if and only if Sp is regular)
A is smooth at (0) over K . By definition this means some principal localization of
A is smooth over K .

Proposition 3.1.8

A geometrically reduced group variety is smooth.

Proof. By base change, we may assume K is ACF. The set of smooth points of X is open,
and since X is geometrically reduced, the smooth locus is dense (Remark 3.1.7). As
above, we can define left and right translation by a point of the group variety. They
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are automorphisms and so the left translation of U is also smooth. If we vary the left
translations, then we get an open cover of the group variety, proving the claim.

Remark 3.1.9

Suppose X is K-scheme, then clearly it is geometrically connected implies X is
connected.

Next, suppose X is of finite type and connected over K . Then we show if X
admits a K-rational point then X is geometrically connected. First, we see if X is
quasi-compact, then X is geometrically connected if and only if XK ′ is connected
for all finite separable extension K ′ of K . We will assume this fact.

Now, if K ′/K is finite separable, then we see Spec K ′ → Spec K is finite flat,
and hence universally closed and universally open at the same time. Thus XK ′ →
XK = X is open and closed, finite and flat. This means any connected component
of XK ′ surjects onto connected components of X (say Z is a connected component
of XK ′ , then Z ,→ XK ′ is open and closed, thus Z ,→ XK ′ → X is open and closed,
thus the image of Z is open and closed in X , hence a connected component of X ).

To conclude the proof, note we assumed X is connected, thus every connected
component surjects onto X , which means all connected components have the
same K-rational point x : Spec K → X in their image. But the base change of
this rational point xK ′ : Spec K ′ → X along Spec K ′ → Spec K is just a single
K ′-rational point, thus all the connected components of XK ′ meet at this single
K ′-rational point, i.e. XK ′ is connected.

Proposition 3.1.10

For a group variety G over K, the following are equivalent:

1. G is connected
2. G is geometrically connected
3. G is irreducible
4. G is geometrically irreducible

In particular, a connected complete geometrically reduced group variety over K is
abelian variety.

Proof. First, we note K-variety with at least one K-rational point is connected iff its
geometrically connected (Remark 3.1.9). Thus (1)⇔ (2). Every irreducible variety
is connected, so it remains to prove (2) ⇒ (4). We may assume K is ACF and G
connected. By Proposition 3.1.8 shows G is smooth and thus its disjoint union of its
irreducible components, i.e. G is irreducible.
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Next, as you would guess, we want to study im(φ) and ker(φ) for φ : G → H
a homomorphism of group varieties. It can be shown (e.g. you can find this result
in SGA) im(φ) is a closed subgroup variety of H, but the kernel need more care. To
be exact, it will always be a scheme, but its possible to have non-reduced structure,
e.g. take G = H = Gm and φ(t) = t2, then ker(φ) = Spec k[t]/(t2 − 1), where
k[t]/(t2 − 1) is not a integral domain. However, since all our main results will only
concern varieties, we will take

ker(φ) := {x ∈ G(K) : φ(x) = εH}

which will be a closed subgroup variety of G.

Theorem 3.1.11: Dimension Theorem

Let φ : G→ H be a surjective homomorhpism of irreducible group varieties. Then

dim(G) = dim(H) + dim(ker(φ))

This roughly follows from the following: if Y is Noetherian and universally catenary,
f : X → Y surjective morphism of irreducible schemes of finite type, then

dim X = dim Y + dim f −1(η)

where η is the generic point of Y . Using this, and note all fibers of φ : G → H are
isomorphic to ker(φ), we are done.

Lemma 3.1.12

Let R be Noetherian integral domain, A finitely generated R-algebra, and M a finitely
generated A-module. Then there is s ∈ R\{0} such that the localization Ms is free
Rs-module.

Theorem 3.1.13: Generic Flatness

Let f : X → Y be quasi-compact morphism locally of finite presentation and assume
Y is integral. Let F be quasi-coherent OX -module of finite presentation. Then there
is open dense U ⊆ Y such that F | f −1(U) is flat over U.

Proof. The question is local on Y , so we assume Y = Spec A is affine, where A is integral
domain. Since f is quasi-compact, we find open affine fintie cover X =

⋃

i Ui. If
we find dense open subsets U of Y as in the theorem for each Ui → Y , then their
intersection wil lsatisfy the desired conclusion for f .

Thus we may assume X = Spec B is affine, and then B is A-algebra of finite presenta-
tion, and F is quasi-coherent OX -module associated with the B-module M = Γ(X ,F )
of finite presentation. By elimination of Noetherianness, we may assume the situation
arises by base change for A0 → A, where A0 is a Noetherian subring of A, from an
analogous situation over A0. Over A0, the conclusion follows from Lemma 3.1.12, and
since flatness is stable under base change, we are done.
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Corollary 3.1.13.1

Let f : X → Y be a morphism of finite type and locally of finite presentation, and
assume Y is integral. Then there is dense open U ⊆ Y such that f | f −1(U): f −1(U)→ U
is flat.

Proposition 3.1.14

Let φ : G → H be surjective homomorphism of irreducible group varieties. Then φ
is flat. Moreover, if dim(G) = dim(H), then φ is finite and |ker(φ)| is equal the
separable degree of the field extension K(G) over K(H).

Proof. By generic flatness (Corollary 3.1.13.1), there is open dense subset U of G such
that φ|U is flat. Of course, any translate of U is as good as U . Assuming for a moment
K is ACF, we may cover G by translates of U . This proves flatness of φ. If K is not ACF,
we base change to K , and since flat satisfies fppf descent (actually fpqc descent), see
Stack Project, Tag 02YJ, we see φ is flat over K iff φK is flat.

Next, assume dim(G) = dim(H), then there is an open dense subset U ′ of H such
that φ induces a fintie map U := φ−1(U ′) → U ′ whose fibers have cardinality equal
the separable degree of K(G) over K(H). Also, this cardinality equals |ker(φ)|. Again,
we assume K is ACF to cover G by translates of U proving finiteness of φ overall, and
if K is not ACF, we can prove this by a base change as we have fppf descent.

A rational curve is a curve birational to P1
K . A variety is rationally connected if any

two points in X (K)may be connected by a rational curve over K . It follows from Con-
stancy Lemma 3.1.5 that abelian varieties do not contain rational curves. In particular,
a morphism X → A into abelian variety contracts the rational curves of X to points. It
follows that any morphism of a rationally connected variety, such as Pn, into abelian
variety is constant.

Proposition 3.1.15

Any morphism f : P1
K → G of the projective line into a group variety is constant.

Proof. Let (x0 : x1) be homogeneous coordinates on P1
K . The map P1×A1→ P1 given

by ((x0 : x1), y) 7→ (x0 : (x1+x0 y)) is a morphism. Now let f : P1→ G be a morphism,
we apply Corollary 3.1.5.1 to the composition

P1 ×A1 s
−→ P1 f

−→ G

and see f ◦ s factors as f (s(x , y)) = g(x)h(y) for two suitable morphisms g : P1→ G
and h : A1→ G.

We set y = 0 and note s(x , 0) = x , i.e. g(x) = f (x)h(0)−1. Thus

f (s(x , y)) = f (x)h(0)−1h(y)
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Next set x =∞, we see s(∞, y) =∞ and hence

f (∞) = f (∞)h(0)−1h(y)

This shows h(y) = h(0), i.e. h is a constant map and f (s(x , y)) = f (x). Finally, take
x = 0 we see s(0, y) = y and so f (y) = f (0).

Corollary 3.1.15.1

Let U ⊆ P1
K be open and A be an abelian variety. Then f : U → A is constant for any

f .

Proof. By valuative criterion of properness f extends to a morphism P1→ A.

Theorem 3.1.16

Let φ : X ¹¹Ë G be rational map of smooth X into group variety G and Umax the
domain of φ. Then every irreducible component of X\Umax is of codimension 1.

Corollary 3.1.16.1

A ratinoal map from a smooth variety to an abelian variety is a morphism.

Proof. Let φ : X ¹¹Ë A be a rational map with domain Umax. By valuative criterion of
properness, X\Umax has codimension at least 2. But then we see Umax = X by Theorem
3.1.16.

Our next goal is to prove the differential of multiplication on a group variety is
given by addition.

Proposition 3.1.17

Let m : G × G → G be multiplication of a smooth group variety G. Then the differ-
ential of m at ε is the map TG,ε ⊕ TG,ε→ TG,ε given by addition of tangent vectors.

Proof. In general we have TX×X ′,(x ,x ′) = TX ,x ⊕ TX ′,x ′ . Thus TG×G,(ε,ε) = TG,ε ⊕ TG,ε. For
∂ ∈ TG,ε, we have

dm(∂ , 0) = dm ◦ dι(∂ )
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where ι : G → G × G is given by g 7→ (g,ε). Since dm ◦ dι = d(m ◦ ι), we conclude
dm(∂ , 0) = ∂ . In the same say, we prove dm(0,∂ ) = ∂ . By linearity of dm, this gives
the claim.

Corollary 3.1.17.1

Let G be smooth group variety and for n ∈ Z, let [n] : G → G be the map x 7→ xn.
Then the differential of [n] at ε is the endomorphism of TG,ε given by multiplying
tangent vectors with n.

Proposition 3.1.18

Let G be an irreducible smooth group variety. Then the tangent bundle TG on G is a
trivial vector bundle of rank equal dim(G).

Proof. Let ∂ε ∈ TG,ε. By translation, we extend ∂ε to a vector field ∂ on G. More
precisely, let τx(y) := y x be right translation on G and ∂x( f ) = ∂ε( f ◦ τx) for any
x ∈ G and f ∈ OG,x . Standard arguments for derivatives show ∂ is a vector field on
G. Clearly, linearly independent tangent vectors in ε extends to vector fields, which
are linearly independent in every fiber.

3.2 Review: Curves and Surfaces

A curve over a field K is a pure dimensional K-variety of dimension 1.

Note any curve K is birational to a regular projective curve over K . To see this,
note a disjoint union of projective curves is projective. Hence we may assume C is
irreducible. Now passing to open affine then to projective closure, we may assume
C is projective. The normalization π : C ′ → C is a birational fintie morphism. In
particular, C ′ will still be projective, and since normal curve is regular, we are done.

Now, if K is perfect, then a regular curve is smooth. This does not necessarily
hold for non-perfect fields. Thus for any curve C over K , CK is birational to a smooth
projective curve over K .

We use KC to denote the canonical line bundle, which is the dual of the tangent
bundle.

Definition 3.2.1

Let C be a geometrically irreducible smooth projective curve over K . We define
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the genus of C to be
g(C) = dimΓ(C , KC)

In other words, g(C) is the dimension of the globally defined 1-forms on C . For exam-
ple, if C is smooth plane curve of degree d (i.e. C = V ( f (x0, x1, x2)) of some suitable
polynomial of degree d), then the genus formula

g(C) =
1
2
(d − 1)(d − 2)

holds.

We see the degree of a zero-dimensional cycle does not depend on its rational
equivalence class, thus we see deg(L ) is well-defined.

Theorem 3.2.2: Riemann-Roch

Let L be a line bundle on the geometrically irreducible smooth projective curve C
over K, then

dimΓ(C ,L )− dimΓ(C ,KC ⊗L −1) = deg(L ) + 1− g(C)

As an application of this, by setting L =KC , we see deg(KC) = 2g(C)−2. Using
cohomology, we can reformulate the Riemann-Roch theorem by

χ(L ) = deg(L ) + 1− g(C)

where χ(L ) = H0(C ,L )−H1(C ,L ) is the Euler characteristic of L . To see this, just
note by Serre duality, H1(C ,L ) is the dual space of H0(C ,Ω1

C ⊗L −1).

Remark 3.2.3

Let C be a smooth geometrically irreducible projective curve over K and L a line
bundle on C . Then L is ample if and only if deg(L )> 0. If deg(L )≥ 2g(C)+1,
then L is very ample.

3.3 Elliptic Curves

By Proposition 3.1.18, the cotangent bundle of an abelian variety over K is trivial.
Thus an abelian variety of dimension 1 has genus 1, i.e. is an elliptic curve. In this
section, we prove the converse, i.e. elliptic curve has a group structure and is an
abelian variety.

Definition 3.3.1

An elliptic curve over K is a geometrically irreducible smooth projective curve E
of genus g(E) = 1, equipped with a rational point P0 ∈ E(K).
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Note geometrically irreducible is the same as irreducible for us, since we have at
least one K-rational point. Let E be elliptic curve over K and D be a divisor on EK of
degree deg(D) > 0. The space of global sections Γ(EK ,O(D)) may be realized as the
subspace

L (D) := { f ∈ K(EK)
× : ÷( f )≥ −D} ∪ {0}

in K(EK), using the homomorphism s 7→ s/sD. By Riemann-Roch, we see

dimK L (D) = deg(D) (Eq. 3.3.1)

hence the corresponding linear system |DK | has dimension deg(D)− 1. It follows that
two distinct points (viewed as Weil divisors) on E are rationally equivalent over K .

Let us fix a base point P0 ∈ E(K). For two point P1, P2 ∈ E(K), let D := [P1] +
[P2]− [P0]. Thus deg(D) = 1 and L (D) is one-dimensional, generated by a function
f , unique up to multiplication by a scalar. By construction, if P0 /∈ {P1, P2}, then
f has pole divisor [P1] + [P2] and vanishes at P0 and at exactly one other point P3

(this one extra point is because dim(L (D)) = 1), which is the unique point rationally
equivalent to [P1] + [P2]− [P0]. This make sense even if P1 or P2 equals P0. Thus we
get a well-defined composition law on E by (P1, P2) 7→ P1 + P2 := P3.

We should distinguish carefully between addition of points P1, P2 on E and of the
corresponding divisors [P1], [P2]. Remembering that Pic0(EK) is the group of rational
equivalence classes of divisors of degree 0, we get an additive map

E→ Pic0(EK), P 7→ [P]− [P0]

By Eq. 3.3.1 this map is bijective. We will later give more geometric interpretation of
the addition rule.

Proposition 3.3.2

If the group structure on an elliptic curve E over K with base point P0 is given by
bijective map

E→ Pic0(EK), P 7→ [P]− [P0]

then E is an abelian variety defined over K.

We will prove this result throughout the section, as we gain more understanding of
elliptic curves.

Now let us first give a classical argument showing E has a model given by a smooth
cubic curve. Let us realize Γ(E,O(D)) via

L (D) = { f ∈ K(E)× : ÷( f )≥ −D} ∪ {0}

for any divisor D on E. If deg(D) > 0, then by Riemann-Rock, L (D) has dimension
deg(D). We have an ascending chain of K-vector spaces

L ([P0]) ⊆L (2[P0]) ⊆ ... ⊆L (6[P0])

and the jth member has dimension j.
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Clearly 1 is a basis of L ([P0]). Since P0 is defined over K , there are x , y ∈ K(E)
such that 1, x is a basis of L (2[P0]) and 1, x , y is a basis of L (3[P0]). By looking at the
order of pole at P0, its clear 1, x , y, x2 is a basis of L (4[P0]) and 1, x , y, x2, x y is a basis
of L (5[P0]). Moreover, x3, y2 ∈L (6[P0]). This gives 7 elements 1, x , y, x2, x y, x3, y2

spanning L (6[P0]), where dimL (6[P0]) = 6. Thus there must be ci ∈ K so

c0 + c1 x + c2 y + c3 x2 + c4 x y + c5 x3 + c6 y2 = 0

By the above, c5 and c6 are different from 0, so that we may normalize c5 = −1. If we
divide by c3

6 and replace x by x/c6 and y by y/c2
6 , we get a relation of the form

y2 + a1 x y + a3 y = x3 + a2 x2 + a4 x + a6 (Eq. 3.3.2)

with ai ∈ K . Since deg(3[P0]) = 3= 2g(E)+1, the divisor 3[P0] is very ample. Hence
the basis of L (3[P0]) corresponding to 1, x , y induces a closed embedding of E into
P2

K . We know by Eq. 3.3.2 that the image of E is contained in the projective curve
with Weierstrass equation

x0 x2
2 + a1 x0 x1 x2 + a3 x2

0 x3 = x3
1 + a2 x0 x2

1 + a4 x2
0 x1 + a6 x3

0

in the homogeneous coordinates (x0 : x1 : x2) of P2
K .

It is easy to prove the curve defined above is geometrically irreducible, hence it
gives a projective model of E as a smooth plane cubic curve. Note also that the ratinoal
functions x = x1/x0 and y = x2/x0 are nothing else than the two functions x , y
defined before, hence the affine form Eq. 3.3.2 of the Weierstrass equation describes
the affine curve E ∩{x0 ̸= 0}. The only point of E outside this part is the point (0 : 0 :
1) ∈ P2

K , corresponding to P0 ∈ E. It is easily seen that, in this model, P0 is an inflexion
point of E.

Remark 3.3.3

If char(K) ̸= 2, then replacing y by 1
2(y−a1 x−a3) leads to a Weierstrass equation

with a1 = a3 = 0, i.e. we get

y2 = 4x3 + b2 x2 + 2b4 x + b6

where
b2 = a2

1 + 4a2, b4 = 2a4 + a1a3, b6 = a2
3 + 4a6

Then the Jacobi criterion shows a Weierstrass equation describes a smooth curve
C in P2

K if and only if the discriminant of the cubic polynomial x3+a2 x2+a4 x+a6

is not zero. By the genus formula

g(C) =
1
2
(deg(C)− 1)(deg(C)− 2)

this is an elliptic curve. If in addition char(K) ̸= 3, then a further linear transfor-
mation (x , y) 7→ ( x−3b2

36 , y
108) leads to the Weierstrass short form

y2 = x3 − 27c4 x − 54c6
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where
c4 = b2

2 − 24b4, c6 = −b3
2 + 36b2 b4 − 216b6

Now let us go back to any characteristic. We will describe a more explicit group
structure on the abelian group E, beginning by proving the inverse operation is a
morphism.

Consider the rational equivalence relation

[P1] + [P2] + [P3]∼ 3[P0] (Eq. 3.3.3)

on EK . This relation is equivalent to the geometric statement that the points P1, P2, P3

are the three intersection points, counted with multiplicity, of a straight line with E.
We verify this as follows. The lines in P2

K
are just the divisors of the global sections of

OP2
K
(1) and, by construction, the restriction of this line bundle to E is isomorphic to

O(3[P0]). First, we assume [P1]+[P2]+[P3]∼ 3[P0], then there is s′ ∈ Γ(EK ,O(3[P0]))
with ÷(s′) = [P1] + [P2] + [P3]. By construction of the embedding E ,→ P2

K
, there is

s ∈ Γ(P2
K
,OP2

K
(1)) with s′ = s|E. Then the line ℓ = ÷(s) is the line through the three

points Pi. Indeed, by definition of proper intersection product, we have

ℓ · E = ÷(s|E) = ÷(s′) = [P1] + [P2] + [P3]

The converse is proved the same way by reversing the previous argument.

The zero element of E is P0 = (0 : 0 : 1). The inverse P2 := −P1 of a point P1 ∈ E is
characterized by the rational equivalence [P1] + [P2]∼ 2[P0], which can be rewritten
as the special case

[P0] + [P1] + [P2]∼ 3[P0]

of Eq. 3.3.3. It follows P0, P1, P2 are on a straight line and in fact, noting P0 = (0 : 0 : 1),
we see that, if P1 ̸= P0, then P2 is the residual finite intersection of E with the vertical
line in (x , y)-plane going through P1. If (x1, y1) are the affine coordinates of P1, then,
using Eq. 3.3.2, the affine coordinates (x2, y2) of P2 are given by

x2 = x1, y2 = −a1 x1 − a3 − y1

Thus the inverse map is an automorphism of the affine part of E defined over K . On
the other hand, a rational map of a smooth projective curve is always a morphism. We
conclude the above restriction extends to an automorphism of E. This requires 0 map
to 0, hence the inverse map is a morphism on E defined over K .

Now we study the addition on the elliptic curve a bit closer. By the above, it is
enough to construct

P3 = −(P1 + P2)

The point P3 is characterized by the rational equivalence Eq. 3.3.3. As we have seen
above, P3 is the third intersection point of the line ℓ through P1 and P2 with E, taking
this line to be the tangent line to E at P1 if P1 = P2.

If P1 ̸= P0 and P2 /∈ {P0,−P1}, then the third intersection point of the line through
P1, P2 with E is contained in the (x , y)-plane. Let y = ax + b be the equation for this
line. We eliminate y in Eq. 3.3.2 obtaining a cubic equation for x , with two known
solutions x1, x2. This equation has the form

x3 − (a2 + a1a− a2)x
2 + lower degree terms= 0

52



The third solution x3 is determined by the trace x1 + x2 + x3 = a2 + a1a − a2. Since
P1+P2 = −P3, applying the inverse as above, we conclude the following result.

Proposition 3.3.4: Addition Law

Let E be the elliptic curve in normal form

y2 = a1 x y + a3 y = x3 + a2 x2 + a4 x + a6

Then the origin O of the group E is the unique point at infinity and the group law +
is defined as follows. Let P1 = (x1, y1), P2 = (x2, y2) be two finite points on E and
set

a =

¨ y2−y1
x2−x1

if x1 ̸= x2
3x2

1+2a2 x1+a4−a1 y1

2y1+a1 x1+a3
otherwise

b = y1 − ax1

Then:

1. The inverse of P1 is given by −P1 = (x1,−a1 x1 − a3 − y1)
2. If x2 = x1 and y2 = −a1 x1 − a3 − y1, then P1 + P2 = O
3. Otherwise, we have

P1+ P2 = (a
2+a1a−a2− x1− x2,−(a+a1)(a

2+a1a−a2− x1− x2)−a3− b)

The addition law can be seen visually as the following:
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The addition law shows that addition is a rational map. In order to finish proof
of Proposition 3.3.2, it remains to show + is a morphism. To show rational map
extends to a morphism, it suffices to prove that over K . In a first step, we show
translation τQ by Q ∈ E is a morphism. We may assume Q ̸= O. By the formulae in
Proposition 3.3.4, τQ is a rational map which restricts to a morphism E\{O,Q,−Q} →
E\{Q, O,Q+Q}. Since every rational map between projective smooth curves extends
to a morphism (valuative criterion), we get a morphism τ′Q : E→ E which agrees with
τQ on E\{O,Q,−Q}. It remains to prove τQ = τ′Q. For R ∈ E, we see τ′Q ◦ τ

′
R = τ

′
Q+R.

In particular, every τ′Q is an isomorphism with inverse τ′−Q. Thus τ′Q maps {O,Q,−Q}
onto {Q,Q+Q, O}. For any R /∈ {O,Q,−Q,Q+Q,−Q−Q} we have

τ′R(τ
′
Q(Q)) = τ

′
Q+R(Q) = τ

′
Q(τ
′
R(Q)) = τ

′
Q(Q+ R) =Q+Q+ R

This excludes τ′Q(Q) =Q immediately. On the other hand, we know τ′R(O) ∈ {O, R, R+
R}, hence τ′Q(Q) = O is only possible if Q+Q = O. This proves

τ′Q(Q) =Q+Q = τQ(Q)

The equation
τ′Q(−Q) = O = τQ(−Q)

is proved in a similar fashion. Thus, using that τ′Q is a bijection, we conclude τ′Q(O) =
Q = τQ(O). We have handled all exceptions, thereby proving τQ = τ′Q.

Next we show addition is a morphism. The formulae in Proposition 3.3.4 show
that addition is a rational map m, which is a morphism outside

Z := {(P, P) : P ∈ E} ∪ {(P,−P) : P ∈ E} ∪ (E × {O})∪ ({O} × E)

For (P,Q) ∈ Z , there are R, S ∈ E such that (P + R,Q + S) /∈ Z . Since translations are
morphisms, we see

τ−P−Q ◦m ◦ (τR ×τS)

is a morphism in a neighbourhood of (P,Q) and agrees with+ everywhere. This proves
+ is a morphism.

Remark 3.3.5

Complex analytically, an elliptic curve is biholomorphic toC/ΛwhereΛ is a lattice
in C. In dimension 1 the converse is true, i.e. every one-dimensional complex
torus is biholomorphic to an abelian variety. The description of the elliptic curve
determined by C/Λ is done quite explicitly by means of Weierstrass ℘-function
associated to the lattice Λ, namely

℘(z) =
1
z2
+
∑

ω∈Λ\{0}

�

1
(z −ω)2

−
1
ω2

�

It is Λ-periodic meromorphic function on C with double periods at lattice points.
In particular it satisfies the first-order differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3
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where
g2 = 60
∑

ω∈Λ\{0}

1
ω4

, g3 = 140
∑

ω∈Λ\{0}

1
ω6

The map z 7→ (℘(z),℘′(z)) is biholomorphic fromC/Λ onto the elliptic curve with
affine Weierstrass equation y2 = 4x3 − g2 x − g3.

3.4 The Picard Variety

Elliptic curves are the only standard explicit examples of abelian varieties. This is
because higher-dimensional abelian varieties can be defined only by means of a very
large number of equations, and little can be understood by just looking at the equa-
tions.

For example, in Flynn’s paper “The Jacobian and Formal Group of a Curve of Genus
2 over an Arbitrary Ground Field”, they wrote down a set of defining equations for a
2 dimensional abelian variety, which contains 72 equations, and they look like

a0a3 = a1a1 − a2
5 f0 − a2

3 f4 + 4a4a13 f0 f5 + a5a10 f1 f5 + 8a4a10 f1 f6 + a3a10 (4 f2 f6−
f3 f5) + 8a4a11 f0 f6 + 2a13a15 f0 f1 f5 + a10a15

�

4 f0 f2 f6 + 2 f0 f3 f5 + 3 f 2
1 f6

�

+

4a11a15 f0 f1 f6 + 2a10a13

�

f0 f 2
5 + 3 f1 f3 f6

�

+ 8a11a13 f0 f3 f6+

a2
10

�

4 f1 f5 f6 + 4 f2 f4 f6 − f2 f 2
5 − f 2

3 f6

�

+ a10a11

�

4 f0 f5 f6 + 4 f1 f4 f6 − f1 f 2
5

�

+ a2
11 f0

�

4 f4 f6 − f 2
5

�

The above is just one equation.

However, abelian varieties are ubiquitous in algebraic geometry and they occur
most naturally through the Picard variety, which we will study here.

Let us fix a ground field K and algebraic closure K .

If φ : X → Y is a morphism of varieties over K and y ∈ Y , then the fiber of φ over
y is denoted by X y . The pullback of L ∈ Pic(X ) to the fiber X y is denoted Ly . Its an
element of Pic(X y). Note X y and Ly are only defined over κ(y). Often we identify X
with X y using the map x 7→ (x , y), which is only defined over κ(y).

In the following, we consider L ∈ Pic(X × Y ) and the fibers with respect to the
projections p1, p2 onto the factors. For x ∈ X , y ∈ Y , we have

Ly =L |X×{y}∈ Pic(Xκ(y)), Lx =L |{x}×Y∈ Pic(Yκ(x))

Theorem 3.4.1: Seesaw Principle

Let X be a geometrically irreducible smooth complete variety over K and Y an irre-
ducible smooth variety over K. Let L ∈ Pic(X × Y ) and suppose there is dense open
U ⊆ Y so Ly = 0 for all y ∈ U. Then L is equal to the pullback of an element of
Pic(Y ) by p2.
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This result holds even without the smoothness assumption. We often use this prin-
ciple in the following form.

Corollary 3.4.1.1

Let X , Y be smooth varieties over K and assume Y is irreducible and that X is com-
plete and geometrically irreducible. Let L ∈ Pic(X × Y ) with Ly = 0 for all y in
an open dense subset of Y and with Lx = 0 for all x ∈ X (K). Then L = 0.

Proof. By Theorem 3.4.1, we have L = p∗2L
′ for some L ′ ∈ Pic(Y ). Now consider

the closed embedding ιx : Y → X × Y , y 7→ (x , y). Since p2 ◦ ιx is the identity map on
Y , we see

L ′ = ι∗x p∗2L
′ =Lx = 0

Since this holds for all x , we are done.

Corollary 3.4.1.2

Let A be abelian variety over K, pi the ith projection A×A onto A, and m be addition
as usual. The following are equivalent for L ∈ Pic(A):

1. m∗(L ) = p∗1L + p∗2L
2. τ∗a(L ) =L for all a ∈ A

If (1) or (2) holds, then [−1]∗(L ) = −L .

Proof. The equivalence is a consequence of

(m∗(L )− p∗1(L )− p∗2(L ))|A×{a}= τ
∗
a(L )−L

and the seesaw principle from Corollary 3.4.1.1. If we pullback equation in (1) by the
morphism

A→ A× A, a 7→ (a,−a)

then we get [−1]∗(L ) = −L .

Theorem 3.4.2: Poincaré

There is a subfamily P of Pic0(X ), parametrized by an irreducible smooth complete
variety B, with the following universal property. For any subfamily L of Pic0(X ),
parametrized by an irreducible variety T , there is a unique morphism φ : T → B
with (IdX ×φ)∗(P) =L .
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The variety B is called the Picard variety of X and P is called the Poincaré class.
If (B′,P ′) is another such pair, then we have φ : B′ → B and φ′ : B → B′ such that
φ ◦ φ′ = IdB by uniqueness, and similarly φ′ ◦ φ = IdB′ . In other words, (B,P) is
uniquely determined.

The proof of this result is beyond the scope of this note, but it follows from the
existence of Picard scheme.

We will denote the Picard variety of X by P ic0(X ), and will show the F -rational
point of Picard variety may be identified with Pic0(X F) for any extension F/K . From
this, we see byu taking X = E for some elliptic curve over non-algebraically closed
field, it is easy to choose a divisor of degree 0 which is not invariant under Gal(K/K),
and hence not defined over K . This shows P ic0(X ) has more points than Pic0(X ).

Corollary 3.4.2.1

Let F/K be field extension, then:

1. By base change, we have Pic(X ) ⊆ Pic(X F)
2. P ic0(X F) = P ic0(X )F and its Poincaré class is obtained from P by base

change to F
3. P ic0(X )(F) = Pic0(X F) by identifying b with Pb

Remark 3.4.3

By the seesaw principle as in Corollary 3.4.1.1 and Corollary 3.4.2.1, the Poincaré
class P is uniquely characterized by the conditions:

1. PL = L for any L ∈ P ic0(X ), i.e. the fiber of P at any degree 0 line
bundle is just that line bundle itself

2. PP0
= 0

Note that, in the situation of Theorem 3.4.2, the morphism φ is given by

φ(t) =Lt =Pφ(t)

This is clear by restriction of (IdX ×φ)∗(P) = L to the fiber X × {t} and then using
the rule ( f ◦ g)∗ = g∗ ◦ f ∗ to show that

Lt = (IdX ×φ)∗(P)|X×{t}(IdX ×φ(t))∗(P) =Pφ(t) = φ(t)

Theorem 3.4.4

Together with its canonical group structure induced by tensor product of line bundles,
P ic0(X ) is an abelian variety over K.

Proof. Its enough to show B = P ic0(X ) is a group variety, then use the fact B is smooth
and Proposition 3.1.10. Let p1, p2 be the projections of X × B × B → X × B. For
L = p∗1P + p∗2P and A ,B ∈ B, the restriction of L to the fiber X × {A } × {B} is
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equal A +B. In order to see this, note the restriction of p∗1P is equal the restriction
of P to X × {A } and then use Remark 3.4.3, we obtain

m(A ,A ) =Pm(A ,B) =L(A ,B) =A +B

and so addition is a morphism. Let ι : B→ B be the unique morphism with

(IdX ×ι)∗(P) = −P

We get similarly
ι(B) =Pι(B) = −PB = −B

so the inverse is also a morphism.

We summarize our results as follows.

Theorem 3.4.5

Let X be an irreducible smooth complete variety over K and P0 ∈ X (K) a base point
of X . Then the group Pic0(XK) has a unique structure as an abelian variety over K,
called the Picard variety and denoted by P ic0(X ), with the properties:

1. There is P ∈ Pic(X ×P ic0(X )) such that PB =B for B ∈ P ic0(X ) and PP0

is trivial
2. For any subfamily L of Pic0(X ) parametrized by an irreducible variety T over

K, the set-theoretic map

T → P ic0(X ), t 7→Lt

is actually a morphism over K.

The uniquely determined class P is called the Poincaré class.

Now given φ : X → X ′ a pointed morphism between complete smooth variety over
K with base point P0 ∈ X (K) and P ′0 ∈ X ′(K) respectively (i.e. we require φ(P0) = P ′0).
Then the map

φ̂ : P ic0(X ′)→ P ic(X ), L ′ 7→ φ∗L ′

is called the dual map of φ, which is a homomorphism of abelian varieties.

Remark 3.4.6

In the complex analytic situation, take X be irreducible proper smooth complex
variety viewed as a compact connected complex manifold. View the transition
functions (gα,β) for a line bundle L on X as a Čech cocycle valued in O×X , we see
Pic(X ) = H1(X ,O×X ). Now consider the exponential map short exact sequence

0→ ZX → OX
exp
−→ O×X → 0
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Now take cohomology long sequence, we get

0

Z C C×

H1(X ,Z) H1(X ,OX ) H1(X ,O×X ) = Pic(X )

H2(X ,Z) ...

c1

where c1 gives the first Chern class of line bundles. A line bundle is equivalent to
0 if and only if L has (first) Chern class 0. If we use canonical isomorphism

H1(X ,OX )∼= H0,1(X )

from Dolbeault complex, we conclude the Picard variety is biholomorphic to the
complex torus H0,1(X )/H1(X ,Z).

3.5 The Theorem of Square

In the above, we defined the Picard variety P ic0(X ) of irreducible smooth complete
variety X with K-rational base point. In this section, we assume X is abelian variety
over K and the base point is the origin.

Definition 3.5.1

Let A be smooth complete abelian variety, then P ic0(A) is called the dual abelian
variety of A and denoted by Â.

The theorem of square says for any L ∈ Pic(A), the point φL (a) := τ∗a(L )−L is
in Â and additive in a ∈ A. Over C, its clear that the translated τ∗a(L ) is algebraically
equivalent to L using a path from 0 to a for the deformation. In the special case of
an elliptic curve E with origin P0 and divisor D we have

τ∗P(D)∼ D− [P] + [P0]

and the theorem of the square is evident from [P]− [P0] algebraically equivalent to 0
and [P +Q]∼ [P] + [Q]− [P0].

As a consequence of the theorem of the square, we will prove that an abelian
variety is always projective. If L is ample, we will see φL is surjective and has finite
kernel, thus Â has the same dimension as A.
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Theorem 3.5.2

Let L ∈ Pic(A) and a ∈ A. Then φL (a) := τ∗a(L ) −L ∈ P ic0(A)(κ(a)) and
φL : A→ P ic0(A) is a homomorphism of abelian varieties over K.

Proof. Let pi be the ith projection of A× A onto A and consider

L ′ = m∗(L )− p∗1(L )− p∗2(L )

on A× A. We already remarked in the proof of Corollary 3.4.1.2 that

L ′|A×{a}= τ∗a(L )−L

for a ∈ A. Thus φL (a) ∈ Pic0(Aκ(a)) = P ic0(A)(κ(a)) by the definition of algebraic
equivalence and Corollary 3.4.2.1. Since L ′|{0}×A= 0, L ′ is a subfamily of Pic0(A)
parametrized by A. Theorem 3.4.5 shows φL is a morphism of varieties defined over
K . Since φL (0) is trivial, the map is a homomorphism of abelian varieties (Corollary
3.1.5.2).

Theorem 3.5.3: Theorem of Square

For a, b ∈ A, we have

τ∗a+b(L ) +L = τ∗a(L ) +τ
∗
b(L )

Proof. Apply Theorem 3.5.2, then subtract 2L on both side.

Theorem 3.5.4

Let B ∈ Pic(A) such that φB = 0. Then for any ample L ∈ Pic(A), there is some
a ∈ A with

B = τ∗a(L )−L

Remark 3.5.5

The kernel of φL gives much information about L . If L is ample, then the
kernel is finite. We will prove a partial converse of this statement, which we will
use later. On the other hand, ker(φL ) = A if L ∈ Pic0(A). These statements
about kernel will be proved next.

Fact 3.5.6: Ample L ∼= OX means X affine

We first recall the following result. Let X be qcqs scheme, the following are equiv-
alent:
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1. X is quasi-affine
2. There is line bundle L such that L and L −1 are ample
3. Every quasi-coherent OX -module is generated by its global sections
4. The canonical morphism X → Spec(Γ(X ,OX )) is quasi-compact open schemat-

ically dominant immersion.

Now, we claim if X proper variety over k, L ample line bundle with L ∼=
OX , then X is affine. To see this, by assumption and the result above we see
X → SpecΓ(X ,OX ) is open immersion. Now X is also proper, which means X →
SpecΓ(X ,OX ) is closed. Thus X must be affine as desired. In particular, note X
proper and affine means X is finite.

Proposition 3.5.7

A class L ∈ Pic(A) is ample if and only if ker(φL ) is finite and H0(A,L n) ̸= 0 for
some n> 0.

Proof. Assume L is ample. Let B be the connected component of the closed subgroup
ker(φL ) containing 0. For b ∈ B we have

τ∗vL =L

and hence
[−1]∗(L |B) = −L |B

by Corollary 3.4.1.2. Since

0B =L |B+[−1]∗(L |B)

is ample, B has to be the trivial abelian subvariety {0} (using the fact A is complete
and then Fact 3.5.6). Thus ker(φL ) is finite. Choose n so large that L n is very ample,
which gives H0(A,L n) ̸= 0.

In the other direction, we may assume H0(A,L ) ̸= 0, i.e. there is an effective
divisor D so O(D)∼=L . Thus Lemma 3.5.8 shows L is ample.

Lemma 3.5.8

Let D be effective divisor on A and suppose the subgroup {a ∈ A : τ∗a(D) = D} is
finite. Then D is ample on A.

Proof. Note D is ample iff DK is ample over AK . Thus we assume K is ACF. The proof
then proceeds by proving first the linear system |2D| is base-point free and define a
morphism φ of A into some projective space. Then we show φ is finite morphism and
the conclusion comes by pullback. The details are as follows.

Let a, b ∈ A. If b is in the support of the effective divisor

Ea := τ∗a(D) +τ
∗
−a(D)
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then a + b or b − a is in the support of D. For any given b ∈ A we can always find
a /∈ (D− b)∪ (b− D), i.e. b /∈ supp(Ea). Then by the theorem of the square 3.5.3 the
effective divisor Ea is an element of |2D|. Thus the linear system |2D| is base-point
free and thus defines a morphism φ : A→ Pn

K .

The morphism φ is proper. Let F be an irreducible component of any fiber. All
elements of |2D| are pullbacks of hyperplanes by the definition of φ. Now for any
a ∈ A either F is contained in the support of Ea or F ∩ supp(Ea) = ;, hence we can
find a ∈ A so F and the support of Ea are disjoint, i.e. a /∈ supp(D)− F . Let Z be an
irreducible component of D, then Z−F is irreducible closed subset of A not containing
a. We conclude Z − F is of codimension 1. Now note for any b ∈ F , we have

Z − F = Z − b

whence it follows Z is invariant by translation in F−F . Therefore, the same is true for
D instead of Z . By assumption, this is only possible for dim(F) = 0 and we conclude φ
has finite fiber. Thus, since φ is proper, it must also be finite (finite fiber=quasi-fintie,
proper+quasi-finite means finite). Now recall pullback of ample by finite morphism is
ample, we see 2D is ample.

Corollary 3.5.8.1

An abelian variety is projective.

Proof. Let U be affine open subset of A containing 0. We may assume dim(A)≥ 1. Let
Z1, ..., Zr be irreducible components of A\U . Enlarging them, we may assume Z1, ..., Zr

are prime divisors. In order to see this note the complement of a divisor in an affine
smooth variety is smooth. Setting

D =
∑

Zi

the subgroup B = {a ∈ A : τ∗a(D) = D} is closed and for b ∈ B, U+ b = B. Since 0 ∈ U ,
we have

B ⊆ U

As a complete variety, B must be finite. Lemma 3.5.8 shows D is ample, hence A is
projective.

Proposition 3.5.9

For B ∈ Pic(A), the following are equivalent:

1. B ∈ Pic0(A)
2. ker(φB) = A
3. For every ample L ∈ Pic(A), there is a ∈ A so B = τ∗a(L )−L
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4. There is ample L ∈ Pic(A), such that B = τ∗a(L )−L for some a ∈ A

Proof. (1)⇒ (2): By Corollary 3.4.2.1, we may assume K is ACF. Let

φ : A→ P ic0(A)→ P ic0(A)

be the map given by (a,B) 7→ τ∗aB. We will prove below this is a morphism. For
T = A×P ic0(A), consider

L := (m× IdP ic0(A))
∗(P) ∈ Pic(A× T )

where m denotes the addition morphism as usual. Note the restriction of m× IdP ic0(A)
to A×{a}×{B} is given by τa×{B}, by identifying A×{a}×{B} with A. By Remark
3.4.3 and the rule ( f ◦ g)∗ = g∗ ◦ f ∗ we get

L |A×{a}×{B}= τ∗aB

and similarly
L |{0}×T=P

Let us denote by p2 the projection of A× T onto T . The subfamily L − p∗2P of Pic0(A)
parametrized by T induces a morphism T → P ic0(A), which is equal to φ (Theorem
3.4.5). Since φ(A× {0}) = 0, the constancy lemma 3.1.5 shows τ∗a(B) = B for all
a ∈ A, which proves the claim.

(2)⇒ (3): This is Theorem 3.5.4.

Clearly (3)⇒ (4) as the existence of an ample class is by Corollary 3.5.8.1.

(4)⇒ (1): Theorem 3.5.2.

Definition 3.5.10

The Picard variety P ic0(A) is called the dual abelian variety of A and will be
denoted by Â.

Corollary 3.5.10.1

The dual abelian variety of A has the same dimension as A.

Proof. There is an ample L ∈ Pic(A), and thus φL : A→ Â is surjective and finite.
Thus they have the same dimension.
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3.6 Theorem of the Cube

Theorem of the Cube roughly says the pullback of a fixed line bundle on abelian variety
is a quadratic function in the morphism.

Definition 3.6.1

Let M be an abelian group with an involution ∗, i.e. a linear map

M → M , x 7→ x∗

with (x∗)∗ = x for all x ∈ M . Then an element x ∈ M is called even if x∗ = x and
odd if x∗ = −x .

Even and odd elements both form a subgroup of M , and their intersection is the
2-torsion points of M . For x ∈ M , we are looking for a decomposition x = x+ + x−
into even x+ and odd x−. Note such decomposition is determined up to 2-torsions.

Lemma 3.6.2

Let x ∈ M. Then 2x has a decomposition into even and odd parts. If the subgroup
of odd elements is divisible by 2 (recall p-divisible means pM = M), then x has also
such decomposition.

Proof. Just note 2x = (x + x∗)+(x − x∗) is such a decomposition. Next, divisibility by
2 means we can find odd z such that 2z = x − x∗ because x − x∗ is odd. Now we set
x+ = x − z and x− = z, then observe

(x+)
∗ = x∗ − z∗ = x∗ + z
= (x − 2z) + z
= x − z = (x+)

This concludes the proof.

Definition 3.6.3

Let A be abelian variety over K and consider L 7→ [−1]∗L on the abelian group
Pic(A). Hence a line bundle is even if [−1]∗L ∼=L and odd if [−1]∗L ∼=L −1

Proposition 3.6.4

On every abelian variety, there is an even vary ample line bundle.

Proof. By Corollary 3.5.8.1, there is a very ample L ∈ Pic(A). Then L + [−1]∗L is
even and very ample (since L and [−1]∗L are both very ample).
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Definition 3.6.5

Now let q : M → N be a set-theoretic map of abelian groups. If the function
b : M ×M → N

(x , y) 7→ q(x + y)− q(x)− q(y)

is bilinear, then q is called a quadratic function with associated bilinear form
b.

Obviously, b is symmetric.

Definition 3.6.6

A quadratic form is a quadratic function which is homogeneous of degree 2 with
respect to multiplication by integers, i.e. q(kx) = k2q(x) for all k ∈ Z.

The quadratic functions forms an abelian group, and on this group we have an
involution given by q∗(x) := q(−x). To see this is an involution on the group of
quadratic functions, just note (q∗)∗(x) = q∗(−x) = q(x).

By the proof of Lemma 3.6.2, we have a canonical decomposition of 2q into an
even quadratic function O and odd L, given by

Q(x) = q(x) + q(−x), L(x) = q(x)− q(−x)

Definition 3.6.7

Let q be a quadratic function with decomposition Q, L as above. Then Q is called
the associated quadratic form of q and L is called the associated linear form.

Note q(0) = 0 and thus b(x ,−x) = −Q(x). We get Q(x) = b(x , x) as b is bilinear, and
thus Q(x) is inded homogeneous of degree 2. An easy computation shows L is linear.

Lemma 3.6.8

Let q : M → N be quadratic function and n ∈ Z, then

q(nx) =
n2 + n

2
q(x) +

n2 − n
2

q(−x)

Proof. We proceed on induction on |n|. If |n|= 1 then q(x) = q(x) + 0q(−x) and
q(−x) = 0q(x) + q(−x). Suppose our claim holds for values ≤ n. Let b be the associ-
ated bilinear form, then

0= b(nx , x) + b(nx ,−x)
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and expand we get

0= q(nx + x)− q(nx)− q(x) + q(nx − x)− q(nx)− q(−x)
= q((n+ 1)x)− 2q(nx) + q((n− 1)x)− q(x)− q(−x)

and so

q((n+ 1)x) = 2q(nx)− q((n− 1)x) + q(x) + q(−x)

= (n2 + n+ 1)q(x) + (n2 − n+ 1)q(−x)

−
n2 − n

2
q(x)−

n2 − 3x + 2
2

q(−x)

=
n2 + 3n+ 1

2
q(x) +

n2 + n
2

q(−x)

=
(n+ 1)2 + (n+ 1)

2
q(x) +

(n+ 1)2 − (n+ 1)
2

q(−x)

Corollary 3.6.8.1

A quadratic function is even/odd iff its homogeneous of degree 2/1.

Example 3.6.9

Let M = (Z/2Z)2 and N = Z/2Z. Consider q : M → N given by q(x) = 0 iff
x = 0. Then q is odd quadratic function which is not linear.

Now let I ⊆ {1, ..., k} where k ∈ Z>0, then we define

SI : M k→ M , SI(x1, ..., xk) =
∑

i∈I

x i

with the special case of S;(x) = 0.

Remark 3.6.10

Let q : M → N be a set-theoretic function and b(x , y) = q(x + y)− q(x)− q(y).
Then a direct computation shows

q(x + y + z)− q(x + z)− q(x + y)− q(y + z) + q(x) + q(y) + q(z)
= q(x + y + z)− b(x , y)− q(x + z)− q(y + z) + q(z) + q(x)− q(x)
= q(x + y + z)− b(x , y)− b(x , z)− q(y + z)− q(x)
= b(x , y + z)− b(x , y)− b(x , z)

Thus, we see if b(x , y) is bilinear then

q(x + y + z)− q(x + z)− q(x + y)− q(y + z) + q(x) + q(y) + q(z) = 0

as b(x , y + z)− b(x , y)− b(x , z) = b(x , y + z)− b(x , y + z) = 0. Conversely, if

q(x + y + z)− q(x + z)− q(x + y)− q(y + z) + q(x) + q(y) + q(z) = 0
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then we see
b(x , y + z)− b(x , y)− b(x , z) = 0

which says b(x , y) is bilinear. Thus b(x , y) is bilinear (at one input, but this
argument is symmetric) iff for all x , y, z we have

q(x + y + z)− q(x + z)− q(x + y)− q(y + z) + q(x) + q(y) + q(z) = 0

Lemma 3.6.11

Let q be a quadratic function and k an integer. If k ≥ 3, then for all x ∈ M k we have
∑

I⊆{1,...,k}

(−1)|I |q(SI(x)) = 0

Proof. We proceed by induction on k. Suppose k = 3, then by Remark 3.6.10 we are
done. Suppose it holds for k− 1 now, then we get

∑

I⊆{1,...,k}

(−1)|I |q(SI(x))

=
∑

I⊆{1,...,k−1}

(−1)|I |q(SI(x))−
∑

J⊆{1,...,k−1}

(−1)|J |q(SJ(x) + xk)

= −
∑

J⊆{1,...,k−1}

(−1)|J |b(SJ(x), xk)−
∑

J⊆{1,...,k−1}

(−1)|J |q(xk)

because
∑

J⊆{1,...,k−1}

(−1)|J |b(SJ(x), xk)

=
∑

J⊆{1,...,k−1}

(−1)|J |(q(SJ(x) + xk)− q(SJ(x))− q(xk))

Now note b(−, xk) is a quadratic function, and hence we can apply our induction
hypothesis to conclude the first term is 0, i.e.

∑

I⊆{1,...,k}

(−1)|I |q(SI(x)) = −
∑

J⊆{1,...,k−1}

(−1)|J |q(xk)

= −q(xk)
∑

J⊆{1,...,k−1}

(−1)|J |

= −q(xk)
k−1
∑

i=1

�

k− 1
i

�

(−1)i

= −q(xk)(1− 1)k−1

= 0

Now let us apply the above results to M = HomK(X , A) and N = Pic(X ).
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Theorem 3.6.12

Let X be a variety over the field K and A an abelian variety over K with L ∈ Pic(A).
Then the map HomK(X , A)→ Pic(X ) given by φ 7→ φ∗L is quadratic.

Let k ≥ 3 and X = Ak with ith projection pi onto A. For I ⊆ {1, ..., k} we have

SI(p1, ..., pk) =
∑

i∈I

pi

Lemma 3.6.11 shows the theorem implies
∑

I⊆{1,...,k}

(−1)|I |SI(p1, ..., pk)
∗(L ) = 0

For k = 3, this equation

∑

I⊆{1,2,3}

(−1)|I |
�

∑

i∈I

pi

�∗

(L ) = 0 (Eq. 3.6.1)

is called the theorem of the cube.

Proof. Let φ1,φ2,φ3 : X → A and let

Φ : X → A3, x 7→ (φ1(x),φ2(x),φ3(x))

We pullback Eq. 3.6.1 to X usingΦ, then we can prove bilinearity using Remark 3.6.10.
So it is enough to prove the theorem of the cube. Let L ′ be the left-hand side of Eq.
3.6.1. For a, b, c ∈ A, we see

L ′|{a}×{b}×A= τ
∗
a+b(L )−τ

∗
a(L )−τ

∗
b(L ) +L

and this is equal to 0 by Theorem of the square 3.5.3. In the same way, the restriction
of L to {a}×A×{c} is trivial. Now apply seesaw principle 3.4.1.1, we see L |{a}×A×A is
trivial for any a ∈ A. Now L |A×{b}×{c} is also trivial, and apply seesaw principle again,
L is trivial.

Let A be an abelian variety over K . Now we will study the endomorphism [n] :
A→ A, and the main result deals with the kerne A[n] of [n]. This map plays a fun-
damental role in the study of abelian varieties, both geometrically and arithmetically.
The arithmetic importances comes from the construction of the Néron-Tate height and
hence in the proof of the Mordell-Weil.

Proposition 3.6.13

Let L ∈ Pic(A) and n ∈ Z, then

[n]∗L =
n2 + n

2
L +

n2 − n
2
[−1]∗L

68



In particular, we have [n]∗L = n2L if L is even and [n]∗L = −L if L is odd.

Proof. By Theorem 3.6.12 the function

q : Z→ Pic(A), n 7→ [n]∗L

is quadratic. Thus the result follows from Lemma 3.6.8.

Proposition 3.6.14

Let n ∈ Z\{0}. Then [n] is a finite flat surjection of degree n2dim(A). The separable
degree of [n] equal the number of points of any fiber. If char(K) ∤ n, then [n] is an
étale morphism and

A[n]∼= (Z/nZ)2dim(A)

If p = char(K) divides n, then [n] is not separable.

Proof. Let g be the dimension of A. By Corollary 3.5.8.1, there is an ample L ∈ Pic(A).
The restriction of [n]∗L to A[n] is trivial. Since [−1] is an automorphism, [−1]∗L
is also ample. Proposition 3.6.13 shows [n]∗L is ample and in particular it is ample
when restricted to A[n]. Therefore, A[n] must be finite (i.e. Fact 3.5.6). Now the
dimension theorem 3.1.11 and Proposition 3.1.14 shows [n] is surjective finite flat
morphism, whose fiber have cardinality equal the separable degree of [n]. In order to
compute its degree, we use intersection theory. There is a very ample even line bundle
L on A (Proposition 3.6.4), say L = O(D) for a divisor D. By projection formula (i.e.
if φ : X → X ′ is proper, then φ∗(φ∗(D′) · Z) = D′ · φ∗(Z) for any cycle Z on X and
divisor D′ on X ′) we see

[n]∗(D) · ... · [n]∗(D) = deg[n](D · ... · D)

where we take g-fold intersection. By Proposition 3.6.13 we see [n]∗(D)∼ n2D where
∼ denotes rational equivalence of divisors. Noting D · ... · D = deg(X ) ̸= 0, we deduce

n2g = deg[n]

Now recall the differential d[n] is multiplication by n on the tangent space at 0
(Corollary 3.1.17.1).

If char(K) ∤ n, then we see by a translation argument that d[n] induces an isomor-
phism on tangent space. Thus [n] is étale and hence separable. We have seen that the
number of points of A[n] is equal to the separable degree of [n], thus |A[n]|= n2g . For
any m | n, it follows the subgroup A[m] has m2g elements. Thus by the theory of finite
abelian groups, A[n]∼= (Z/nZ)2g .

If p = char(K) divides n, then the differential d[n] vanishes at 0. Hence d[n] van-
ishes everywhere by a translation argument. Since a separable dominant morphism is
generically étale, and [n] is surjective, we see [n] cannot be separable.
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Remark 3.6.15

A surjective homomorphism of abelian varieties of the same dimension is called
an isogeny. Thus by the above we see [n] is an isogeny.

The next topic is characterization of odd elements in Picard group of A, where A is
abelian variety over K .

Recall Definition 3.6.3, where we defined a canonical involution of Pic(A) which
gives even and odd elements. First, we will prove Pic0(A) is divisible subgroup and get
a decomposition into even and odd parts on the Picard group. Then, we will show the
classes in the Picard group algebraically equivalent to 0 are precisely the odd classes.
Finally, we will show the Poincaré class of an abelian variety is even.

Proposition 3.6.16

If L ∈ Pic(A) and r ∈ Z\{0} with rL ∈ Pic0(A), then L ∈ Pic0(A).

Proof. Note rφL = φrL and the latter is equal to 0 by Proposition 3.5.9. Theorem
3.5.2 shows φL is a homomorphism of abelian varieties and soφL = 0 by Proposition
3.6.14. Using once more Proposition 3.5.9 we see L ∈ Pic0(A) as desired.

Corollary 3.6.16.1

Let L ∈ Pic(A). Then there are odd element L− and even element L+ of Pic(A) such
that L =L−+L+. The element L− is determined only up to 2-torsion elements in
Pic(A).

Proof. This follows from Lemma 3.6.2 and Proposition 3.6.16.

Theorem 3.6.17

If L ∈ Pic(A), then [−1]∗L −L ∈ Pic0(A). Moreover, TFAE:

1. L is odd
2. For any variety X , the map Hom(X , A)→ Pic(A) given by φ 7→ φ∗L is linear.
3. If pi is the ith projection of A× A onto A, then

(p1 + p2)
∗(L ) = p∗1L + p∗2L

4. τ∗aL =L for all a ∈ A
5. L ∈ Pic0(A)
6. For all ample L ′ ∈ Pic(A), there is an a ∈ A so L = τ∗a(L

′)−L ′
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7. There is an ample L ′ ∈ Pic(A) so L = τ∗a(L
′)−L ′ for some a ∈ A

Proof. Note (4), (5), (6) and (8) are equivalent by Proposition 3.5.9. By Corollary
3.4.1.2, (3) and (4) are equivalent. We also note (2)⇒ (1) is trivial.

(3) ⇒ (2): Choose φ1,φ2 ∈ Hom(X , A) and define φ be φ(x) = (φ1(x),φ2(x)).
Pulling back the identity in (3) we see (φ1+φ2)∗(L ) = φ∗1(L )+φ

∗
2(L ), which gives

linearity, i.e. we get (2).

We note at this point we have (5)⇔ (4)⇔ (3)⇒ (2)⇒ (1), i.e. (5)⇒ (1).

Now it suffices to prove (1)⇒ (5), but before that we will show [−1]∗L −L ∈
Pic0(A).

For a ∈ A, we have [−1] ◦τa = τ−a ◦ [−1] and thus

τ∗a([−1]∗L )− [−1]∗L = [−1]∗(τ∗−aL −L ) (Eq. 3.6.2)

Since τ∗−aL −L ∈ Pic0(A) (Theorem 3.5.2), the above Eq. 3.6.2 is equal to L −
τ∗−a(L ) by the implication (5) ⇒ (1). By Theorem of the square 3.5.3, the latter is
equal τ∗aL −L , and thus we have proved

τ∗a([−1]∗L )− [−1]∗L = τ∗aL −L

Now we finish (1)⇒ (5). Let L be an odd element of Pic0(A), then

−2L = [−1]∗L −L ∈ Pic0(A)

and thus L ∈ Pic0(A) by Proposition 3.6.16.

Theorem 3.6.18

Let Â be the dual abelian variety with corresponding Poincaré class P ∈ Pic(A× Â).
Then P is even.

Proof. Let B ∈ Â. By Remark 3.4.3 and Theorem ?? we see

([−1]∗P)|A×{B}= [−1]∗(P|A×{−B})[−1]∗(−B) =B

Let B = P ic0(A), then since

([−1]∗P)|{0}×B= [−1]∗(P|{0}×B) = 0

we see [−1]∗P =P by Remark 3.4.3.
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3.7 Curves and Jacobians

Throughout we will let C be irreducible smooth projective curve over field K of genus
g ≥ 1 with base point P0 ∈ C(K). Note the existence of P0 implies C is geometrically
irreducible.

Definition 3.7.1

The Picard variety of C is called the Jacobian variety of C .

We denote the Jacobian by J . Note J is equal as a group to the rational equivalence
class of divisors of degree 0 on CK . For every intermediate field K ⊆ L ⊆ K , Corollary
3.4.2.1 shows the L-rational points of J may be identified with the rational equivalence
classes defined over L.

In the context of complex geometry, there is a more familiar construction of the
Jacobian variety.

Let γ be a 1-cycle on C . Then
∫

γ
ω is a linear functional on the holomorphic 1-

forms on C , whose value depends only on the homology class of γ in H1(C ,Z). Thus
we obtain a homomorphism

H1(C ,Z)→ H1(C ,Ω1
C)
∗

of the homology group H1(C ,Z) into the dual H0(C ,Ω1
C)
∗ of the space of holomorphic

1-forms on C . This embeds H1(C ,Z) as a lattice in H0(C ,Ω1
C)
∗. Then the complex

torus
J := H1(C ,Ω1

C)
∗/H1(C ,Z)

realizes the Jacobian variety complex analytically. We have an embedding

j : C → J , P 7→
∫

γP

where γP is any path connecting the base point P0 with P. The value j(P) is indepen-
dent of the choice of the path. Independently of the choice of the base point P0, we
have homomorphism

Pic0(C)→ J ,
n
∑

i=1

([Pi]− [Q i]) 7→
n
∑

i=1

( j(Pi)− j(Q i))

Abel’s theorem gives the injectivity and Jacobi inversion theorem the surjectivity
of this homomorphism. There is a natural isomorphism of H0(J ,Ω1

J) onto the dual of
the tangent space TJ ,0 (Proposition 3.1.18). Pullback induces an isomorphism

H0(J ,Ω1
J)
∼
−→ H0(C ,Ω1

C) (Eq. 3.7.1)

In particular, this isomorphism holds for any base field K (not just over C). More
precisely, let J = P ic0(C) and consider j : C → J given by P 7→ [P]− [P0]. It follows
from the theory of Picard variety that j is a morphism of varieties over K . In fact,
let ∆ be the diagonal in C × C , p1, p2 the two projections, then [∆]− p∗1[P0]− p∗2[P0]
is a subfamily of Pic0(C) parametrized by C . By Theorem 3.4.5, we conclude j is a
morphism.
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Proposition 3.7.2

The Jacobian variety of C has dimension g.

Proof. By Proposition 3.1.18, the tangent bundle TJ is a trivial vector bundle of rank
dim(J). By duality, the same holds for the cotangent bundle. Now recall the only
regular functions on an irreducible complete variety over ACF are constants. Since J
is geometrically reduced, compatibility of cohomology and base change holds. This
shows

H0(J ,OJ) = K

and hence
dim H0(J ,Ω1

J) = dim(J) · dim H0(J ,OJ) = dim(J)

Now the claim follows from the isomorphism Eq. 3.7.1.

Definition 3.7.3

The theta divisor of J is defined to be

Θ= j(C) + j(C) + ...+ j(C) =
g−1
∑

i=1

j(C)

In the following we will show Θ is indeed a divisor on J , but before that we will
need three lemmas. Note for divisor D and line bundle L , we use L (D) to denote
L ⊗O(D).

Remark 3.7.4

For any r ∈ N, we have a map

jr : C r → J , (P1, ..., Pr) 7→
r
∑

j=1

[Pj]− r[P0]

Since j = j1 and addition on J are both morphisms, we see jr is a morphism. Note
its image is closed as C r is complete. Let a := jr(P1, ..., Pr), then the fiber over a
is

j−1
r (a) =

¨

(Q1, ...,Q r) ∈ C r :
r
∑

j=1

[Q j]∼
r
∑

j=1

[Pj]

«

Suppose 1≤ r ≤ g and (P1, ..., Pr) ∈ C r satisfies i ̸= j⇒ Pi ̸= Pj, and

Γ(CK ,O(
∑

[Pj])) = 1

then the fiber over a is obtained by permuting the entries, namely

j−1
r ( jr(P1, ..., Pr)) = {(Pπ(1), ..., Pπ(r)) : π ∈ Sr}
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By the dimension theorem (for dominant φ : X → Y between irreducible, there
is open dense U ⊆ Y so y ∈ Y implies dim(X y) = dim(X )−dim(Y )), we conclude
dim jr(C r) = r. In particular, Proposition 3.7.2 implies jg is surjective. Moreover,
Θ= jg−1(C g−1) is indeed a divisor.

Proposition 3.7.5

The map j : C → J, P 7→ [P]− [P0] is a closed embedding.

Proof. We may assume K is ACF. Since g ≥ 1, two points of CK are rationally equivalent
iff they are equal (use Riemann-Roch). Hence j is one-to-one. We claim d j induces an
injective map between tangent spaces. In order to prove this, its enough to show the
dual is surjective between cotangent spaces. We have seen for any a ∈ J , a cotangent
vector in a extends canonically to a global section of Ω1

J (Proposition 3.1.18). By
the isomorphism Eq. 3.7.1, its enough to show the evaluation map Γ(C ,Ω1

C) → T ∗C ,P

is surjective for P ∈ C . Note the kernel of the evaluation map is Γ(C ,Ω1
C(−[P])).

By injectivity of j, we know Γ(C ,O([P])) has dimension 1. By the Riemann-Roch
theorem, we conclude that the kernel is g − 1 dimensional and hence the evaluation
map is surjective.

Since J is a projective variety (Corollary 3.5.8.1), we have a closed embedding
J → Pn

K . In order to prove j is a closed embedding, we have to show the linear system
corresponding to the induced map C → Pn

K separates points and tangent vectors. The
first (resp. second) conditions follows by injectivity of j (resp. d j).

As a divisor on J , we also consider

Θ− = [−1]∗Θ= − j(C)− ...− j(C)

In Pic(J), we use θ := O(Θ) and θ− = [−1]∗θ . For a ∈ J , we set ja := τ−a ◦ j, i.e.
ja(P) = j(P)− a.

The pull-back of a divisor D′ with respect to a morphism φ : X → X ′ of irreducible
smooth varieties over K is well defined as a divisor if φ(X ) is not contained in the
support of D′. In this case, viewing D′ as a Cartier divisor on X ′ locally given on U ′

α
by

a rational function f ′
α
, the pullback φ∗(D′) is given on φ−1(U ′

α
) by f ′

α
◦φ. Note φ∗(D′)

is well-defined in CH1(X ) (here CH denotes the Chow group of X , which is cycles on
X mod out by rational equivalence) for any divisor D′ on X . If φ is an isomorphism
(as [−1] is in the cases above) and if D′ is a prime divisor, then φ∗(D′) = φ−1(D′)

Proposition 3.7.6

Assume K is ACF. For all (P1, ..., Pg) ∈ C g , we have the rational equivalence relation

g
∑

i=1

[Pi]∼ j∗a(Θ
−)
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of divisors on C, where a = jg(P1, ..., Pg).

Now for 1≤ r ≤ g, define

Ur :=

¨

(P1, ..., Pr) ∈ C r : (∀i ̸= j, Pi ̸= Pj)∧ dimΓ

�

CK ,O

�

r
∑

j=1

[Pj]

��

= 1

«

One can prove this is open dense in C r , but we will not prove it here.

Corollary 3.7.6.1

For all (P1, ..., Pg) ∈ Ug and a = jg(P1, ..., Pg), we have

g
∑

i=1

[Pi] = j∗a(Θ
−)

as an identity of divisors.

Proof. We may assume, by base change, K is ACF. By Proposition 3.7.6 we see

g
∑

i=1

[Pi]∼ j∗a(Θ
−)

Both sides are effective divisors on C . By assumption, the linear system |
∑g

i=1[Pi]| is
zero-dimensional proving the claim.

Corollary 3.7.6.2

For a ∈ J = P ic0(C), we have

j∗a(θ
−)− j∗(θ−) = a

Proof. By base change and Corollary 3.4.2.1, we may assume K is ACF. Then the claim
follows from surjectivity of jg (Remark 3.7.4) and Proposition 3.7.6.

There are two Poincaré classes in the context of Jacobians. One is the Poincaré
class PC ∈ Pic(C × J), the other is the Poincaré class PJ ∈ Pic(J × Ĵ), where Ĵ is the
dual abelian variety of J . In the last part of this section, we will study those.
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Proposition 3.7.7

Let ∆ be the diagonal of C × C. Then

(IdC × j)∗(PC) = O(∆− C × {P0} − {P0} × C)

Proof. By characterization of Poincaré class in Remark 3.4.3, we get for P ∈ C:

(IdC × j)∗(PC)|C×{P}·PC |C×{ j(P)}= O([P]− [P0])

Since the restriction of O(∆− C ×{P0}− {P0}× C) to C ×{P} is in the same class ,we
get the claim by the seesaw principle in Corollary 3.4.1.1 (noting that the restriction
to {P0} × C of both classes are 0).

Proposition 3.7.8

Let m : J × J → J be addition and p1, p2 two projections. For

L := m∗θ− − p∗1θ
− − p∗2θ

− ∈ Pic(J × J)

we have
( j × IdJ)

∗(L ) = −PC

Proposition 3.7.9

Let φθ , φθ− be the morphisms J → Ĵ defined before (i.e. for a ∈ J, we define
φa(L ) = τ∗a(L )−L ). Let

L = m∗θ− − p∗1θ
− − p∗2θ

−

Then
(IdJ ×φθ−)∗(PJ) = (IdJ ×φθ )∗(PJ) =L

Let us conclude our findings.

Given a curve C of genus g ≥ 1 with base point P0 ∈ C(K), there is a natural
embedding j of C into the Jacobian variety. By Theorem 3.5.2 we have a dual homo-
morphism ĵ : Ĵ → J . The theta divisor is defined by

Θ= j(C) + ...+ j(C) =
g−1
∑

i=1

j(C)

and the corresponding class in Pic(J) is denoted by θ . Let θ− = [−1]∗θ andφθ : J → Ĵ
the natural morphism in Theorem 3.5.2. There are three canonical morphisms from
J × J to J , namely m, p1 and p2. The pullback of the Poincaré class PJ ∈ Pic(J × Ĵ)
by IdJ ×φθ is equal to the class

C := m∗θ− − p∗1θ
− − p∗2θ

−
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and it follows that
C = m∗θ − p∗1θ − p∗2θ

Theorem 3.7.10

The map φθ is an isomorphism of J onto Ĵ whose inverse is − ĵ. Moreover, θ is
ample.
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Chapter 4

Néron-Tate Heights

There are many advantages of Weil’s normalized height h(x) on Gm compared with
more naive definitions: its homogeneous of degree 1, its not negative, and torsion
points on Gm are the points of height 0. In particular it gives a distance function on
Gm(Q)/tors. The heights associated to a divisor retain similar properties only if we
consider them up to a bounded function. Working with them is formally pleasing
because its functorial properties, but the price we paid is this equivalence relation is
too coarse for some of the most important applications.

It was a fundamental discovery of Néron that Weil’s equivalence class of heights
associated to a divisor on abelian varieties contain a unique representative with all the
nice functorial properties of Weil’s equivalence class. Then, it was Tate who gave an
elementary proof of the existence of a normalized height associated to a divisor class
on an abelian variety.

Thus, we will first construct the Néron-Tate height, and study the associated bilin-
ear form, then consider this height on the Jacobians, which we need for the proof of
Falting’s theorem.

Thus, we will only cover section 9.2 to 9.4 of the book here.

4.1 Néron-Tate Heights

Let X be complete variety over K . By Theorem 2.3.5 we have the height homomor-
phism

h : Pic(X )→ RX (K)/O(1)

which associates to a line bundle L its equivalence class of heights hL .

In general there is no canonical height function associated to L ∈ Pic(X ). They
are only determined up to a bounded function in O(1). But on an abelian variety, there
is a canonical choice ĥL of a height function in any class hL characterized by good
behaviour with respect to the group operation.

By the theorem of the cube 3.6.12, for every L ∈ Pic(A), we have a quadratic
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function
Mor(X , A)→ Pic(X ), φ 7→ φ∗L

Note the decomposition L =L+ +L− in to an even part and an odd part (Corollary
3.6.16.1) gives a decomposition of our quadratic function into quadratic form φ 7→
φ∗L+. Hence with the homogeneity property (Proposition 3.6.13)

(nφ)∗(L+) = n2φ∗(L+)

and into a linear form φ 7→ φ∗L− (Theorem 3.6.17). The composite of the height
homomorphism and the quadratic function is a quadratic function

q : Mor(X , A)→ RX (K)/O(1), φ 7→ hφ∗L

We conclude that q = q+ + q− for the quadratic form q+(φ) = hφ∗(L+) and linear

form q−(φ) = hφ∗(L−). Since 2 is invertible in the abelian group RX (K)/O(1), this
decomposition is unique, in contrast to L = L+ +L−, which is unique only up to
2-torsion in Pic(X ).

By homogeneity, we see for any integer n, we have n2hL+
= h[n]∗L+ and nhL−

=
h[n]∗L− . Note hL represents an equivalence class of heights, for any representative hL ,
by Theorem 2.3.5 there is a constant C(n) so that for every a ∈ A we have

|hL+
(na)− n2hL+

(a)|≤ C(n)

|hL−
(na)− nhL−

(a)|≤ C(n)

These conditions serve to choose a canonical height function.

Let us consider the abstract situation first.

Let N be a multiplicative closed subset of R (resp. R+) acting on a set S by means
of a map such that n(mx) = nmx for x ∈ S.

Definition 4.1.1

A function h : S→ R is:

1. quasi-homogeneous of degree d ∈ N (resp. d ∈ R+) for N if for n ∈ N
there is a positive constant C(n) such that

|h(nx)− ndh(x)|≤ C(x) for every x ∈ S (Eq. 4.1.1)

for every x ∈ S
2. homogeneous of degree d for N if h(nx) = ndh(x)

The example we should keep in mind is S = A(K), h= hL , N = Z and the action of n
is multiplication by n in the abelian group A(K).

Lemma 4.1.2

LetN act on the set S as before and h : S→ R be quasi-homogeneous of degree d > 0.
If N has an element of absolute value > 1, then there is a unique homogeneous
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function ĥ : S→ R of degree d for N such that ĥ− h is bounded.

Proof. Assume for a moment a homogeneous ĥ of degree d for N exists, and h− ĥ is
bounded. Then for x ∈ S and n ∈N , we have

ĥ(x) = lim
|n|→∞

n−d ĥ(nx) = lim
|n|→∞

n−dh(nx)

as h − ĥ is bounded. This proves uniqueness and gives us an idea of how to show
existence. Apparently, in order for this argument to work, we need C(n) = o(nd),
a condition we do not want to impose a priori. On the other hand, note h(mnx) =
h(m(nx)) allows us to get control of C(mn) in terms of C(m) and C(n). This is enough
for proving the existence of the limit if we stay with a suitable subsequence, and this
suffices for the proof. The details are as follows.

Let us fix m ∈ N , m > 1. For a positive integer r, estimate Eq. 4.1.1 with n = m
and mr−1 x in place of x gives

|h(mr x)−mdh(mr−1 x)|≤ C(m)

and hence

|h(mr x)−mrdh(x)|=

�

�

�

�

�

r
∑

i=1

md(i−1)h(mr−i+1 x)−mdih(mr−i x)

�

�

�

�

�

≤
r
∑

i=1

md(i−1)
�

�h(mr−i+1 x)−mdh(mr−i x)
�

�

≤
mdr − 1
md − 1

C(m)

Replacing x by ms x for any s ∈ N we get

|h(mr+s x)−mrdh(ms x)|≤
mdr − 1
md − 1

C(m)

and we conclude

|m−(r+s)dh(mr+s x)−m−sdh(ms x)|≤
C(m)

(md − 1)mds
(Eq. 4.1.2)

for every r, s ∈ N. This shows
(m−sdh(ms x))s∈N

is a Cauchy sequence and we denote ĥ(x) its limit. Using Eq. 4.1.2 for s = 0 and
r →∞, we get

|ĥ(x)− h(x)|≤
C(m)

md − 1
If we use Eq. 4.1.1 again with ms x in pace of x and n ∈N , we get

ĥ(nx) = lim
s→∞

m−sd(h(msnx)− ndh(ms x) + ndh(ms x))

= nd ĥ(x)

We have proved the existence of a homogeneous function ĥ of degree d for N , such
that ĥ− h remains bounded.
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The above prove is known as Tate’s limit argument.

If we combine the results above, then we obtain a canonical global height function
associated to every class of Pic(A).

Corollary 4.1.2.1

Let L ∈ Pic(A) and L = L+ +L− be a decomposition into even and odd parts.
Then:

1. the class hL±
are independent of the choice of the decomposition

2. there is a unique homogeneous height function ĥL±
in the class hL±

, of degree
2 in the + case, and degree 1 in the − case

Now all the results about heights on abelian varieties is now true for Néron-Tate
heights as exact equations, not just up to bounded functions. More precisely, we have
the following theorem.

Theorem 4.1.3

The Néron-Tate heights on abelian varieties has the following property:

1. The map
ĥ : Pic(A)→ RA(K), L 7→ ĥL

is a group homomorphism
2. If φ : A→ B is a homomorphism of abelian varieties, then

ĥφ∗L = ĥL ◦φ

for any L ∈ Pic(B)
3. Let L ∈ Pic(A) be even. If L is base-point free or ample, then ĥL ≥ 0

Proof. Part (1) and (2) mostly just follow from Theorem 2.3.5 and Corollary 4.1.2.1.
For part (3), note we may just assume L is base-point free, as if L just ample, then
mL is very ample (hence base-point free) for some m ≫ 0, but mĥL = ĥmL . Thus
WLOG assume L is base-point free and even. This means it induces a morphism
φ : A→ Pn for some n, so that φ∗OPn(1) ∼=L . Thus hφ is in the class of hL . But we
have seen in the proof of Lemma 4.1.2 that

ĥL (a) = lim
n→∞

n−2hφ(na)

for any a ∈ A. Since hφ is non-negative, so is ĥL .

Theorem 4.1.4
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The Néron-Tate height ĥL is the unique quadratic function in the class hL . Moreover,
2ĥL+

is the associated quadratic form and 2ĥL−
is the associated linear form.

Proof. First, we note the function

b(a, a′) := ĥL (a+ a′)− ĥL (a)− ĥL (a
′)

is bilinear in a, a′. This follows from the Theorem of the cube 3.6.12, using Theorem
4.1.3. The associated quadratic and linear form are given by

ĥL (a)± ĥL (−a) = ĥL±[−1]∗L (a) = 2ĥL±
(a)

again by Theorem 4.1.3.

It remains to prove uniqueness. By definition, the quadratic function is determined
up to bounded functions. Hence the same is true for the associated quadratic/linear
forms. Corollary 4.1.2.1 shows they are unique.

Now let A be an abelian variety over a field K with product formula.

Let M be an abelian group and b a real-valued symmetric bilinear form on M .
The example we have in mind is M = A(K) and certain bilinear form associated to a
Néron-Tate height. The kernel of b is the abelian group

N := {x ∈ M : b(x , y) = 0 for all y ∈ M}

Then b induces a symmetric bilinear form b on M = M/N and the kernel of b is zero.
Since b is real valued, M is torsion free and all torsion elements of M are contained
in N . We conclude

M → MR, m 7→ m⊗ 1

is injective. Let M
′

be a f.g. subgroup of M . The restriction of b to the free abelian
group M

′
extends uniquely to a bilinear form b

′
on M

′
R. Let M

′
Q = M

′
⊗Z Q. An easy

argument shows M
′
Q ⊆ MQ and M

′
R ⊆ MR. Since MR is the union of all M

′
and the

bilinear forms b
′
agrees on the overlaps, we have a unique extension of b to a bilinear

form bR on MR.

Now we would like that the bilinear form bR(x , y) determines a scalar product and
an associated norm ∥x∥2 = bR(x , x) on MR.

To this end, of course is necessary that b(x , x) > 0 for all 0 ̸= x ∈ M . Suppose
that is the case. By clearing denominators, b(x , x) > 0 for x ∈ MQ\{0} and thus by
continuity we see bR(x , x) ≥ 0 for x ∈ MR\{0}. Note however this is not enough for
bR to be positive definite, as is seen in the following example.

Example 4.1.5

Let α be a transcendental number in R, then the quadratic form in R2 given by
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q(x) = (x1 − αx2)2 is positive semidefinite. We have q(α, 1) = 0 but q(x) > 0
whenever x ∈Q

2
\{0} as α is transcendental.

Lemma 4.1.6

With the notation and assumptions as above, the bilinear form bR is positive definite
if and only if for every finitely generated subgroup M

′
of M and every C > 0 the set

{x ∈ M : bR(x , x)≤ C}

is finite.

Proof. We may assume M is finitely generated. Since M is torsion-free, its a lattice
in MR. If bR is a scalar product, then there are only finitely many lattice points in a
bounded set. This proves the result in one direction.

Conversely, assume that bR is not positive definite. We may assume that bR is
positive semidefinite. Otherwise, the set

{x ∈ M : bR(x , x)≤ C}

is clearly infintie. There is a y ∈ MR\{0} such that bR(y, y) = 0. For bR positive
semidefinite, the Cauchy-Schwarz inequality is valid. Thus y is in the kernel of bR. By
construction, the restriction of bR to M ×M has trivial kernel and hence y /∈ MQ.

Choose a basis x1, ..., x r of M . Its also a basis of MR. For any n ∈ N there is a
yn ∈ M such that the coordinates of yn − ny are in the interval [0,1]. The elements
yn − ny are contained in the compact cube

{
r
∑

i=1

ai x i : 0≤ ai ≤ 1}

while on the other hand

b(yn, yn) = b(yn − ny, yn − ny)

Since bR is continuous, its bounded on that cube, say C . Since y /∈ MQ, the set
{yn : n ∈ N} is infinite and contained in

{x ∈ M : bR(x , x)≤ C}

This proves the lemma.

Now we will apply these considerations to M = A(K). Let L ∈ Pic(A) and b the
bilinear form associated to the quadratic function ĥL . The associated quadratic form
and hence b itself depend only on L+ by Theorem 4.1.4. Hence we may assume L is
even. In view of the paragraphs above (and below Theorem 4.1.4), we get a symmetric
bilinear form bR on MR.

Assume L is also ample. Then ĥL is non-negative function by Theorem 4.1.3 and
hence bR is positive semidefinite. There are now two problems:
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1. we would like to know the kernel N of b
2. we would like to have at our disposal the necessary and sufficient condition of

Lemma 4.1.6 for a scalar product

The latter is satisfied if there are only finitely many L-rational points of bounded height
relative to L for any finite field extension L/K . By Northcott’s theorem 2.4.4, this
holds for a number field.

Now we assume the condition of Lemma 4.1.6 holds. Our goal is to determine N .
Let x ∈ A be a point with ĥL (x) = 0. Then for every integer n we have ĥL (nx) =
n2ĥL (x) = 0, hence the set {nx : n ∈ Z} is finite. By the pigeon-hole principle, there
will be two distinct integers m, n so nx = mx . Hence x is a torsion point. We have
already seen above the torsion elements of M are contained in side N , and hence N is
the torsion subgroup of M = A(K).

Theorem 4.1.7

Let K be a number field and L ample and even. Then ĥL vanishes exactly on the
torsion subgroup of A(K). Moreover, there is a unique scalar product 〈·, ·〉 on the
abelian group A(K)⊗Z R so

ĥL (x) = 〈x ⊗ 1, x ⊗ 1〉

for every x ∈ A(K).

Proof. This follows from the above discussion, as MR = M ⊗ZR is canonically isomor-
phic to M ⊗Z R, as N is the torsion subgroup of M = A(K).

In the next result, we relate b to the Néron-Tate height of the Poincaré class.

Proposition 4.1.8

Let L ∈ Pic(A) and b the symmetric bilinear form associated to ĥL . Moreover, let
P ∈ Pic(A× Â) be the Poincaré class of A and φL : A→ Â the homomorphism of
Theorem 3.5.2. Then

b(a, a′) = ĥP(a,φL (a
′))

for every a, a′ ∈ A(K).

Proof. By definition

b(a, a′) = ĥL (a+ a′)− ĥL (a)− ĥL (a
′)

= ĥL ◦τa′(a)− ĥL (a)− ĥL (a
′)

For the moment, let us keep a′ fixed and view the above as functions of a. By Theorem
2.3.5, we conclude

ĥL + b(·, a′)
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is a representative in the class hτ∗
a′L

. Then the representative above is a quadratic
function too, being a sum of a quadratic function and a linear form. Now Theorem
4.1.4 says

ĥτ∗
a′L
(a) = ĥL (a) + b(a, a′)

and hence by Theorem 4.1.3 we see

b(a, a′) = ĥφL (a′)(a)

It follows that its enough to prove

ĥL ′ = ĥP(·,L ′) (Eq. 4.1.3)

for L ′ ∈ Â := P ic0(A).

On the other hand, the point L ′ is the pullback of P to A× {L ′} (see Theorem
3.4.5), hence Eq. 4.1.3 holds up to a bounded function on A(K) (by Theorem 2.3.5).
In order to get equality, by Theorem 4.1.4 it is enough to show that ĥP is bilinear. If
a ∈ A, then applying Theorem 4.1.3 to the homomorphism φ : A→ A× Â given by
φ(a) = (a, 0) and using φ∗P = 0 (Theorem 3.4.5), we get

ĥP(a, 0) = ĥφ∗P(a) = 0

In the same way we see
ĥL (0, a′) = 0

for a′ ∈ Â. We conclude the bilinear form associated to the quadratic function ĥP ,
evaluated at ((a, 0), (0, a′)), is equal to ĥP(a, a′). This proves bilinearity.

Corollary 4.1.8.1

With the notation of the proof of Proposition 4.1.8, it holds

ĥτ∗
a′L
(a) = ĥL (a) + b(a, a′)

ĥL ′ = ĥP(·,L ′)

Corollary 4.1.8.2

Let L ′ ∈ Pic0(A) and L ∈ Pic(A) be an even ample class. Then

ĥL ′ = O(ĥ1/2
L )

Proof. Let a ∈ A(K). Corollary 4.1.8.1 shows

ĥL ′(a) = ĥP(a,L ′)

By previous results, we know there is a′ ∈ A so L ′ = φL (a′). Let b be the bilinear
form associated to ĥL . Then applying Proposition 4.1.8 we conclude

ĥL ′(a) = b(a, a′)
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We seen above (see here) that b induces a symmetric bilinear form on A(K)⊗ZR, which
is positive semidefinite because ĥL is non-negative (see here and Theorem 4.1.3). So
we can apply Cauchy-Schwarz to get

|ĥL ′(a)|2≤ b(a, a) · b(a′, a′) = 4ĥL (a) · ĥL (φL (a
′))

This proves the claim.

Corollary 4.1.8.3

Let X be a projective smooth variety over K, L ∈ Pic(X ) be ample and L ′ ∈ Pic(X )
be algebraically equivalent to L . Then

hL ′ = hL +O(|hL |1/2+1)

Recall we say two line bundles L1,L2 on variety X are algebraically equivalent if
there is irreducible smooth variety T and line bundle L on X × T so L1

∼=L |X t1
and

L2
∼=L |X t2

for some t1, t2 ∈ T (K), where X t is the fiber of X at t.

4.2 Néron-Tate Heights on Jacobians

This section is not needed until the proof of Falting’s theorem.

Let C be an irreducible smooth projective curve of genus g > 0 over a field K with
product formula. By base change, we assume C has K-rational base point P0. We
denote the Jacobian of C by J and identify J with its dual Ĵ as in Theorem 3.7.10 and
the paragraph above it. Then the Poincaré class P correspond to

P = m∗θ − p∗1θ − p∗2θ ∈ Pic0(J × J)

where θ is the theta divisor defined in Definition 3.7.3, m the multiplication and pi

the projections.

Proposition 4.2.1

The Néron-Tate height ĥP : J(K)→ J(K)→ R is a symmetric positive semidefinite
bilinear form.

Proof. Using the above identification of J and Ĵ by φθ , Proposition 4.1.8 asserts ĥP

is the symmetric bilinear form associated to the quadratic function ĥθ . It remains to
show positive semidefinite.

Let ∆ : J → J × J be the diagonal homomorphism. Proposition 3.6.13 shows
[2]∗θ = 3θ + θ− where θ− = [−1]∗θ as usual. Thus

∆∗θ = (m ◦∆)∗θ − (p1 ◦∆)∗θ − (p2 ◦∆)∗θ
= [2]∗θ − 2θ

= θ + θ−
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For a ∈ J(K), we see
ĥP(a, a) = ĥθ+θ−(a)

by Theorem 4.1.3 again. Since θ is ample (see Theorem 3.7.10), we see θ− = [−1]∗θ
is also ample. Thus θ + θ− is an ample even class and the corresponding Néron-Tate
height is a non-negative function (Theorem 4.1.3).

In light the above result, we will use the following notation for a, a′ ∈ J(K)



a, a′
�

:= hP(a, a′)

|a|= ĥP(a, a)1/2 = ĥθ+θ−(a)
1/2

Definition 4.2.2

The symmetric positive semidefinite bilinear form 〈·, ·〉 is called the canonical
form of J .

In the following, for a divisor D, we will also use hD to mean hO(D).

Proposition 4.2.3: Mumford’s Formula

Let∆ be the diagonal in C×C and j : C → J , P 7→ [P]−[P0] the natural embedding
from Remark 3.7.4. Then for any P,Q ∈ C(K),

h∆(P,Q) =
1

2g
| j(P)|2+

1
2g
| j(Q)|2−〈 j(P), j(Q)〉

−
1

2g
ĥθ−θ−( j(P))−

1
2g

ĥθ−θ−( j(Q)) +O(1)

Proof. We denote z := j(P) and w := j(Q). By what was proved in Proposition 3.7.7
to Proposition 3.7.9, we see

( j × j)∗P = O(C × {P0}+ {P0} × C −∆)

By Theorem 2.3.5 we see

h∆(P,Q) = hC×{P0}(P,Q) + h{P0}×C(P,Q)− 〈z, w〉+O(1) (Eq. 4.2.1)

By Theorem 2.3.5 again, we have

hC×{P0}(P,Q) = hp∗2[P0](P,Q) = h[P0](Q) +O(1) (Eq. 4.2.2)

and similarly
h{P0}×C(P,Q) = h[P0](P) +O(1) (Eq. 4.2.3)
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Now Proposition 3.7.6 shows g[P0] is in the class j∗θ− and Theorem 2.3.5 implies

h[P0](P) =
1
g

ĥθ−(z) +O(1)

=
1

2g
|z|2−

1
2g

ĥθ−θ−(z) +O(1)

Now just substituting this in Eq. 4.2.2 and Eq. 4.2.3, and putting the result in Eq.
4.2.1 we are done.

Remark 4.2.4

Since θ−θ− is an odd class and θ+θ− is an even ample class, we get by Corollary
4.1.8.2

h∆(P,Q) =
1

2g
| j(P)|2+

1
2g
| j(Q)|2−〈 j(P), j(Q)〉+O(| j(P)|+| j(Q)|+1)

As shown by Mumford, this formula has some rather interesting consequences for
curves of genus g ≥ 2.

Proposition 4.2.5

Assume C has genus g ≥ 2 and let cosα ∈ ( 1
g , 1), ε > 0. Then there is a constant B =

B(C , P0,ε)> 0 so for any pair (P,Q) ∈ C(K)2, one of the following four possibilities
occurs:

1. P =Q
2. 〈 j(P), j(Q)〉< cosα · | j(P)|·| j(Q)|
3. min(| j(P)|, | j(Q)|)≤ B
4. (2g cosα− 1− ε)min(| j(P)|, | j(Q)|)≤max(| j(P)|, | j(Q)|)

Proof. We may assume (1), (2) do not hold. Then we need to prove either (3) or (4)
holds. Again, denote z = j(P) and w = j(Q) and assume |z|≥ |w|. By Remark 4.2.4
we have

〈z, w〉+ h∆(P,Q) =
1

2g
|z|2+

1
2g
|w|2+O(|z|+1)

Since P ̸= Q and ∆ is an effective divisor, we may assume by Proposition 2.3.6 that
h∆(P,Q)≥ 0. Using the negation of (2), we conclude

(cosα)|z|·|w|≤
1

2g
|z|2+

1
2g
|w|2+O(|z|+1)

We may also assume |z|≥ 1. We set r = |z|/|w| and find from the preceding inequality
that

cosα≤
1

2g
(r +

1
r
) +O(

1
|w|
)
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We multiply the last inequality by 2g, note 1/r ≤ 1 and find

2g cosα− 1−O(
1
|w|
)≤ r =

|z|
|w|

If we choose B sufficiently large, then either (3) or (4) holds.

Corollary 4.2.5.1

With the notation as above, let P,Q be points on C. Then, if j(P) − j(Q) is in the
kernel of 〈·, ·〉, either P = Q or | j(P)|= | j(Q)|≤ B. In particular if j(P)− j(Q) is a
torsion point and | j(Q)|> B, then P =Q.

The next goal of this section is to count rational points of C , assuming g ≥ 2. As in
above, the canonical bilinear form b = ĥP extends to a symmetric positive semidefinite
bilinear form b̃ on J(K)⊗ZR. Let NR be its kernel; then b̃ induces a scalar product on
E := (J(K)⊗Z R)/NR, again denoted by 〈·, ·〉. By Corollary 4.2.5.1 we see the map

i : C(K)→ E, P 7→ j(P)⊗ 1+ NR

is one-to-one on the subset of points P such that | j(P)|> B.

Definition 4.2.6

A point P ∈ C(K) is called small if | j(P)|≤ B, otherwise its called large.

Now let us fix 0< α < π/2 and ε > 0 so 1/g < cosα < 1 and λ := 2g cosα−1−ε >
1. In the euclidean space E = (J(K) ⊗Z R)/NR, we have the following geometric
interpretation of Proposition 4.2.5. If P,Q are different large points such that i(P) and
i(Q) includes an angle ≤ α and if | j(P)|≤ | j(Q)|, then λ| j(P)|≤ λ| j(Q)|. THis shows
we have gaps between points on C pointing in approximatively the same direction.

Let us consider the cone

T := {x ∈ E : 〈x , a〉 ≥ cos(α/2) · |x |·|a|}

with center 0, angle α/2 and axis through a ∈ E. We order the large points in C(K)
mapping to T in a sequence Q0,Q1,Q2, ... such that

B < | j(Q0)|≤ | j(Q1)|≤ | j(Q2)|≤ ...

The above shows | j(Qk)|≥ λk| j(Q0)| for every k. For H > B, let nT (H) be the number
of large points Q ∈ C(K) mapping to T with | j(Q)|≤ H. We get

nT (H)≤
¡

log(H/B)
logλ

¤

The above bound for nT (H) is uniform with respect to T (for a fixed angle) and
yields a counting of all large K-rational points of C mapping to T . This can be used,
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in some circumstances, to count all large points in C(K) with bounded height. To this
end, it is necessary to assume J(K) is finitely generated group. Another possibility
consists of fixing a pirori a finitely generated subgroup Γ of J(K), and consider only
the subset of large points P ∈ C(K) for which j(P) ∈ Γ. The question whether we
can take J(K) for such a group Γ can then be examined independently. As we shall
see later, if K is a number field or function field over finite field then J(K) is indeed
finitely generated.

Thus let us fix a subgroup Γ of J(K) of rank r = rankQ(Γ), where the rank is the
maximum number of Z-linearly independent elements of Γ.

We associate to Γ the finite-dimensional real vector subspace EΓ spanned by the
image of Γ in E, and its clear dim(EΓ)≤ r.

For x ∈ E\{0}, we set ν(x) = x/|x |. Then ν maps cones to spherical caps and we
get a bound for the minimal number of cones needed to cover EΓ from the following
lemma.

Lemma 4.2.7

Let ∥·∥ be a norm on Rr . Let E be a subset of the ball Bt := {x ∈ Rr : ∥x∥ ≤ t}.
Then for any ε > 0, we can cover E with (1+ 2t/ε)r translates, all centred on the
set E, of the ball Bε.

Corollary 4.2.7.1

Let ∥·∥ be a norm on Rr and ρ > 0. If x1, ...,xn ∈ Rr have norm 1 and if


xi − x j



>
ρ then n≤ (1+ 2/ρ)r .

As a particular application of the above result, we get a finer bound on the number
of large points.

Proposition 4.2.8

For ρ = 2 sin(α/2) and r = rankQ(Γ), the number nΓ(H) of large points Q with
j(Q) ∈ Γ and | j(Q)|≤ H does not exceed

nΓ(H)≤
¡

log(H/B)
logλ

¤

· ⌊(1+ 2/ρ)r⌋

In particular, nΓ(H)≪ log H.

Proof. For any k ∈ N, we count the number of Q ∈ C(K) with λkB < | j(Q)|≤ λk+1B.
By the above paragraph, the angle between two such points Q,Q′ is > α. We conclude
that |ν(Q) − ν(Q′)|> ρ for ρ := 2 sin(α/2). By Lemma 4.2.7.1, there are at most
(1+ 2/ρ)r such points. Now the interval (B, H] may be covered by ⌈log(H/B)⌉ such
intervals, proving the claim.
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Still assuming g ≥ 2, take α = π/6, ε > 0 so λ := 2g cosα − 1 − ε ≥ 2 and
ρ = 2sin(π/12)> 1

2 . With this choice of parameters, we get the following result.

Theorem 4.2.9: Mumford’s Gap Principle

Let C be irreducible smooth projective curve of genus g ≥ 2 over K with base point
P0 ∈ C(K) leading to a closed embedding j of C into the Jacobian J and Γ a subgroup
of J of fintie Q-rank r. Then there is a constant B > 0 depending on C and P0, with
the following properties:

1. If we choose any cone T in E with center 0 and angle α/2 and if we order
{Q ∈ C : j(Q) ∈ Γ, | j(Q)|> B, i(Q) ∈ T} by increasing norm, then | j(Qn+1)|≥
2| j(Qn)| for every n ∈ N

2. For H > B, the number nΓ(H) of points Q ∈ C with j(Q) ∈ Γ, B < | j(Q)|≤ H
is bounded by

nΓ(H)≤
¡

log(H/B)
log2

¤

5r

3. In particular, nΓ(2H)− nΓ(H)≤ 2 · 5r

For small points, we must use a different method, which we will not include here.
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Chapter 5

Mordell-Weil Theorem

The content of this chapter is to prove the following claim: the group of rational points
of an abelian variety defined over a number field is finitely generated. With this, we
can apply the counting we obtained in the end of last chapter to any abelian varieties.

The proof of the theorem consists of two stages:

1. we prove weak Mordell-Weil theorem: we show A(K)/φ(A(K)) is finite for some
non-trivial isogeny φ, normally φ = [m].

2. we use Fermat descent argument to conclude the proof

The explicit approach by Mordell (where he only proved for elliptic curves) used el-
liptic functions, and this is not practical enough to be carried out explicitly on elliptic
curves, not to mention general abelian variety A. Thus for us we will use what’s called
Galois cohomology instead.

We will first give an elementary proof of weak Mordel-Weil for elliptic curves (with
many parts skipped), then proceed to the actual proof of Mordel-Weil for general
abelian varieties.

5.1 Weak Mordel-Weil Theorem for Elliptic Curves

In this section we prove the finiteness of E(K)/2E(K), for an elliptic curve E over a
field K of characteristic char(K) ̸= 2.

First recall we can view E as a plane curve in P2
K , given by

y2 + a1 x y + a3 y = x3 + a2 x2 + a4 x + a6

for some ai ∈ K . Replacing y by y − 1
2(a1 x + a3) (which is allowed as char(K) ̸= 2),

we may assume a1 = a3 = 0. Thus we can assume the affine part of E has equation

y2 = (x −α1)(x −α2)(x −α3)

for αi ∈ K .
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The intersection of E with the line P2
K\A

2
K is a divisor 3O, and the point O = (0 : 0 :

1) is an inflexion point of E, which is taken as the identity of the group multiplication.
The affine part of E is just E\{O}, and in what follows we often write a point P ∈ E\{O}
as P = (x , y) in the affine coordinate.

Proposition 5.1.1

Let αi ∈ K for 1≤ i ≤ 3 and f (x) =
∏

(x−αi). Then y2 = f (x) is an elliptic curve
over K if and only if the discriminant

Df :=
∏

i ̸= j

(αi −α j)

of f is not 0.

Since char(K) ̸= 2, we can actually describe the morphism [2] explicitly, which we
will do so now.

Let (x , y) be standard affine coordinates of E, recall the group law is given by
Proposition 3.3.4.

Let P = (x0, y0), then −2P is equal to the third intersection point of the tangent at
P with E. If 2P = −2P = O, this tangent is vertical. Thus we get a description of the
2-torsion points:

Proposition 5.1.2

The group E[2] of 2-torsion points of E consists of the identity element O and the
points (αi, 0), i = 1,2, 3, of order 2.

Now let P = (x0, y0) ∈ E(K) and suppose P is not a 2-torsion point. The tangent
line at P has equation

y = ax + b

with a, b determined as in Proposition 3.3.4, i.e. a = f ′(x0)/(2y0) and b = y0−ax0. In
order to determine the x-coordinate of the third intersection point −2P, we eliminate
y from the above equation and the equation y2 = f (x), obtaining

(ax + b)2 − (x −α1)(x −α2)(x −α3) = 0 (Eq. 5.1.1)

The polynomial on the left has a zero at x0 of multiplicity at least 2 (it is 3 if P is a
torsion point of order 3 on E), which accounts for two solutions. The third solution
x1 is the x-coordinate of −2P. Hence factoring the left-hand side of the above into
linear terms gives

(ax + b)2 − (x −α1)(x −α2)(x −α3) = −(x − x0)
2(x − x1)

of cubic polynomials in x . We specialize x to αi, and find

(aαi + b)2 = −(αi − x0)
2(αi − x1)

and

x1 −αi =
�

aαi + b
x0 −αi

�2

(Eq. 5.1.2)
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for i = 1,2, 3. In affine coordinates, we conclude

2P = (x1,−ax1 − b)

Now suppose αi ∈ K for i = 1, 2,3. Then the above equation shows x1 − αi is a
square in K for i = 1,2, 3. The following result gives the converse.

Lemma 5.1.3

Under the hypotheses above, suppose αi ∈ K. Let (x1, y1) be the affine coordinates
of a point Q ∈ E(K), Q ̸= O. Then Q ∈ 2E(K) if and only if x1−αi is a square in K
for i = 1,2, 3.

Next, we consider addition. Let P1, P2, P3 ∈ E(K) such that P1 + P2 + P3 = O and
Pi ̸= O for i = 1, 2,3. Let y = ax + b be the line through P1, P2, P3 and (x i, yi) be the
affine coordinates of the points Pi. Say Equation Eq. 5.1.1 has roots x1, x2, x3, giving

(ax + b)2 −
3
∏

i=1

(x −αi) =
3
∏

i=1

(x i − x) (Eq. 5.1.3)

Now set x = αi we get

(aαi + b)2 = (x1 −αi)(x2 −αi)(x3 −α3) (Eq. 5.1.4)

for i = 1,2, 3.

This gives us evidence for a group homomorphism φi : E(K)→ K×/(K×)2 given by

(x , y) 7→ x −αi (mod (K×)2)

However, this is defined only for x ̸= αi. If we proceed as before but with P1 = (αi, 0),
then differentiating Eq. 5.1.3 at the point αi gives the equation

−(αi −α j)(αi −αk) = −(x2 −αi)(x3 −αi) (Eq. 5.1.5)

where j, k are the remaining two indices. Now, as we will verify in a moment, we
obtain a homomorphism

φ = (φ1,φ2,φ3) : E(K)→ (K×/(K×)2)3

with

φi(P) =







1 if P = O
x −αi (mod (K×)2) if P = (x , y), x ̸= αi

(αi −α j)(αi −αk) if P = (αi, 0)

where j, k denotes the two other indices.

Lemma 5.1.4

The map φ : E(K)→ (K×/(K×)2)3 is a group homomorphism with kernel 2E(K).
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Proposition 5.1.5

Let R be a unique factorization domain with quotient field K. Assume char(K) ̸= 2
and the group of units R× in R is finitely generated. Let E be the elliptic curve given
by

y2 = (x −α1)(x −α2)(x −α3)

where αi ∈ R are distinct elements. Then

|E(K)/2E(K)|≤ 4r · 2
∑

i< jω(α j−αi)

where ω(α) denotes the number of distinct prime factors of α ∈ R\{0} and r is the
dimension of the F2-vector space R×/(R×)2.

Proof. By Lemma 5.1.4 we have a homomorphism φ : E(K) → (K×/(K×)2)3 with
kernel 2E(K). We need to estimate the cardinality of the image.

Let S be a set of representatives of the primes of R and P ∈ E(K)\{O} with affine
coordinates (x , y). For i = 1,2, 3, there are bi ∈ K , ui ∈ R× and ai a product of distinct
primes of S such that

x −αi = b2
i uiai (Eq. 5.1.6)

It follows from
y2 = (x −α1)(x −α2)(x −α3)

that the primes of the denominator of x occur with even multiplicity. Therefore, ai is
coprime to the denominator of bi and, substituting Eq. 5.1.6 into the last equation, we
see a1a2a3 and u1u2u3 are squares in R. Hence there are c1, c2, c3 ∈ R pairwise coprime
and product of distinct primes of S, such that

a1 = c2c3, a2 = c1c3, a3 = c1c2

Let π be a prime of S dividing ci. Since a j and the denominator of b j are coprime, π
divides the numerator of x −α j for j ̸= i and it follows that π divides α j −αk, where
j, k are the other two indices. Therefore, the number of possibilities for π is bounded
by ω(α j −αk) and there at most

2
∑

i< jω(α j−αi)

such tuples (c1, c2, c3).

The image of R× in K×/(K×)2 is isomorphic to Fr
2, restricting the image of ui to 2r

possibilities. We also know u1u2u3 is a square, hence the number of triples (u1, u2, u3)
is bounded by 4r . Finally, its easily seen the points of φ(E[2]) may be represented by
(u1c2c3, u2c3c1, u3c1c2) for admissible choices of ui and c j.

The following gives a special case of weak Mordell-Weil theorem for elliptic curves:
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Corollary 5.1.5.1

Let E be an elliptic curve over a number field K with 2-torsion also defined over K.
Then E(K)/2E(K) is finite.

Proof. The ring of integers OK is not necessarily a unique factorization domain. How-
ever, by the following Proposition, we can find a finite set of places S of K so for any
finite set of places T ∈ MK with T ⊇ S, the ring R of T -integers in K is a unique
factorization domain. Its group of units R× is finitely generated by Dirichlet’s unit
theorem 1.2.7. We have seen in the above discussion and Proposition 5.1.2 that E is
K-isomorphic to an elliptic curve of the form required in Proposition 5.1.5, because
we can always enlarge the ring R so as to ensure that every αi ∈ R. The result now
follows from Proposition 5.1.5.

Proposition 5.1.6

Let K be a number field. Then we can find a finite set of places S of K such that for
any finite set of places T ∈ MK with T ⊇ S, the ring OT,K is a principal ideal domain
and hence a unique factorization domain.

If the 2-torsion of E is not defined over the number field K , we can still prove the
finiteness of E(K)/2E(K) by base change to a finite extension L/K over which the 2-
torsion becomes rational. Then we use E(L)/2E(L) is finite to show E(L) is finitely
generated by Fermat descent, and to conclude, by general results about abelian groups,
that the subgroup E(K) is also finitely generated of rank not exceeding the rank of
E(L).

Lemma 5.1.7

Let A be an abelian variety defined over K and L/K finite separable extension of
K. Let m be a positive integer and suppose A(L)/mA(L) is a finite group. Then
A(K)/mA(K) is a finite group.

Proof. Let d = [L : K] and δ be a positive integer such that we can write d = d0d1

with d0 | mδ−1 and gcd(d1, m) = 1. Let E be the set of representatives of A(L)/mA(L)
in A(L).

The group A(L)/mδA(L) is again a finite group, since a set of representatives for it
is contained in the finite set

E(δ) := E +mE + ...+mδ−1E

Let F be the Galois closure of L over K , let G = Gal(F/K), let H be the subgroup of G
of index d fixing L, and denote by R a full set of representatives for the left cosets of
H in G.
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Let x ∈ A(K) ⊆ A(L). Then we see

x −mδ y ∈ E(δ)

for some y ∈ A(L). We apply the automorphisms σ ∈ R to this equation and deduce

d x −mδz ∈ E ′(δ)

where z :=
∑

σσy and

E ′(δ) :=

�

∑

σ∈R

σ

�

E(δ)

Clearly, z ∈ A(K) because any element τ ∈ Gal(F/K) permutes the left cosets of H.
Since d0 divides mδ−1, we may divide by d0, getting

d1 x −m(mδ−1/d0)z ∈ A(K)∩
1
d0
E ′(δ)

and A(K)∩ 1
d0
E ′(δ) is still a finite set (use Proposition 3.6.14).

Finally, since d1 and m are coprime, the euclidean algorithm produces integers u
and v so d1u−mv = 1. After multiplication by u, it follows

x −m((mδ−1/d0)uz − vx) ∈ A(K)∩
1
d0

uE ′(∆)

Thus, combine this lemma with Corollary 5.1.5.1, we conclude the following the-
orem.

Theorem 5.1.8: Weak Mordell-Weil (for elliptic curves)

Let E be an elliptic curve defined over a number field K. Then E(K)/2E(K) is finite.

5.2 Weak Mordell-Weil For Abelian Varieties

Before we proceed to give a proof, we need the following results.

Theorem 5.2.1: Chevalley-Weil Theorem

Let K be a number field, K an algebraic closure of K, and φ : Y → X a finite
unramified morphism of K-varieties. If X is complete, then there is a number field
L, K ⊆ L ⊆ K such that P ∈ Y (L) for any P ∈ Y (K) with φ(P) ∈ X (K).

The form we will need is for abelian varieties. Let A be an abelian variety over K . For a
non-zero integer m, we denote by 1

mA(K) the subset [m]−1A(K) of A(K). For S ⊆ A(K),
the field K(S) is the smallest intermediate field K ⊆ L ⊆ K with S ⊆ A(L).
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Corollary 5.2.1.1

Let A be an abelian variety defined over a number field K. Then [K( 1
mA(K)) : K] <

∞.

Now, the main result we will prove in this section is the following.

Theorem 5.2.2: Weak Mordell-Weil

Let A be an abelian variety over a number field K and let m be a positive integer.
Then A(K)/mA(K) is finite.

To begin with, we need to introduce some notation. As usual, Gal(L/K) is the
Galois group of L/K , where we fix an algebraic closure K and assume K/L. Let g ∈
Gal(L/K) and X a variety over K . We view a point x ∈ X (L) as belonging to some
affine chart, with affine coordinates in L. Applying g−1 to the coordinates, we get
well-defined point x g ∈ X (L). Clearly x gh = (x g)h and hence we have an action of
Gal(L/K) on X (L). If φ : X → Y is a morphism over K , then φ(x g) = φ(x)g . If F
denotes the fixed field of Gal(L/K) (i.e. F := {x ∈ L : g x = x∀g ∈ Gal(L/K)}), then
x ∈ X (F) is equivalent to x g = x for all g ∈ Gal(L/K). In particular, if X is abelian,
then we have (ma)g = mag and (a+ b)g = ag + bg for a, b ∈ X (L) and m ∈ Z.

Recall A[m] is the m-torsion of A, i.e. the kernel of [m] : A→ A. The next statement
is contained in the previous section (Lemma 5.1.7). We give an alternative proof using
methods of Kummer theory.

Lemma 5.2.3

Let L be a finite Galois extension of K and 0 ̸= m ∈ Z. If A(L)/mA(L) is finite, then
A(K)/mA(K) is finite.

Proof. The inclusion A(K) ⊆ A(L) induces a homomorphism

A(K)/mA(K)→ A(L)/mA(L)

of abelian groups. Let N be its kernel. Its enough to show N is finite. Choose a system
of representatives in A(K) for N . For each representative a, choose ba ∈ A(L) such
that a = mba. Consider an element g ∈ Gal(L/K) and define

λa(g) := bg
a − ba

By the above, we see
mλa(g) = (mba)

g −mba = ag − a

By K-rationality of a, this is zero. Using our system of representatives, the rule a 7→ λa

defines a map from N to the set of maps

Gal(L/K)→ A[m]

That is, we have
N → Hom(Grp)(Gal(L/K), A[m]), a 7→ λa
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We see N will be finite if this map is injective and the range if finite. The latter fol-
lows from Proposition 3.6.14. In order to prove the former, suppose λa = λa′ for
representatives a, a′. We have

bg
a′ − ba′ = bg

a − ba

and hence
(ba′ − ba)

g = ba′ − ba

for every g, or equivalently ba′ − ba ∈ A(K). Thus, applying [m] we get a = a′.

An important step in the proof of weak Mordell-Weil is the generalization of some
aspects of Kummer theory to abelian varieties.

Let 0 ̸= m ∈ Z be not divisible by char(K) and assume A[m] ⊆ A(K). We denote
the separable algebraic closure of K in K by K s. For a ∈ A(K), there is b ∈ A(K s) such
that a = mb (using [m] is unramified from Proposition 3.6.14, every such b ∈ A(K) is
in A(K s)). If g ∈ Gal(K s/K), then we define

〈a, g〉= bg − b

By the above discussion, we see 〈a, g〉 ∈ A[m].

Let a′ ∈ A(K) and b′ ∈ A(K s) with a′ = mb′, then

(b+ b′)g − (b+ b′) = (bg − b) + (b
′g − b′)

This shows 〈a, g〉 is independent of the choice of b. Moreover, we see 〈·, ·〉 is linear in
the first variable.

The map
〈·, ·〉 : A(K)→ Gal(K s/K)→ A[m]

is called the Kummer pairing. The right-kernel of 〈·, ·〉 is defined by

{g ∈ Gal(K s/K) : 〈a, g〉= 0∀a ∈ A(K)}

and the left-kernel is defined similarly by

{a ∈ A(K) : 〈a, g〉= 0∀g ∈ Gal(K s/K)}

As in Corollary 5.2.1.1, let K( 1
mA(K)) be the smallest intermediate field K ⊆ L ⊆ K

such that for any b ∈ A(K) with mb ∈ A(K) is rational over L.

Proposition 5.2.4

The Kummer pairing is bilinear, with left-kernel mA(K) and right-kernel the sub-
group Gal(K s/K( 1

mA(K))) of Gal(K s/K).
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Proof. Let g, g ′ ∈ Gal(K s/K). Using the notation and arguments of above paragraphs,
we see




a, g g ′
�

= bg g ′ − b = (bg − b)g
′
+ bg ′ − b

Since 〈a, g〉 is K-rational by assumption, we get



a, g g ′
�

= 〈a, g〉+



a, g ′
�

This proves linearity in the second variable and thus 〈·, ·〉 is bilinear.

For a ∈ mA(K), choose b ∈ A(K) such that a = mb. By K-rationality of b, we have

〈a, g〉= bg − b = 0

for every g ∈ Gal(K s/K). Conversely, say a is in the left-kernel. For any b ∈ A(K s)
with a = mb, we have

0= 〈a, g〉= bg − b

Since this is true for every g ∈ Gal(K s/K) and since K is the fixed field of the Galois
group, we conclude b ∈ A(K). So the left-kernel is equal mA(K).

Obviously Gal(K s/K( 1
mA(K))) is contained in the left-kernel H. On the other hand,

let g be an element of the right-kernel. For b ∈ A(K s) with mb ∈ A(K), we have
bg = b. It follows the restriction of g to the residue field κ(b) is equal to the iden-
tity, hence the same is true for the restriction of g to K( 1

m(A(K))). This proves H ⊆
Gal(K s/K( 1

mA(K))), which proves the result.

Remark 5.2.5

It follows from Proposition 5.2.4 that the right-kernel is a closed normal subgroup
of Gal(K s/K). By Galois theory, K( 1

mA(K)) is a Galois extension of K . By the same
Proposition 5.2.4, we conclude the Kummer pairing induces a non-degenerate
(i.e. left and right kernel equal zero) pairing

(A(K)/mA(K))×Gal(K(
1
m

A(K))/K)→ A[m]

Thus in order to prove the finiteness of the group A(K)/mA(K), its enough to
show Gal(K( 1

mA(K))/K) is finite.

Proof of Theorem 5.2.2. By Lemma 5.2.3 and Proposition 3.6.14, we may assume

A[m] ⊆ A(K)

Since K is a number field, we see K( 1
mA(K))/K is finite by Corollary 5.2.1.1. As we

have seen in Remark 5.2.5, this is enough to conclude the proof.
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5.3 Mordell-Weil Theorem

We will prove the following result.

Theorem 5.3.1: Mordell-Weil Theorem

If A is an abelian variety over a number field K, then A(K) is a finitely generated
abelian group.

In order to prove this, we need the Fermat descent:

Lemma 5.3.2

Let G be an abelian group and m ≥ 2 a positive integer. Let also ∥·∥ a real function
on G satisfying

∥x − y∥ ≤ ∥x∥+ ∥y∥ , ∥mx∥= m∥x∥

for any x , y ∈ G. Assume S is a set of representatives for G/mG, bounded relative
to ∥·∥ by a constant C. Then for any x ∈ C, there is a decomposition

x =
l
∑

i=0

mi yi +ml+1z

where yi ∈ S and z ∈ G satisfies ∥z∥ ≤ C + 1. In particular, G is generated by
elements in the ball

{x ∈ G : ∥x∥ ≤ C + 1}

Proof. There are y0 ∈ S, x0 ∈ G such that x = y0 +mx0. We have

∥x0∥ ≤
1
m
(C + ∥x∥)

Proceeding by induction, there are yl ∈ S, x l ∈ G such that x l−1 = yl +mx l and

∥x l∥ ≤

�

l+1
∑

i=1

1
mi

�

· C +
1

ml+1
∥x∥

We choose l so large that ∥x∥ ≤ ml+1 and set z := x l , getting

∥z∥ ≤
1

m− 1
C + 1≤ C + 1

Moreover, we have
x = y0 +my1 + ...+ml yl +ml+1z

which proves the first claim. The second claim is a trivial consequence of the first.
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Proof of Theorem 5.3.1. Choose an integer m≥ 2. The weak Mordell-Weil 5.2.2 gives
finiteness of A(K)/mA(K). By Proposition 3.6.4 there is an even ample L ∈ Pic(A).
By Theorem 4.1.7, the assumptions of Lemma 5.3.2 for ∥·∥ := ĥ1/2

L on G := A(K) are
satisfied. Thus Lemma 5.3.2 shows the group A(K) is generated by a bounded set.
Finally, Northcott’s theorem 2.4.4 shows A(K) is finitely generated.
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